882 lines
30 KiB
C++

/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cstdio>
#include <gtest/gtest.h>
#include "audio_processing.h"
#include "audio_processing_unittest.pb.h"
#include "event_wrapper.h"
#include "module_common_types.h"
#include "thread_wrapper.h"
#include "trace.h"
#include "signal_processing_library.h"
using webrtc::AudioProcessing;
using webrtc::AudioFrame;
using webrtc::GainControl;
using webrtc::NoiseSuppression;
using webrtc::EchoCancellation;
using webrtc::EventWrapper;
using webrtc::Trace;
using webrtc::LevelEstimator;
using webrtc::EchoCancellation;
using webrtc::EchoControlMobile;
using webrtc::VoiceDetection;
namespace {
// When true, this will compare the output data with the results stored to
// file. This is the typical case. When the file should be updated, it can
// be set to false with the command-line switch --write_output_data.
bool global_read_output_data = true;
class ApmEnvironment : public ::testing::Environment {
public:
virtual void SetUp() {
Trace::CreateTrace();
ASSERT_EQ(0, Trace::SetTraceFile("apm_trace.txt"));
}
virtual void TearDown() {
Trace::ReturnTrace();
}
};
class ApmTest : public ::testing::Test {
protected:
ApmTest();
virtual void SetUp();
virtual void TearDown();
webrtc::AudioProcessing* apm_;
webrtc::AudioFrame* frame_;
webrtc::AudioFrame* revframe_;
FILE* far_file_;
FILE* near_file_;
bool update_output_data_;
};
ApmTest::ApmTest()
: apm_(NULL),
far_file_(NULL),
near_file_(NULL),
frame_(NULL),
revframe_(NULL) {}
void ApmTest::SetUp() {
apm_ = AudioProcessing::Create(0);
ASSERT_TRUE(apm_ != NULL);
frame_ = new AudioFrame();
revframe_ = new AudioFrame();
ASSERT_EQ(apm_->kNoError, apm_->set_sample_rate_hz(32000));
ASSERT_EQ(apm_->kNoError, apm_->set_num_channels(2, 2));
ASSERT_EQ(apm_->kNoError, apm_->set_num_reverse_channels(2));
frame_->_payloadDataLengthInSamples = 320;
frame_->_audioChannel = 2;
frame_->_frequencyInHz = 32000;
revframe_->_payloadDataLengthInSamples = 320;
revframe_->_audioChannel = 2;
revframe_->_frequencyInHz = 32000;
far_file_ = fopen("aec_far.pcm", "rb");
ASSERT_TRUE(far_file_ != NULL) << "Could not open input file aec_far.pcm\n";
near_file_ = fopen("aec_near.pcm", "rb");
ASSERT_TRUE(near_file_ != NULL) << "Could not open input file aec_near.pcm\n";
}
void ApmTest::TearDown() {
if (frame_) {
delete frame_;
}
frame_ = NULL;
if (revframe_) {
delete revframe_;
}
revframe_ = NULL;
if (far_file_) {
ASSERT_EQ(0, fclose(far_file_));
}
far_file_ = NULL;
if (near_file_) {
ASSERT_EQ(0, fclose(near_file_));
}
near_file_ = NULL;
if (apm_ != NULL) {
AudioProcessing::Destroy(apm_);
}
apm_ = NULL;
}
void MixStereoToMono(WebRtc_Word16* stereo,
WebRtc_Word16* mono,
int numSamples) {
for (int i = 0; i < numSamples; i++) {
int int32 = (static_cast<int>(stereo[i * 2]) +
static_cast<int>(stereo[i * 2 + 1])) >> 1;
mono[i] = static_cast<WebRtc_Word16>(int32);
}
}
void WriteMessageLiteToFile(const char* filename,
const ::google::protobuf::MessageLite& message) {
assert(filename != NULL);
FILE* file = fopen(filename, "wb");
ASSERT_TRUE(file != NULL) << "Could not open " << filename;
int size = message.ByteSize();
ASSERT_GT(size, 0);
unsigned char* array = new unsigned char[size];
ASSERT_TRUE(message.SerializeToArray(array, size));
ASSERT_EQ(1, fwrite(&size, sizeof(int), 1, file));
ASSERT_EQ(size, fwrite(array, sizeof(unsigned char), size, file));
delete [] array;
fclose(file);
}
void ReadMessageLiteFromFile(const char* filename,
::google::protobuf::MessageLite* message) {
assert(filename != NULL);
assert(message != NULL);
FILE* file = fopen(filename, "rb");
ASSERT_TRUE(file != NULL) << "Could not open " << filename;
int size = 0;
ASSERT_EQ(1, fread(&size, sizeof(int), 1, file));
ASSERT_GT(size, 0);
unsigned char* array = new unsigned char[size];
ASSERT_EQ(size, fread(array, sizeof(unsigned char), size, file));
ASSERT_TRUE(message->ParseFromArray(array, size));
delete [] array;
fclose(file);
}
struct ThreadData {
ThreadData(int thread_num_, AudioProcessing* ap_)
: thread_num(thread_num_),
error(false),
ap(ap_) {}
int thread_num;
bool error;
AudioProcessing* ap;
};
// Don't use GTest here; non-thread-safe on Windows (as of 1.5.0).
