ephysics/ephysics/collision/shapes/ConvexMeshShape.hpp

255 lines
9.1 KiB
C++

/** @file
* @author Daniel Chappuis
* @copyright 2010-2016 Daniel Chappuis
* @license BSD 3 clauses (see license file)
*/
#pragma once
// Libraries
#include <ephysics/collision/shapes/ConvexShape.hpp>
#include <ephysics/engine/CollisionWorld.hpp>
#include <ephysics/mathematics/mathematics.hpp>
#include <ephysics/collision/TriangleMesh.hpp>
#include <ephysics/collision/narrowphase/GJK/GJKAlgorithm.hpp>
#include <vector>
#include <set>
#include <map>
/// ReactPhysics3D namespace
namespace ephysics {
// Declaration
class CollisionWorld;
// Class ConvexMeshShape
/**
* This class represents a convex mesh shape. In order to create a convex mesh shape, you
* need to indicate the local-space position of the mesh vertices. You do it either by
* passing a vertices array to the constructor or using the addVertex() method. Make sure
* that the set of vertices that you use to create the shape are indeed part of a convex
* mesh. The center of mass of the shape will be at the origin of the local-space geometry
* that you use to create the mesh. The method used for collision detection with a convex
* mesh shape has an O(n) running time with "n" beeing the number of vertices in the mesh.
* Therefore, you should try not to use too many vertices. However, it is possible to speed
* up the collision detection by using the edges information of your mesh. The running time
* of the collision detection that uses the edges is almost O(1) constant time at the cost
* of additional memory used to store the vertices. You can indicate edges information
* with the addEdge() method. Then, you must use the setIsEdgesInformationUsed(true) method
* in order to use the edges information for collision detection.
*/
class ConvexMeshShape : public ConvexShape {
protected :
// -------------------- Attributes -------------------- //
/// Array with the vertices of the mesh
std::vector<vec3> m_vertices;
/// Number of vertices in the mesh
uint32_t m_numberVertices;
/// Mesh minimum bounds in the three local x, y and z directions
vec3 m_minBounds;
/// Mesh maximum bounds in the three local x, y and z directions
vec3 m_maxBounds;
/// True if the shape contains the edges of the convex mesh in order to
/// make the collision detection faster
bool m_isEdgesInformationUsed;
/// Adjacency list representing the edges of the mesh
std::map<uint32_t, std::set<uint32_t> > m_edgesAdjacencyList;
// -------------------- Methods -------------------- //
/// Private copy-constructor
ConvexMeshShape(const ConvexMeshShape& shape);
/// Private assignment operator
ConvexMeshShape& operator=(const ConvexMeshShape& shape);
/// Recompute the bounds of the mesh
void recalculateBounds();
/// Set the scaling vector of the collision shape
virtual void setLocalScaling(const vec3& scaling);
/// Return a local support point in a given direction without the object margin.
virtual vec3 getLocalSupportPointWithoutMargin(const vec3& direction,
void** cachedCollisionData) const;
/// Return true if a point is inside the collision shape
virtual bool testPointInside(const vec3& localPoint, ProxyShape* proxyShape) const;
/// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const;
/// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const;
public :
// -------------------- Methods -------------------- //
/// Constructor to initialize with an array of 3D vertices.
ConvexMeshShape(const float* arrayVertices, uint32_t nbVertices, int32_t stride,
float margin = OBJECT_MARGIN);
/// Constructor to initialize with a triangle vertex array
ConvexMeshShape(TriangleVertexArray* triangleVertexArray, bool isEdgesInformationUsed = true,
float margin = OBJECT_MARGIN);
/// Constructor.
ConvexMeshShape(float margin = OBJECT_MARGIN);
/// Destructor
virtual ~ConvexMeshShape();
/// Return the local bounds of the shape in x, y and z directions
virtual void getLocalBounds(vec3& min, vec3& max) const;
/// Return the local inertia tensor of the collision shape.
virtual void computeLocalInertiaTensor(etk::Matrix3x3& tensor, float mass) const;
/// Add a vertex int32_to the convex mesh
void addVertex(const vec3& vertex);
/// Add an edge int32_to the convex mesh by specifying the two vertex indices of the edge.
void addEdge(uint32_t v1, uint32_t v2);
/// Return true if the edges information is used to speed up the collision detection
bool isEdgesInformationUsed() const;
/// Set the variable to know if the edges information is used to speed up the
/// collision detection
void setIsEdgesInformationUsed(bool isEdgesUsed);
};
/// Set the scaling vector of the collision shape
inline void ConvexMeshShape::setLocalScaling(const vec3& scaling) {
ConvexShape::setLocalScaling(scaling);
recalculateBounds();
}
// Return the number of bytes used by the collision shape
inline size_t ConvexMeshShape::getSizeInBytes() const {
return sizeof(ConvexMeshShape);
}
// Return the local bounds of the shape in x, y and z directions
/**
* @param min The minimum bounds of the shape in local-space coordinates
* @param max The maximum bounds of the shape in local-space coordinates
*/
inline void ConvexMeshShape::getLocalBounds(vec3& min, vec3& max) const {
min = m_minBounds;
max = m_maxBounds;
}
// Return the local inertia tensor of the collision shape.
