/** @file * @author Daniel Chappuis * @copyright 2010-2016 Daniel Chappuis * @license BSD 3 clauses (see license file) */ #pragma once // Libraries #include #include #include #include #include #include #include #include /// ReactPhysics3D namespace namespace ephysics { // Declaration class CollisionWorld; // Class ConvexMeshShape /** * This class represents a convex mesh shape. In order to create a convex mesh shape, you * need to indicate the local-space position of the mesh vertices. You do it either by * passing a vertices array to the constructor or using the addVertex() method. Make sure * that the set of vertices that you use to create the shape are indeed part of a convex * mesh. The center of mass of the shape will be at the origin of the local-space geometry * that you use to create the mesh. The method used for collision detection with a convex * mesh shape has an O(n) running time with "n" beeing the number of vertices in the mesh. * Therefore, you should try not to use too many vertices. However, it is possible to speed * up the collision detection by using the edges information of your mesh. The running time * of the collision detection that uses the edges is almost O(1) constant time at the cost * of additional memory used to store the vertices. You can indicate edges information * with the addEdge() method. Then, you must use the setIsEdgesInformationUsed(true) method * in order to use the edges information for collision detection. */ class ConvexMeshShape : public ConvexShape { protected : // -------------------- Attributes -------------------- // /// Array with the vertices of the mesh std::vector m_vertices; /// Number of vertices in the mesh uint32_t m_numberVertices; /// Mesh minimum bounds in the three local x, y and z directions vec3 m_minBounds; /// Mesh maximum bounds in the three local x, y and z directions vec3 m_maxBounds; /// True if the shape contains the edges of the convex mesh in order to /// make the collision detection faster bool m_isEdgesInformationUsed; /// Adjacency list representing the edges of the mesh std::map > m_edgesAdjacencyList; // -------------------- Methods -------------------- // /// Private copy-constructor ConvexMeshShape(const ConvexMeshShape& shape); /// Private assignment operator ConvexMeshShape& operator=(const ConvexMeshShape& shape); /// Recompute the bounds of the mesh void recalculateBounds(); /// Set the scaling vector of the collision shape virtual void setLocalScaling(const vec3& scaling); /// Return a local support point in a given direction without the object margin. virtual vec3 getLocalSupportPointWithoutMargin(const vec3& direction, void** cachedCollisionData) const; /// Return true if a point is inside the collision shape virtual bool testPointInside(const vec3& localPoint, ProxyShape* proxyShape) const; /// Raycast method with feedback information virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const; /// Return the number of bytes used by the collision shape virtual size_t getSizeInBytes() const; public : // -------------------- Methods -------------------- // /// Constructor to initialize with an array of 3D vertices. ConvexMeshShape(const float* arrayVertices, uint32_t nbVertices, int32_t stride, float margin = OBJECT_MARGIN); /// Constructor to initialize with a triangle vertex array ConvexMeshShape(TriangleVertexArray* triangleVertexArray, bool isEdgesInformationUsed = true, float margin = OBJECT_MARGIN); /// Constructor. ConvexMeshShape(float margin = OBJECT_MARGIN); /// Destructor virtual ~ConvexMeshShape(); /// Return the local bounds of the shape in x, y and z directions virtual void getLocalBounds(vec3& min, vec3& max) const; /// Return the local inertia tensor of the collision shape. virtual void computeLocalInertiaTensor(etk::Matrix3x3& tensor, float mass) const; /// Add a vertex int32_to the convex mesh void addVertex(const vec3& vertex); /// Add an edge int32_to the convex mesh by specifying the two vertex indices of the edge. void addEdge(uint32_t v1, uint32_t v2); /// Return true if the edges information is used to speed up the collision detection bool isEdgesInformationUsed() const; /// Set the variable to know if the edges information is used to speed up the /// collision detection void setIsEdgesInformationUsed(bool isEdgesUsed); }; /// Set the scaling vector of the collision