bool DeadlockProc(void* thread_object) {
ThreadData* thread_data = static_cast<ThreadData*>(thread_object);
AudioProcessing* ap = thread_data->ap;
int err = ap->kNoError;
AudioFrame primary_frame;
AudioFrame reverse_frame;
primary_frame._payloadDataLengthInSamples = 320;
primary_frame._audioChannel = 2;
primary_frame._frequencyInHz = 32000;
reverse_frame._payloadDataLengthInSamples = 320;
reverse_frame._audioChannel = 2;
reverse_frame._frequencyInHz = 32000;
ap->echo_cancellation()->Enable(true);
ap->gain_control()->Enable(true);
ap->high_pass_filter()->Enable(true);
ap->level_estimator()->Enable(true);
ap->noise_suppression()->Enable(true);
ap->voice_detection()->Enable(true);
if (thread_data->thread_num % 2 == 0) {
err = ap->AnalyzeReverseStream(&reverse_frame);
if (err != ap->kNoError) {
printf("Error in AnalyzeReverseStream(): %d\n", err);
thread_data->error = true;
return false;
}
}
if (thread_data->thread_num % 2 == 1) {
ap->set_stream_delay_ms(0);
ap->echo_cancellation()->set_stream_drift_samples(0);
ap->gain_control()->set_stream_analog_level(0);
err = ap->ProcessStream(&primary_frame);
if (err == ap->kStreamParameterNotSetError) {
printf("Expected kStreamParameterNotSetError in ProcessStream(): %d\n",
err);
} else if (err != ap->kNoError) {
printf("Error in ProcessStream(): %d\n", err);
thread_data->error = true;
return false;
}
ap->gain_control()->stream_analog_level();
}
EventWrapper* event = EventWrapper::Create();
event->Wait(1);
delete event;
event = NULL;
return true;
}
/*TEST_F(ApmTest, Deadlock) {
const int num_threads = 16;
std::vector<ThreadWrapper*> threads(num_threads);
std::vector<ThreadData*> thread_data(num_threads);
ASSERT_EQ(apm_->kNoError, apm_->set_sample_rate_hz(32000));
ASSERT_EQ(apm_->kNoError, apm_->set_num_channels(2, 2));
ASSERT_EQ(apm_->kNoError, apm_->set_num_reverse_channels(2));
for (int i = 0; i < num_threads; i++) {
thread_data[i] = new ThreadData(i, apm_);
threads[i] = ThreadWrapper::CreateThread(DeadlockProc,
thread_data[i],
kNormalPriority,
0);
ASSERT_TRUE(threads[i] != NULL);
unsigned int thread_id = 0;
threads[i]->Start(thread_id);
}
EventWrapper* event = EventWrapper::Create();
ASSERT_EQ(kEventTimeout, event->Wait(5000));
delete event;
event = NULL;
for (int i = 0; i < num_threads; i++) {
// This will return false if the thread has deadlocked.