/// The local inertia tensor of the convex mesh is approximated using the inertia tensor
/// of its bounding box.
/**
* @param[out] tensor The 3x3 inertia tensor matrix of the shape in local-space
* coordinates
* @param mass Mass to use to compute the inertia tensor of the collision shape
*/
inline void ConvexMeshShape::computeLocalInertiaTensor(etk::Matrix3x3& tensor, float mass) const {
float factor = (1.0f / float(3.0)) * mass;
vec3 realExtent = 0.5f * (m_maxBounds - m_minBounds);
assert(realExtent.x() > 0 && realExtent.y() > 0 && realExtent.z() > 0);
float xSquare = realExtent.x() * realExtent.x();
float ySquare = realExtent.y() * realExtent.y();
float zSquare = realExtent.z() * realExtent.z();
tensor.setValue(factor * (ySquare + zSquare), 0.0, 0.0,
0.0, factor * (xSquare + zSquare), 0.0,
0.0, 0.0, factor * (xSquare + ySquare));
}
// Add a vertex int32_to the convex mesh
/**
* @param vertex Vertex to be added
*/
inline void ConvexMeshShape::addVertex(const vec3& vertex) {
// Add the vertex in to vertices array
m_vertices.push_back(vertex);
m_numberVertices++;
// Update the bounds of the mesh
if (vertex.x() * m_scaling.x() > m_maxBounds.x()) {
m_maxBounds.setX(vertex.x() * m_scaling.x());
}
if (vertex.x() * m_scaling.x() < m_minBounds.x()) {
m_minBounds.setX(vertex.x() * m_scaling.x());
}
if (vertex.y() * m_scaling.y() > m_maxBounds.y()) {
m_maxBounds.setY(vertex.y() * m_scaling.y());
}
if (vertex.y() * m_scaling.y() < m_minBounds.y()) {
m_minBounds.setY(vertex.y() * m_scaling.y());
}
if (vertex.z() * m_scaling.z() > m_maxBounds.z()) {
m_maxBounds.setZ(vertex.z() * m_scaling.z());
}
if (vertex.z() * m_scaling.z() < m_minBounds.z()) {
m_minBounds.setZ(vertex.z() * m_scaling.z());
}
}
// Add an edge int32_to the convex mesh by specifying the two vertex indices of the edge.
/// Note that the vertex indices start at zero and need to correspond to the order of
/// the vertices in the vertices array in the constructor or the order of the calls
/// of the addVertex() methods that you use to add vertices int32_to the convex mesh.
/**
* @param v1 Index of the first vertex of the edge to add
* @param v2 Index of the second vertex of the edge to add
*/
inline void ConvexMeshShape::addEdge(uint32_t v1, uint32_t v2) {
// If the entry for vertex v1 does not exist in the adjacency list
if (m_edgesAdjacencyList.count(v1) == 0) {
m_edgesAdjacencyList.insert(std::make_pair(v1, std::set<uint32_t>()));
}
// If the entry for vertex v2 does not exist in the adjacency list
if (m_edgesAdjacencyList.count(v2) == 0) {
m_edgesAdjacencyList.insert(std::make_pair(v2, std::set<uint32_t>()));
}
// Add the edge in the adjacency list
m_edgesAdjacencyList[v1].insert(v2);
m_edgesAdjacencyList[v2].insert(v1);
}
// Return true if the edges information is used to speed up the collision detection
/**
* @return True if the edges information is used and false otherwise
*/
inline bool ConvexMeshShape::isEdgesInformationUsed() const {
return m_isEdgesInformationUsed;
}
// Set the variable to know if the edges information is used to speed up the
// collision detection
/**
* @param isEdgesUsed True if you want to use the edges information to speed up
* the collision detection with the convex mesh shape
*/
inline void ConvexMeshShape::setIsEdgesInformationUsed(bool isEdgesUsed) {
m_isEdgesInformationUsed = isEdgesUsed;
}
// Return true if a point is inside the collision shape
inline bool ConvexMeshShape::testPointInside(const vec3& localPoint,
ProxyShape* proxyShape) const {
// Use the GJK algorithm to test if the point is inside the convex mesh
return proxyShape->m_body->m_world.m_collisionDetection.
m_narrowPhaseGJKAlgorithm.testPointInside(localPoint, proxyShape);
}
}