shape inline void ConvexMeshShape::setLocalScaling(const vec3& scaling) { ConvexShape::setLocalScaling(scaling); recalculateBounds(); } // Return the number of bytes used by the collision shape inline size_t ConvexMeshShape::getSizeInBytes() const { return sizeof(ConvexMeshShape); } // Return the local bounds of the shape in x, y and z directions /** * @param min The minimum bounds of the shape in local-space coordinates * @param max The maximum bounds of the shape in local-space coordinates */ inline void ConvexMeshShape::getLocalBounds(vec3& min, vec3& max) const { min = m_minBounds; max = m_maxBounds; } // Return the local inertia tensor of the collision shape. /// The local inertia tensor of the convex mesh is approximated using the inertia tensor /// of its bounding box. /** * @param[out] tensor The 3x3 inertia tensor matrix of the shape in local-space * coordinates * @param mass Mass to use to compute the inertia tensor of the collision shape */ inline void ConvexMeshShape::computeLocalInertiaTensor(etk::Matrix3x3& tensor, float mass) const { float factor = (1.0f / float(3.0)) * mass; vec3 realExtent = 0.5f * (m_maxBounds - m_minBounds); assert(realExtent.x() > 0 && realExtent.y() > 0 && realExtent.z() > 0); float xSquare = realExtent.x() * realExtent.x(); float ySquare = realExtent.y() * realExtent.y(); float zSquare = realExtent.z() * realExtent.z(); tensor.setValue(factor * (ySquare + zSquare), 0.0, 0.0, 0.0, factor * (xSquare + zSquare), 0.0, 0.0, 0.0, factor * (xSquare + ySquare)); } // Add a vertex int32_to the convex mesh /** * @param vertex Vertex to be added */ inline void ConvexMeshShape::addVertex(const vec3& vertex) { // Add the vertex in to vertices array m_vertices.push_back(vertex); m_numberVertices++; // Update the bounds of the mesh if (vertex.x() * m_scaling.x() > m_maxBounds.x()) { m_maxBounds.setX(vertex.x() * m_scaling.x()); } if (vertex.x() * m_scaling.x() < m_minBounds.x()) { m_minBounds.setX(vertex.x() * m_scaling.x()); } if (vertex.y() * m_scaling.y() > m_maxBounds.y()) { m_maxBounds.setY(vertex.y() * m_scaling.y()); } if (vertex.y() * m_scaling.y() < m_minBounds.y()) { m_minBounds.setY(vertex.y() * m_scaling.y()); } if (vertex.z() * m_scaling.z() > m_maxBounds.z()) { m_maxBounds.setZ(vertex.z() * m_scaling.z()); } if (vertex.z() * m_scaling.z() < m_minBounds.z()) { m_minBounds.setZ(vertex.z() * m_scaling.z()); } } // Add an edge int32_to the convex mesh by specifying the two vertex indices of the edge. /// Note that the vertex indices start at zero and need to correspond to the order of /// the vertices in the vertices array in the constructor or the order of the calls /// of the addVertex() methods that you use to add vertices int32_to the convex mesh. /** * @param v1 Index of the first vertex of the edge to add * @param v2 Index of the second vertex of the edge to add */ inline void ConvexMeshShape::addEdge(uint32_t v1, uint32_t v2) { // If the entry for vertex v1 does not exist in the adjacency list if (m_edgesAdjacencyList.count(v1) == 0) { m_edgesAdjacencyList.insert(std::make_pair(v1, std::set())); } // If the entry for vertex v2 does not exist in the adjacency list if (m_edgesAdjacencyList.count(v2) == 0) { m_edgesAdjacencyList.insert(std::make_pair(v2, std::set())); } // Add the edge in the adjacency list m_edgesAdjacencyList[v1].insert(v2); m_edgesAdjacencyList[v2].insert(v1); } // Return true if the edges information is used to speed up the collision detection /** * @return True if the edges information is used and false otherwise */ inline bool ConvexMeshShape::isEdgesInformationUsed() const { return m_isEdgesInformationUsed; } // Set the variable to know if the edges information is used to speed up the // collision detection /** * @param isEdgesUsed True if you want to use the edges information to speed up * the collision detection with the convex mesh shape */ inline void ConvexMeshShape::setIsEdgesInformationUsed(bool isEdgesUsed) { m_isEdgesInformationUsed = isEdgesUsed; } // Return true if a point is inside the collision shape inline bool ConvexMeshShape::testPointInside(const vec3& localPoint, ProxyShape* proxyShape) const { // Use the GJK algorithm to test if the point is inside the convex mesh return proxyShape->m_body->m_world.m_collisionDetection. m_narrowPhaseGJKAlgorithm.testPointInside(localPoint, proxyShape); } }