/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "audio_processing.h" #include "audio_processing_unittest.pb.h" #include "event_wrapper.h" #include "module_common_types.h" #include "thread_wrapper.h" #include "trace.h" #include "signal_processing_library.h" using webrtc::AudioProcessing; using webrtc::AudioFrame; using webrtc::GainControl; using webrtc::NoiseSuppression; using webrtc::EchoCancellation; using webrtc::EventWrapper; using webrtc::Trace; using webrtc::LevelEstimator; using webrtc::EchoCancellation; using webrtc::EchoControlMobile; using webrtc::VoiceDetection; namespace { // When true, this will compare the output data with the results stored to // file. This is the typical case. When the file should be updated, it can // be set to false with the command-line switch --write_output_data. bool global_read_output_data = true; class ApmEnvironment : public ::testing::Environment { public: virtual void SetUp() { Trace::CreateTrace(); ASSERT_EQ(0, Trace::SetTraceFile("apm_trace.txt")); } virtual void TearDown() { Trace::ReturnTrace(); } }; class ApmTest : public ::testing::Test { protected: ApmTest(); virtual void SetUp(); virtual void TearDown(); webrtc::AudioProcessing* apm_; webrtc::AudioFrame* frame_; webrtc::AudioFrame* revframe_; FILE* far_file_; FILE* near_file_; bool update_output_data_; }; ApmTest::ApmTest() : apm_(NULL), far_file_(NULL), near_file_(NULL), frame_(NULL), revframe_(NULL) {} void ApmTest::SetUp() { apm_ = AudioProcessing::Create(0); ASSERT_TRUE(apm_ != NULL); frame_ = new AudioFrame(); revframe_ = new AudioFrame(); ASSERT_EQ(apm_->kNoError, apm_->set_sample_rate_hz(32000)); ASSERT_EQ(apm_->kNoError, apm_->set_num_channels(2, 2)); ASSERT_EQ(apm_->kNoError, apm_->set_num_reverse_channels(2)); frame_->_payloadDataLengthInSamples = 320; frame_->_audioChannel = 2; frame_->_frequencyInHz = 32000; revframe_->_payloadDataLengthInSamples = 320; revframe_->_audioChannel = 2; revframe_->_frequencyInHz = 32000; far_file_ = fopen("aec_far.pcm", "rb"); ASSERT_TRUE(far_file_ != NULL) << "Could not open input file aec_far.pcm\n"; near_file_ = fopen("aec_near.pcm", "rb"); ASSERT_TRUE(near_file_ != NULL) << "Could not open input file aec_near.pcm\n"; } void ApmTest::TearDown() { if (frame_) { delete frame_; } frame_ = NULL; if (revframe_) { delete revframe_; } revframe_ = NULL; if (far_file_) { ASSERT_EQ(0, fclose(far_file_)); } far_file_ = NULL; if (near_file_) { ASSERT_EQ(0, fclose(near_file_)); } near_file_ = NULL; if (apm_ != NULL) { AudioProcessing::Destroy(apm_); } apm_ = NULL; } void MixStereoToMono(WebRtc_Word16* stereo, WebRtc_Word16* mono, int numSamples) { for (int i = 0; i < numSamples; i++) { int int32 = (static_cast(stereo[i * 2]) + static_cast(stereo[i * 2 + 1])) >> 1; mono[i] = static_cast(int32); } } void WriteMessageLiteToFile(const char* filename, const ::google::protobuf::MessageLite& message) { assert(filename != NULL); FILE* file = fopen(filename, "wb"); ASSERT_TRUE(file != NULL) << "Could not open " << filename; int size = message.ByteSize(); ASSERT_GT(size, 0); unsigned char* array = new unsigned char[size]; ASSERT_TRUE(message.SerializeToArray(array, size)); ASSERT_EQ(1, fwrite(&size, sizeof(int), 1, file)); ASSERT_EQ(size, fwrite(array, sizeof(unsigned char), size, file)); delete [] array; fclose(file); } void ReadMessageLiteFromFile(const char* filename, ::google::protobuf::MessageLite* message) { assert(filename != NULL); assert(message != NULL); FILE* file = fopen(filename, "rb"); ASSERT_TRUE(file != NULL) << "Could not open " << filename; int size = 0; ASSERT_EQ(1, fread(&size, sizeof(int), 1, file)); ASSERT_GT(size, 