ASSERT_TRUE(threads[i]->Stop());
ASSERT_FALSE(thread_data[i]->error);
delete threads[i];
threads[i] = NULL;
delete thread_data[i];
thread_data[i] = NULL;
}
}*/
TEST_F(ApmTest, StreamParameters) {
// No errors when the components are disabled.
EXPECT_EQ(apm_->kNoError,
apm_->ProcessStream(frame_));
// Missing agc level
EXPECT_EQ(apm_->kNoError, apm_->Initialize());
EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
EXPECT_EQ(apm_->kStreamParameterNotSetError,
apm_->ProcessStream(frame_));
EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
EXPECT_EQ(apm_->kNoError,
apm_->echo_cancellation()->set_stream_drift_samples(0));
EXPECT_EQ(apm_->kStreamParameterNotSetError,
apm_->ProcessStream(frame_));
EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false));
// Missing delay
EXPECT_EQ(apm_->kNoError, apm_->Initialize());
EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
EXPECT_EQ(apm_->kStreamParameterNotSetError,
apm_->ProcessStream(frame_));
EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
EXPECT_EQ(apm_->kNoError,
apm_->echo_cancellation()->set_stream_drift_samples(0));
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_stream_analog_level(127));
EXPECT_EQ(apm_->kStreamParameterNotSetError,
apm_->ProcessStream(frame_));
EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false));
// Missing drift
EXPECT_EQ(apm_->kNoError, apm_->Initialize());
EXPECT_EQ(apm_->kNoError,
apm_->echo_cancellation()->enable_drift_compensation(true));
EXPECT_EQ(apm_->kStreamParameterNotSetError,
apm_->ProcessStream(frame_));
EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_stream_analog_level(127));
EXPECT_EQ(apm_->kStreamParameterNotSetError,
apm_->ProcessStream(frame_));
// No stream parameters
EXPECT_EQ(apm_->kNoError, apm_->Initialize());
EXPECT_EQ(apm_->kNoError,
apm_->AnalyzeReverseStream(revframe_));
EXPECT_EQ(apm_->kStreamParameterNotSetError,
apm_->ProcessStream(frame_));
// All there
EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
EXPECT_EQ(apm_->kNoError, apm_->Initialize());
EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
EXPECT_EQ(apm_->kNoError,
apm_->echo_cancellation()->set_stream_drift_samples(0));
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_stream_analog_level(127));
EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
}
TEST_F(ApmTest, Channels) {
// Testing number of invalid channels
EXPECT_EQ(apm_->kBadParameterError, apm_->set_num_channels(0, 1));
EXPECT_EQ(apm_->kBadParameterError, apm_->set_num_channels(1, 0));
EXPECT_EQ(apm_->kBadParameterError, apm_->set_num_channels(3, 1));
EXPECT_EQ(apm_->kBadParameterError, apm_->set_num_channels(1, 3));
EXPECT_EQ(apm_->kBadParameterError, apm_->set_num_reverse_channels(0));
EXPECT_EQ(apm_->kBadParameterError, apm_->set_num_reverse_channels(3));
// Testing number of valid channels
for (int i = 1; i < 3; i++) {
for (int j = 1; j < 3; j++) {
if (j > i) {
EXPECT_EQ(apm_->kBadParameterError, apm_->set_num_channels(i, j));
} else {
EXPECT_EQ(apm_->kNoError, apm_->set_num_channels(i, j));
EXPECT_EQ(j, apm_->num_output_channels());
}
}
EXPECT_EQ(i, apm_->num_input_channels());
EXPECT_EQ(apm_->kNoError, apm_->set_num_reverse_channels(i));
EXPECT_EQ(i, apm_->num_reverse_channels());
}
}
TEST_F(ApmTest, SampleRates) {
// Testing invalid sample rates
EXPECT_EQ(apm_->kBadParameterError, apm_->set_sample_rate_hz(10000));
// Testing valid sample rates
int fs[] = {8000, 16000, 32000};
for (size_t i = 0; i < sizeof(fs) / sizeof(*fs); i++) {
EXPECT_EQ(apm_->kNoError, apm_->set_sample_rate_hz(fs[i]));
EXPECT_EQ(fs[i], apm_->sample_rate_hz());
}
}
TEST_F(ApmTest, Process) {
GOOGLE_PROTOBUF_VERIFY_VERSION;
audio_processing_unittest::OutputData output_data;
if (global_read_output_data) {
ReadMessageLiteFromFile("output_data.pb", &output_data);
} else {
// We don't have a file; add the required tests to the protobuf.