0); unsigned char* array = new unsigned char[size]; ASSERT_EQ(size, fread(array, sizeof(unsigned char), size, file)); ASSERT_TRUE(message->ParseFromArray(array, size)); delete [] array; fclose(file); } struct ThreadData { ThreadData(int thread_num_, AudioProcessing* ap_) : thread_num(thread_num_), error(false), ap(ap_) {} int thread_num; bool error; AudioProcessing* ap; }; // Don't use GTest here; non-thread-safe on Windows (as of 1.5.0). bool DeadlockProc(void* thread_object) { ThreadData* thread_data = static_cast(thread_object); AudioProcessing* ap = thread_data->ap; int err = ap->kNoError; AudioFrame primary_frame; AudioFrame reverse_frame; primary_frame._payloadDataLengthInSamples = 320; primary_frame._audioChannel = 2; primary_frame._frequencyInHz = 32000; reverse_frame._payloadDataLengthInSamples = 320; reverse_frame._audioChannel = 2; reverse_frame._frequencyInHz = 32000; ap->echo_cancellation()->Enable(true); ap->gain_control()->Enable(true); ap->high_pass_filter()->Enable(true); ap->level_estimator()->Enable(true); ap->noise_suppression()->Enable(true); ap->voice_detection()->Enable(true); if (thread_data->thread_num % 2 == 0) { err = ap->AnalyzeReverseStream(&reverse_frame); if (err != ap->kNoError) { printf("Error in AnalyzeReverseStream(): %d\n", err); thread_data->error = true; return false; } } if (thread_data->thread_num % 2 == 1) { ap->set_stream_delay_ms(0); ap->echo_cancellation()->set_stream_drift_samples(0); ap->gain_control()->set_stream_analog_level(0); err = ap->ProcessStream(&primary_frame); if (err == ap->kStreamParameterNotSetError) { printf("Expected kStreamParameterNotSetError in ProcessStream(): %d\n", err); } else if (err != ap->kNoError) { printf("Error in ProcessStream(): %d\n", err); thread_data->error = true; return false; } ap->gain_control()->stream_analog_level(); } EventWrapper* event = EventWrapper::Create(); event->Wait(1); delete event; event = NULL; return true; } /*TEST_F(ApmTest, Deadlock) { const int num_threads = 16; std::vector threads(num_threads); std::vector thread_data(num_threads); ASSERT_EQ(apm_->kNoError, apm_->set_sample_rate_hz(32000)); ASSERT_EQ(apm_->kNoError, apm_->set_num_channels(2, 2)); ASSERT_EQ(apm_->kNoError, apm_->set_num_reverse_channels(2)); for (int i = 0; i < num_threads; i++) { thread_data[i] = new ThreadData(i, apm_); threads[i] = ThreadWrapper::CreateThread(DeadlockProc, thread_data[i], kNormalPriority, 0); ASSERT_TRUE(threads[i] != NULL); unsigned int thread_id = 0; threads[i]->Start(thread_id); } EventWrapper* event = EventWrapper::Create(); ASSERT_EQ(kEventTimeout, event->Wait(5000)); delete event; event = NULL; for (int i = 0; i < num_threads; i++) { // This will return false if the thread has deadlocked. ASSERT_TRUE(threads[i]->Stop()); ASSERT_FALSE(thread_data[i]->error); delete threads[i]; threads[i] = NULL; delete thread_data[i]; thread_data[i] = NULL; } }*/ TEST_F(ApmTest, StreamParameters) { // No errors when the components are disabled. EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); // Missing agc level EXPECT_EQ(apm_->kNoError, apm_->Initialize()); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true)); EXPECT_EQ(apm_->kStreamParameterNotSetError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->set_stream_drift_samples(0)); EXPECT_EQ(apm_->kStreamParameterNotSetError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false)); // Missing delay EXPECT_EQ(apm_->kNoError, apm_->Initialize()); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true)); EXPECT_EQ(apm_->kStreamParameterNotSetError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->set_stream_drift_samples(0)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_stream_analog_level(127)); EXPECT_EQ(apm_->kStreamParameterNotSetError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false)); // Missing