int rev_ch[] = {1, 2};
int ch[] = {1, 2};
int fs[] = {8000, 16000, 32000};
for (size_t i = 0; i < sizeof(rev_ch) / sizeof(*rev_ch); i++) {
for (size_t j = 0; j < sizeof(ch) / sizeof(*ch); j++) {
for (size_t k = 0; k < sizeof(fs) / sizeof(*fs); k++) {
audio_processing_unittest::Test* test = output_data.add_test();
test->set_numreversechannels(rev_ch[i]);
test->set_numchannels(ch[j]);
test->set_samplerate(fs[k]);
}
}
}
}
EXPECT_EQ(apm_->kNoError,
apm_->echo_cancellation()->enable_drift_compensation(true));
EXPECT_EQ(apm_->kNoError,
apm_->echo_cancellation()->enable_metrics(true));
EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_mode(GainControl::kAdaptiveAnalog));
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_analog_level_limits(0, 255));
EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true));
EXPECT_EQ(apm_->kNoError,
apm_->high_pass_filter()->Enable(true));
//EXPECT_EQ(apm_->kNoError,
// apm_->level_estimator()->Enable(true));
EXPECT_EQ(apm_->kNoError,
apm_->noise_suppression()->Enable(true));
EXPECT_EQ(apm_->kNoError,
apm_->voice_detection()->Enable(true));
for (int i = 0; i < output_data.test_size(); i++) {
printf("Running test %d of %d...\n", i + 1, output_data.test_size());
audio_processing_unittest::Test* test = output_data.mutable_test(i);
const int num_samples = test->samplerate() / 100;
revframe_->_payloadDataLengthInSamples = num_samples;
revframe_->_audioChannel = test->numreversechannels();
revframe_->_frequencyInHz = test->samplerate();
frame_->_payloadDataLengthInSamples = num_samples;
frame_->_audioChannel = test->numchannels();
frame_->_frequencyInHz = test->samplerate();
EXPECT_EQ(apm_->kNoError, apm_->Initialize());
ASSERT_EQ(apm_->kNoError, apm_->set_sample_rate_hz(test->samplerate()));
ASSERT_EQ(apm_->kNoError, apm_->set_num_channels(frame_->_audioChannel,
frame_->_audioChannel));
ASSERT_EQ(apm_->kNoError,
apm_->set_num_reverse_channels(revframe_->_audioChannel));
int has_echo_count = 0;
int has_voice_count = 0;
int is_saturated_count = 0;
while (1) {
WebRtc_Word16 temp_data[640];
int analog_level = 127;
// Read far-end frame
size_t read_count = fread(temp_data,
sizeof(WebRtc_Word16),
num_samples * 2,
far_file_);
if (read_count != static_cast<size_t>(num_samples * 2)) {
// Check that the file really ended.
ASSERT_NE(0, feof(far_file_));
break; // This is expected.
}
if (revframe_->_audioChannel == 1) {
MixStereoToMono(temp_data, revframe_->_payloadData,
revframe_->_payloadDataLengthInSamples);
} else {
memcpy(revframe_->_payloadData,
&temp_data[0],
sizeof(WebRtc_Word16) * read_count);
}
EXPECT_EQ(apm_->kNoError,
apm_->AnalyzeReverseStream(revframe_));
EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
EXPECT_EQ(apm_->kNoError,
apm_->echo_cancellation()->set_stream_drift_samples(0));
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_stream_analog_level(analog_level));
// Read near-end frame
read_count = fread(temp_data,
sizeof(WebRtc_Word16),
num_samples * 2,
near_file_);
if (read_count != static_cast<size_t>(num_samples * 2)) {
// Check that the file really ended.
ASSERT_NE(0, feof(near_file_));
break; // This is expected.
}
if (frame_->_audioChannel == 1) {
MixStereoToMono(temp_data, frame_->_payloadData, num_samples);
} else {
memcpy(frame_->_payloadData,
&temp_data[0],
sizeof(WebRtc_Word16) * read_count);
}
EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_));
if (apm_->echo_cancellation()->stream_has_echo()) {
has_echo_count++;
}
analog_level = apm_->gain_control()->stream_analog_level();
if (apm_->gain_control()->stream_is_saturated()) {
is_saturated_count++;
}
if (apm_->voice_detection()->stream_has_voice()) {
has_voice_count++;
}
}
//<-- Statistics -->
//LevelEstimator::Metrics far_metrics;
//LevelEstimator::Metrics near_metrics;
//EchoCancellation::Metrics echo_metrics;
//LevelEstimator::Metrics far_metrics_ref_;
//LevelEstimator::Metrics near_metrics_ref_;
//EchoCancellation::Metrics echo_metrics_ref_;
//EXPECT_EQ(apm_->kNoError,
// apm_->echo_cancellation()->GetMetrics(&echo_metrics));
//EXPECT_EQ(apm_->kNoError,
// apm_->level_estimator()->GetMetrics(&near_metrics,
// TODO(ajm): check echo metrics and output audio.
if (global_read_output_data) {
EXPECT_EQ(has_echo_count,
test->hasechocount());
EXPECT_EQ(has_voice_count,
test->hasvoicecount());
EXPECT_EQ(is_saturated_count,
test->issaturatedcount());
} else {
test->set_hasechocount(has_echo_count);
test->set_hasvoicecount(has_voice_count);
test->set_issaturatedcount(is_saturated_count);
}
rewind(far_file_);
rewind(near_file_);
}
if (!global_read_output_data) {
WriteMessageLiteToFile("output_data.pb", output_data);
}
google::protobuf::ShutdownProtobufLibrary();
}
TEST_F(ApmTest, EchoCancellation) {
EXPECT_EQ(apm_->kNoError,
apm_->echo_cancellation()->enable_drift_compensation(true));
EXPECT_TRUE(apm_->echo_cancellation()->is_drift_compensation_enabled());
EXPECT_EQ(apm_->kNoError,
apm_->echo_cancellation()->enable_drift_compensation(false));
EXPECT_FALSE(apm_->echo_cancellation()->is_drift_compensation_enabled());
EXPECT_EQ(apm_->kBadParameterError,
apm_->echo_cancellation()->set_device_sample_rate_hz(4000));
EXPECT_EQ(apm_->kBadParameterError,
apm_->echo_cancellation()->set_device_sample_rate_hz(100000));
int rate[] = {16000, 44100, 48000};
for (size_t i = 0; i < sizeof(rate)/sizeof(*rate); i++) {
EXPECT_EQ(apm_->kNoError,
apm_->echo_cancellation()->set_device_sample_rate_hz(rate[i]));
EXPECT_EQ(rate[i],
apm_->echo_cancellation()->device_sample_rate_hz());
}
EXPECT_EQ(apm_->kBadParameterError,
apm_->echo_cancellation()->set_suppression_level(
static_cast<EchoCancellation::SuppressionLevel>(-1)));
EXPECT_EQ(apm_->kBadParameterError,
apm_->echo_cancellation()->set_suppression_level(
static_cast<EchoCancellation::SuppressionLevel>(4)));
EchoCancellation::SuppressionLevel level[] = {
EchoCancellation::kLowSuppression,
EchoCancellation::kModerateSuppression,
EchoCancellation::kHighSuppression,
};
for (size_t i = 0; i < sizeof(level)/sizeof(*level); i++) {
EXPECT_EQ(apm_->kNoError,
apm_->echo_cancellation()->set_suppression_level(level[i]));
EXPECT_EQ(level[i],
apm_->echo_cancellation()->suppression_level());
}
EchoCancellation::Metrics metrics;
EXPECT_EQ(apm_->kNotEnabledError,
apm_->echo_cancellation()->GetMetrics(&metrics));
EXPECT_EQ(apm_->kNoError,
apm_->echo_cancellation()->enable_metrics(true));
EXPECT_TRUE(apm_->echo_cancellation()->are_metrics_enabled());
EXPECT_EQ(apm_->kNoError,
apm_->echo_cancellation()->enable_metrics(false));
EXPECT_FALSE(apm_->echo_cancellation()->are_metrics_enabled());
EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true));
EXPECT_TRUE(apm_->echo_cancellation()->is_enabled());
EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(false));
EXPECT_FALSE(apm_->echo_cancellation()->is_enabled());
}
TEST_F(ApmTest, EchoControlMobile) {
// AECM won't use super-wideband.