drift EXPECT_EQ(apm_->kNoError, apm_->Initialize()); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_drift_compensation(true)); EXPECT_EQ(apm_->kStreamParameterNotSetError, apm_->ProcessStream(frame_)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_stream_analog_level(127)); EXPECT_EQ(apm_->kStreamParameterNotSetError, apm_->ProcessStream(frame_)); // No stream parameters EXPECT_EQ(apm_->kNoError, apm_->Initialize()); EXPECT_EQ(apm_->kNoError, apm_->AnalyzeReverseStream(revframe_)); EXPECT_EQ(apm_->kStreamParameterNotSetError, apm_->ProcessStream(frame_)); // All there EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->Initialize()); EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->set_stream_drift_samples(0)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_stream_analog_level(127)); EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); } TEST_F(ApmTest, Channels) { // Testing number of invalid channels EXPECT_EQ(apm_->kBadParameterError, apm_->set_num_channels(0, 1)); EXPECT_EQ(apm_->kBadParameterError, apm_->set_num_channels(1, 0)); EXPECT_EQ(apm_->kBadParameterError, apm_->set_num_channels(3, 1)); EXPECT_EQ(apm_->kBadParameterError, apm_->set_num_channels(1, 3)); EXPECT_EQ(apm_->kBadParameterError, apm_->set_num_reverse_channels(0)); EXPECT_EQ(apm_->kBadParameterError, apm_->set_num_reverse_channels(3)); // Testing number of valid channels for (int i = 1; i < 3; i++) { for (int j = 1; j < 3; j++) { if (j > i) { EXPECT_EQ(apm_->kBadParameterError, apm_->set_num_channels(i, j)); } else { EXPECT_EQ(apm_->kNoError, apm_->set_num_channels(i, j)); EXPECT_EQ(j, apm_->num_output_channels()); } } EXPECT_EQ(i, apm_->num_input_channels()); EXPECT_EQ(apm_->kNoError, apm_->set_num_reverse_channels(i)); EXPECT_EQ(i, apm_->num_reverse_channels()); } } TEST_F(ApmTest, SampleRates) { // Testing invalid sample rates EXPECT_EQ(apm_->kBadParameterError, apm_->set_sample_rate_hz(10000)); // Testing valid sample rates int fs[] = {8000, 16000, 32000}; for (size_t i = 0; i < sizeof(fs) / sizeof(*fs); i++) { EXPECT_EQ(apm_->kNoError, apm_->set_sample_rate_hz(fs[i])); EXPECT_EQ(fs[i], apm_->sample_rate_hz()); } } TEST_F(ApmTest, Process) { GOOGLE_PROTOBUF_VERIFY_VERSION; audio_processing_unittest::OutputData output_data; if (global_read_output_data) { ReadMessageLiteFromFile("output_data.pb", &output_data); } else { // We don't have a file; add the required tests to the protobuf. int rev_ch[] = {1, 2}; int ch[] = {1, 2}; int fs[] = {8000, 16000, 32000}; for (size_t i = 0; i < sizeof(rev_ch) / sizeof(*rev_ch); i++) { for (size_t j = 0; j < sizeof(ch) / sizeof(*ch); j++) { for (size_t k = 0; k < sizeof(fs) / sizeof(*fs); k++) { audio_processing_unittest::Test* test = output_data.add_test(); test->set_numreversechannels(rev_ch[i]); test->set_numchannels(ch[j]); test->set_samplerate(fs[k]); } } } } EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_drift_compensation(true)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_metrics(true)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_mode(GainControl::kAdaptiveAnalog)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_analog_level_limits(0, 255)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->high_pass_filter()->Enable(true)); //EXPECT_EQ(apm_->kNoError, // apm_->level_estimator()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->noise_suppression()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true)); for (int i = 0; i < output_data.test_size(); i++) { printf("Running test %d of %d...