EXPECT_EQ(apm_->kNoError, apm_->set_sample_rate_hz(32000));
EXPECT_EQ(apm_->kBadSampleRateError, apm_->echo_control_mobile()->Enable(true));
EXPECT_EQ(apm_->kNoError, apm_->set_sample_rate_hz(16000));
// Turn AECM on (and AEC off)
EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->Enable(true));
EXPECT_TRUE(apm_->echo_control_mobile()->is_enabled());
EXPECT_EQ(apm_->kBadParameterError,
apm_->echo_control_mobile()->set_routing_mode(
static_cast<EchoControlMobile::RoutingMode>(-1)));
EXPECT_EQ(apm_->kBadParameterError,
apm_->echo_control_mobile()->set_routing_mode(
static_cast<EchoControlMobile::RoutingMode>(5)));
// Toggle routing modes
EchoControlMobile::RoutingMode mode[] = {
EchoControlMobile::kQuietEarpieceOrHeadset,
EchoControlMobile::kEarpiece,
EchoControlMobile::kLoudEarpiece,
EchoControlMobile::kSpeakerphone,
EchoControlMobile::kLoudSpeakerphone,
};
for (size_t i = 0; i < sizeof(mode)/sizeof(*mode); i++) {
EXPECT_EQ(apm_->kNoError,
apm_->echo_control_mobile()->set_routing_mode(mode[i]));
EXPECT_EQ(mode[i],
apm_->echo_control_mobile()->routing_mode());
}
// Turn comfort noise off/on
EXPECT_EQ(apm_->kNoError,
apm_->echo_control_mobile()->enable_comfort_noise(false));
EXPECT_FALSE(apm_->echo_control_mobile()->is_comfort_noise_enabled());
EXPECT_EQ(apm_->kNoError,
apm_->echo_control_mobile()->enable_comfort_noise(true));
EXPECT_TRUE(apm_->echo_control_mobile()->is_comfort_noise_enabled());
// Turn AECM off
EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->Enable(false));
EXPECT_FALSE(apm_->echo_control_mobile()->is_enabled());
}
TEST_F(ApmTest, GainControl) {
// Testing gain modes
EXPECT_EQ(apm_->kBadParameterError,
apm_->gain_control()->set_mode(static_cast<GainControl::Mode>(-1)));
EXPECT_EQ(apm_->kBadParameterError,
apm_->gain_control()->set_mode(static_cast<GainControl::Mode>(3)));
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_mode(
apm_->gain_control()->mode()));
GainControl::Mode mode[] = {
GainControl::kAdaptiveAnalog,
GainControl::kAdaptiveDigital,
GainControl::kFixedDigital
};
for (size_t i = 0; i < sizeof(mode)/sizeof(*mode); i++) {
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_mode(mode[i]));
EXPECT_EQ(mode[i], apm_->gain_control()->mode());
}
// Testing invalid target levels
EXPECT_EQ(apm_->kBadParameterError,
apm_->gain_control()->set_target_level_dbfs(-3));
EXPECT_EQ(apm_->kBadParameterError,
apm_->gain_control()->set_target_level_dbfs(-40));
// Testing valid target levels
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_target_level_dbfs(
apm_->gain_control()->target_level_dbfs()));
int level_dbfs[] = {0, 6, 31};
for (size_t i = 0; i < sizeof(level_dbfs)/sizeof(*level_dbfs); i++) {
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_target_level_dbfs(level_dbfs[i]));
EXPECT_EQ(level_dbfs[i], apm_->gain_control()->target_level_dbfs());
}
// Testing invalid compression gains
EXPECT_EQ(apm_->kBadParameterError,
apm_->gain_control()->set_compression_gain_db(-1));
EXPECT_EQ(apm_->kBadParameterError,
apm_->gain_control()->set_compression_gain_db(100));
// Testing valid compression gains
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_compression_gain_db(
apm_->gain_control()->compression_gain_db()));
int gain_db[] = {0, 10, 90};
for (size_t i = 0; i < sizeof(gain_db)/sizeof(*gain_db); i++) {
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_compression_gain_db(gain_db[i]));
EXPECT_EQ(gain_db[i], apm_->gain_control()->compression_gain_db());
}
// Testing limiter off/on
EXPECT_EQ(apm_->kNoError, apm_->gain_control()->enable_limiter(false));
EXPECT_FALSE(apm_->gain_control()->is_limiter_enabled());
EXPECT_EQ(apm_->kNoError, apm_->gain_control()->enable_limiter(true));
EXPECT_TRUE(apm_->gain_control()->is_limiter_enabled());
// Testing invalid level limits
EXPECT_EQ(apm_->kBadParameterError,
apm_->gain_control()->set_analog_level_limits(-1, 512));
EXPECT_EQ(apm_->kBadParameterError,
apm_->gain_control()->set_analog_level_limits(100000, 512));
EXPECT_EQ(apm_->kBadParameterError,
apm_->gain_control()->set_analog_level_limits(512, -1));
EXPECT_EQ(apm_->kBadParameterError,
apm_->gain_control()->set_analog_level_limits(512, 100000));
EXPECT_EQ(apm_->kBadParameterError,
apm_->gain_control()->set_analog_level_limits(512, 255));
// Testing valid level limits
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_analog_level_limits(
apm_->gain_control()->analog_level_minimum(),
apm_->gain_control()->analog_level_maximum()));
int min_level[] = {0, 255, 1024};
for (size_t i = 0; i < sizeof(min_level)/sizeof(*min_level); i++) {
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_analog_level_limits(min_level[i], 1024));
EXPECT_EQ(min_level[i], apm_->gain_control()->analog_level_minimum());
}
int max_level[] = {0, 1024, 65535};
for (size_t i = 0; i < sizeof(min_level)/sizeof(*min_level); i++) {
EXPECT_EQ(apm_->kNoError,
apm_->gain_control()->set_analog_level_limits(0, max_level[i]));
EXPECT_EQ(max_level[i], apm_->gain_control()->analog_level_maximum());
}
// TODO(ajm): stream_is_saturated() and stream_analog_level()
// Turn AGC off
EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false));
EXPECT_FALSE(apm_->gain_control()->is_enabled());
}
TEST_F(ApmTest, NoiseSuppression) {
// Tesing invalid suppression levels
EXPECT_EQ(apm_->kBadParameterError,
apm_->noise_suppression()->set_level(
static_cast<NoiseSuppression::Level>(-1)));
EXPECT_EQ(apm_->kBadParameterError,
apm_->noise_suppression()->set_level(
static_cast<NoiseSuppression::Level>(5)));
// Tesing valid suppression levels
NoiseSuppression::Level level[] = {
NoiseSuppression::kLow,
NoiseSuppression::kModerate,
NoiseSuppression::kHigh,
NoiseSuppression::kVeryHigh
};
for (size_t i = 0; i < sizeof(level)/sizeof(*level); i++) {
EXPECT_EQ(apm_->kNoError,
apm_->noise_suppression()->set_level(level[i]));
EXPECT_EQ(level[i], apm_->noise_suppression()->level());
}
// Turing NS on/off
EXPECT_EQ(apm_->kNoError, apm_->noise_suppression()->Enable(true));
EXPECT_TRUE(apm_->noise_suppression()->is_enabled());
EXPECT_EQ(apm_->kNoError, apm_->noise_suppression()->Enable(false));