\n", i + 1, output_data.test_size()); audio_processing_unittest::Test* test = output_data.mutable_test(i); const int num_samples = test->samplerate() / 100; revframe_->_payloadDataLengthInSamples = num_samples; revframe_->_audioChannel = test->numreversechannels(); revframe_->_frequencyInHz = test->samplerate(); frame_->_payloadDataLengthInSamples = num_samples; frame_->_audioChannel = test->numchannels(); frame_->_frequencyInHz = test->samplerate(); EXPECT_EQ(apm_->kNoError, apm_->Initialize()); ASSERT_EQ(apm_->kNoError, apm_->set_sample_rate_hz(test->samplerate())); ASSERT_EQ(apm_->kNoError, apm_->set_num_channels(frame_->_audioChannel, frame_->_audioChannel)); ASSERT_EQ(apm_->kNoError, apm_->set_num_reverse_channels(revframe_->_audioChannel)); int has_echo_count = 0; int has_voice_count = 0; int is_saturated_count = 0; while (1) { WebRtc_Word16 temp_data[640]; int analog_level = 127; // Read far-end frame size_t read_count = fread(temp_data, sizeof(WebRtc_Word16), num_samples * 2, far_file_); if (read_count != static_cast(num_samples * 2)) { // Check that the file really ended. ASSERT_NE(0, feof(far_file_)); break; // This is expected. } if (revframe_->_audioChannel == 1) { MixStereoToMono(temp_data, revframe_->_payloadData, revframe_->_payloadDataLengthInSamples); } else { memcpy(revframe_->_payloadData, &temp_data[0], sizeof(WebRtc_Word16) * read_count); } EXPECT_EQ(apm_->kNoError, apm_->AnalyzeReverseStream(revframe_)); EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->set_stream_drift_samples(0)); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_stream_analog_level(analog_level)); // Read near-end frame read_count = fread(temp_data, sizeof(WebRtc_Word16), num_samples * 2, near_file_); if (read_count != static_cast(num_samples * 2)) { // Check that the file really ended. ASSERT_NE(0, feof(near_file_)); break; // This is expected. } if (frame_->_audioChannel == 1) { MixStereoToMono(temp_data, frame_->_payloadData, num_samples); } else { memcpy(frame_->_payloadData, &temp_data[0], sizeof(WebRtc_Word16) * read_count); } EXPECT_EQ(apm_->kNoError, apm_->ProcessStream(frame_)); if (apm_->echo_cancellation()->stream_has_echo()) { has_echo_count++; } analog_level = apm_->gain_control()->stream_analog_level(); if (apm_->gain_control()->stream_is_saturated()) { is_saturated_count++; } if (apm_->voice_detection()->stream_has_voice()) { has_voice_count++; } } //<-- Statistics --> //LevelEstimator::Metrics far_metrics; //LevelEstimator::Metrics near_metrics; //EchoCancellation::Metrics echo_metrics; //LevelEstimator::Metrics far_metrics_ref_; //LevelEstimator::Metrics near_metrics_ref_; //EchoCancellation::Metrics echo_metrics_ref_; //EXPECT_EQ(apm_->kNoError, // apm_->echo_cancellation()->GetMetrics(&echo_metrics)); //EXPECT_EQ(apm_->kNoError, // apm_->level_estimator()->GetMetrics(&near_metrics, // TODO(ajm): check echo metrics and output audio. if (global_read_output_data) { EXPECT_EQ(has_echo_count, test->hasechocount()); EXPECT_EQ(has_voice_count, test->hasvoicecount()); EXPECT_EQ(is_saturated_count, test->issaturatedcount()); } else { test->set_hasechocount(has_echo_count); test->set_hasvoicecount(has_voice_count); test->set_issaturatedcount(is_saturated_count); } rewind(far_file_); rewind(near_file_); } if (!global_read_output_data) { WriteMessageLiteToFile("output_data.pb", output_data); } google::protobuf::ShutdownProtobufLibrary(); } TEST_F(ApmTest, EchoCancellation) { EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_drift_compensation(true)); EXPECT_TRUE(apm_->echo_cancellation()->is_drift_compensation_enabled()); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_drift_compensation(false)); EXPECT_FALSE(apm_->echo_cancellation()->is_drift_compensation_enabled()); EXPECT_EQ(apm_->kBadParameterError, apm_->echo_cancellation()->set_device_sample_rate_hz(4000)); EXPECT_EQ(apm_->kBadParameterError, apm_->echo_cancellation()->set_device_sample_rate_hz(100000)); int rate[] = {16000, 44100, 48000}; for (size_t i = 0; i < sizeof(rate)/sizeof(*rate); i++) { EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->set_device_sample_rate_hz(rate[i])); EXPECT_EQ(rate[i], apm_->echo_cancellation()->device_sample_rate_hz()); } EXPECT_EQ(apm_->kBadParameterError, apm_->echo_cancellation()->set_suppression_level( static_cast(-1))); EXPECT_EQ(apm_->kBadParameterError, apm_->echo_cancellation()->set_suppression_level( static_cast(4))); EchoCancellation::SuppressionLevel level[] = { EchoCancellation::kLowSuppression, EchoCancellation::kModerateSuppression, EchoCancellation::kHighSuppression, }; for (size_t i = 0; i < sizeof(level)/sizeof(*level); i++) { EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->set_suppression_level(level[i])); EXPECT_EQ(level[i], apm_->echo_cancellation()->suppression_level()); } EchoCancellation::Metrics metrics; EXPECT_EQ(apm_->kNotEnabledError, apm_->echo_cancellation()->GetMetrics(&metrics)); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_metrics(true)); EXPECT_TRUE(apm_->echo_cancellation()->are_metrics_enabled()); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->enable_metrics(false)); EXPECT_FALSE(apm_->echo_cancellation()->are_metrics_enabled()); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(true)); EXPECT_TRUE(apm_->echo_cancellation()->is_enabled()); EXPECT_EQ(apm_->kNoError, apm_->echo_cancellation()->Enable(false)); EXPECT_FALSE(apm_->echo_cancellation()->is_enabled()); } TEST_F(ApmTest, EchoControlMobile) { // AECM won't use super-wideband. EXPECT_EQ(apm_->kNoError, apm_->set_sample_rate_hz(32000)); EXPECT_EQ(apm_->kBadSampleRateError, apm_->echo_control_mobile()->Enable(true)); EXPECT_EQ(apm_->kNoError, apm_->set_sample_rate_hz(16000)); // Turn AECM on (and AEC off) EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->Enable(true)); EXPECT_TRUE(apm_->echo_control_mobile()->is_enabled()); EXPECT_EQ(apm_->kBadParameterError, apm_->echo_control_mobile()->set_routing_mode( static_cast(-1))); EXPECT_EQ(apm_->kBadParameterError, apm_->echo_control_mobile()->set_routing_mode( static_cast(5))); // Toggle routing modes EchoControlMobile::RoutingMode mode[] = { EchoControlMobile::kQuietEarpieceOrHeadset, EchoControlMobile::kEarpiece, EchoControlMobile::kLoudEarpiece, EchoControlMobile::kSpeakerphone, EchoControlMobile::kLoudSpeakerphone, }; for (size_t i = 0; i < sizeof(mode)/sizeof(*mode); i++) { EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->set_routing_mode(mode[i])); EXPECT_EQ(mode[i], apm_->echo_control_mobile()->routing_mode()); } // Turn comfort noise off/on EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->enable_comfort_noise(false)); EXPECT_FALSE(apm_->echo_control_mobile()->is_comfort_noise_enabled()); EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->enable_comfort_noise(true)); EXPECT_TRUE(apm_->echo_control_mobile()->is_comfort_noise_enabled()); // Turn AECM off EXPECT_EQ(apm_->kNoError, apm_->echo_control_mobile()->Enable(false)); EXPECT_FALSE(apm_->echo_control_mobile()->is_enabled()); } TEST_F(ApmTest, GainControl) { // Testing gain modes EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_mode(static_cast(-1))); EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_mode(static_cast(3))); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_mode( apm_->gain_control()->mode())); GainControl::Mode mode[] = { GainControl::kAdaptiveAnalog, GainControl::kAdaptiveDigital, GainControl::kFixedDigital }; for (size_t i = 0; i < sizeof(mode)/sizeof(*mode); i++) { EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_mode(mode[i])); EXPECT_EQ(mode[i], apm_->gain_control()->mode()); } // Testing invalid target levels EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_target_level_dbfs(-3)); EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_target_level_dbfs(-40)); // Testing valid target levels EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_target_level_dbfs( apm_->gain_control()->target_level_dbfs())); int level_dbfs[] = {0, 6, 31}; for (size_t i = 0; i < sizeof(level_dbfs)/sizeof(*level_dbfs); i++) { EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_target_level_dbfs(level_dbfs[i])); EXPECT_EQ(level_dbfs[i], apm_->gain_control()->target_level_dbfs()); } // Testing invalid compression gains EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_compression_gain_db(-1)); EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_compression_gain_db(100)); // Testing valid compression gains EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_compression_gain_db( apm_->gain_control()->compression_gain_db())); int gain_db[] = {0, 10, 90}; for (size_t i = 0; i < sizeof(gain_db)/sizeof(*gain_db); i++) { EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_compression_gain_db(gain_db[i])); EXPECT_EQ(gain_db[i], apm_->gain_control()->compression_gain_db()); } // Testing limiter off/on EXPECT_EQ(apm_->kNoError, apm_->gain_control()->enable_limiter(false)); EXPECT_FALSE(apm_->gain_control()->is_limiter_enabled()); EXPECT_EQ(apm_->kNoError, apm_->gain_control()->enable_limiter(true)); EXPECT_TRUE(apm_->gain_control()->is_limiter_enabled()); // Testing invalid level limits EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_analog_level_limits(-1, 512)); EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_analog_level_limits(100000, 512)); EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_analog_level_limits(512, -1)); EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_analog_level_limits(512, 100000)); EXPECT_EQ(apm_->kBadParameterError, apm_->gain_control()->set_analog_level_limits(512, 255)); // Testing valid level limits EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_analog_level_limits( apm_->gain_control()->analog_level_minimum(), apm_->gain_control()->analog_level_maximum())); int min_level[] = {0, 255, 1024}; for (size_t i = 0; i < sizeof(min_level)/sizeof(*min_level); i++) { EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_analog_level_limits(min_level[i], 1024)); EXPECT_EQ(min_level[i], apm_->gain_control()->analog_level_minimum()); } int max_level[] = {0, 1024, 65535}; for (size_t i = 0; i < sizeof(min_level)/sizeof(*min_level); i++) { EXPECT_EQ(apm_->kNoError, apm_->gain_control()->set_analog_level_limits(0, max_level[i])); EXPECT_EQ(max_level[i], apm_->gain_control()->analog_level_maximum()); } // TODO(ajm): stream_is_saturated() and stream_analog_level() // Turn AGC off EXPECT_EQ(apm_->kNoError, apm_->gain_control()->Enable(false)); EXPECT_FALSE(apm_->gain_control()->is_enabled()); } TEST_F(ApmTest, NoiseSuppression) { // Tesing invalid suppression levels EXPECT_EQ(apm_->kBadParameterError, apm_->noise_suppression()->set_level( static_cast(-1))); EXPECT_EQ(apm_->kBadParameterError, apm_->noise_suppression()->set_level( static_cast(5))); // Tesing valid suppression levels NoiseSuppression::Level level[] = { NoiseSuppression::kLow, NoiseSuppression::kModerate, NoiseSuppression::kHigh, NoiseSuppression::kVeryHigh }; for (size_t i = 0; i < sizeof(level)/sizeof(*level); i++) { EXPECT_EQ(apm_->kNoError, apm_->noise_suppression()->set_level(level[i])); EXPECT_EQ(level[i], apm_->noise_suppression()->level()); } // Turing NS on/off EXPECT_EQ(apm_->kNoError, apm_->noise_suppression()->Enable(true)); EXPECT_TRUE(apm_->noise_suppression()->is_enabled()); EXPECT_EQ(apm_->kNoError, apm_->noise_suppression()->Enable(false)); EXPECT_FALSE(apm_->noise_suppression()->is_enabled()); } TEST_F(ApmTest, HighPassFilter) { // Turing HP filter on/off EXPECT_EQ(apm_->kNoError, apm_->high_pass_filter()->Enable(true)); EXPECT_TRUE(apm_->high_pass_filter()->is_enabled()); EXPECT_EQ(apm_->kNoError, apm_->high_pass_filter()->Enable(false)); EXPECT_FALSE(apm_->high_pass_filter()->is_enabled()); } TEST_F(ApmTest, LevelEstimator) { // Turing Level estimator on/off EXPECT_EQ(apm_->kUnsupportedComponentError, apm_->level_estimator()->Enable(true)); EXPECT_FALSE(apm_->level_estimator()->is_enabled()); EXPECT_EQ(apm_->kUnsupportedComponentError, apm_->level_estimator()->Enable(false)); EXPECT_FALSE(apm_->level_estimator()->is_enabled()); } TEST_F(ApmTest, VoiceDetection) { // Test external VAD EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->set_stream_has_voice(true)); EXPECT_TRUE(apm_->voice_detection()->stream_has_voice()); EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->set_stream_has_voice(false)); EXPECT_FALSE(apm_->voice_detection()->stream_has_voice()); // Tesing invalid likelihoods EXPECT_EQ(apm_->kBadParameterError, apm_->voice_detection()->set_likelihood( static_cast(-1))); EXPECT_EQ(apm_->kBadParameterError, apm_->voice_detection()->set_likelihood( static_cast(5))); // Tesing valid likelihoods VoiceDetection::Likelihood likelihood[] = { VoiceDetection::kVeryLowLikelihood, VoiceDetection::kLowLikelihood, VoiceDetection::kModerateLikelihood, VoiceDetection::kHighLikelihood }; for (size_t i = 0; i < sizeof(likelihood)/sizeof(*likelihood); i++) { EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->set_likelihood(likelihood[i])); EXPECT_EQ(likelihood[i], apm_->voice_detection()->likelihood()); } /* TODO(bjornv): Enable once VAD supports other frame lengths than 10 ms // Tesing invalid frame sizes EXPECT_EQ(apm_->kBadParameterError, apm_->voice_detection()->set_frame_size_ms(12)); // Tesing valid frame sizes for (int i = 10; i <= 30; i += 10) { EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->set_frame_size_ms(i)); EXPECT_EQ(i, apm_->voice_detection()->frame_size_ms()); } */ // Turing VAD on/off EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(true)); EXPECT_TRUE(apm_->voice_detection()->is_enabled()); EXPECT_EQ(apm_->kNoError, apm_->voice_detection()->Enable(false)); EXPECT_FALSE(apm_->voice_detection()->is_enabled()); // TODO(bjornv): Add tests for streamed voice; stream_has_voice() } // Below are some ideas for tests from VPM. /*TEST_F(VideoProcessingModuleTest, GetVersionTest) { } TEST_F(VideoProcessingModuleTest, HandleNullBuffer) { } TEST_F(VideoProcessingModuleTest, HandleBadSize) { } TEST_F(VideoProcessingModuleTest, IdenticalResultsAfterReset) { } */ } // namespace int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); ApmEnvironment* env = new ApmEnvironment; // GTest takes ownership. ::testing::AddGlobalTestEnvironment(env); for (int i = 1; i < argc; i++) { if (strcmp(argv[i], "--write_output_data") == 0) { global_read_output_data = false; } } return RUN_ALL_TESTS(); }