EXPECT_FALSE(apm_->noise_suppression()->is_enabled());
}
TEST_F(ApmTest, HighPassFilter) {
// Turing HP filter on/off
EXPECT_EQ(apm_->kNoError, apm_->high_pass_filter()->Enable(true));
EXPECT_TRUE(apm_->high_pass_filter()->is_enabled());
EXPECT_EQ(apm_->kNoError, apm_->high_pass_filter()->Enable(false));
EXPECT_FALSE(apm_->high_pass_filter()->is_enabled());
}
TEST_F(ApmTest, LevelEstimator) {
// Turing Level estimator on/off
EXPECT_EQ(apm_->kUnsupportedComponentError,
apm_->level_estimator()->Enable(true));
EXPECT_FALSE(apm_->level_estimator()->is_enabled());
EXPECT_EQ(apm_->kUnsupportedComponentError,
apm_->level_estimator()->Enable(false));
EXPECT_FALSE(apm_->level_estimator()->is_enabled());
}
TEST_F(ApmTest, VoiceDetection) {
// Test external VAD
EXPECT_EQ(apm_->kNoError,
apm_->voice_detection()->set_stream_has_voice(true));
EXPECT_TRUE(apm_->voice_detection()->stream_has_voice());
EXPECT_EQ(apm_->kNoError,
apm_->voice_detection()->set_stream_has_voice(false));
EXPECT_FALSE(apm_->voice_detection()->stream_has_voice());
// Tesing invalid likelihoods
EXPECT_EQ(apm_->kBadParameterError,
apm_->voice_detection()->set_likelihood(
static_cast<VoiceDetection::Likelihood>(-1)));
EXPECT_EQ(apm_->kBadParameterError,
apm_->voice_detection()->set_likelihood(
static_cast<VoiceDetection::Likelihood>(5)));
// Tesing valid likelihoods
VoiceDetection::Likelihood likelihood[] = {
VoiceDetection::kVeryLowLikelihood,
VoiceDetection::kLowLikelihood,
VoiceDetection::kModerateLikelihood,
VoiceDetection::kHighLikelihood
};
for (size_t i = 0; i < sizeof(likelihood)/sizeof(*likelihood); i++) {
EXPECT_EQ(apm_->kNoError,
apm_->voice_detection()->set_likelihood(likelihood[i]));
EXPECT_EQ(likelihood[i], apm_->voice_detection()->likelihood());
}
/* TODO(bjornv): Enable once VAD supports other frame lengths than 10 ms
// Tesing invalid frame sizes
EXPECT_EQ(apm_->kBadParameterError,
apm_->voice_detection()->set_frame_size_ms(12));
// Tesing valid frame sizes
for (int i = 10; i <= 30; i += 10) {
EXPECT_EQ(apm_->kNoError,
apm_->voice_detection()->set_frame_size_ms(i));
EXPECT_EQ(i, apm_->voice_detection()->frame_size_ms());
}
*/
// Turing VAD on/off
EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true));
EXPECT_TRUE(apm_->voice_detection()->is_enabled());
EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(false));
EXPECT_FALSE(apm_->voice_detection()->is_enabled());
// TODO(bjornv): Add tests for streamed voice; stream_has_voice()
}
// Below are some ideas for tests from VPM.
/*TEST_F(VideoProcessingModuleTest, GetVersionTest)
{
}
TEST_F(VideoProcessingModuleTest, HandleNullBuffer)
{
}
TEST_F(VideoProcessingModuleTest, HandleBadSize)
{
}
TEST_F(VideoProcessingModuleTest, IdenticalResultsAfterReset)
{
}
*/
} // namespace
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
ApmEnvironment* env = new ApmEnvironment; // GTest takes ownership.
::testing::AddGlobalTestEnvironment(env);
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "--write_output_data") == 0) {
global_read_output_data = false;
}
}
return RUN_ALL_TESTS();
}