webrtc/talk/p2p/base/turnport_unittest.cc
henrike@webrtc.org 269fb4bc90 move xmpp and p2p to webrtc
Create a copy of talk/xmpp and talk/p2p under webrtc/libjingle/xmpp and
webrtc/p2p. Also makes libjingle use those version instead of the one in the talk folder.

BUG=3379

Review URL: https://webrtc-codereview.appspot.com/26999004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@7549 4adac7df-926f-26a2-2b94-8c16560cd09d
2014-10-28 22:20:11 +00:00

686 lines
27 KiB
C++

/*
* libjingle
* Copyright 2012, Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#if defined(POSIX)
#include <dirent.h>
#endif
#include "webrtc/p2p/base/basicpacketsocketfactory.h"
#include "webrtc/p2p/base/constants.h"
#include "webrtc/p2p/base/tcpport.h"
#include "webrtc/p2p/base/testturnserver.h"
#include "webrtc/p2p/base/turnport.h"
#include "webrtc/p2p/base/udpport.h"
#include "webrtc/base/asynctcpsocket.h"
#include "webrtc/base/buffer.h"
#include "webrtc/base/dscp.h"
#include "webrtc/base/firewallsocketserver.h"
#include "webrtc/base/gunit.h"
#include "webrtc/base/helpers.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/physicalsocketserver.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/base/socketaddress.h"
#include "webrtc/base/ssladapter.h"
#include "webrtc/base/thread.h"
#include "webrtc/base/virtualsocketserver.h"
using rtc::SocketAddress;
using cricket::Connection;
using cricket::Port;
using cricket::PortInterface;
using cricket::TurnPort;
using cricket::UDPPort;
static const SocketAddress kLocalAddr1("11.11.11.11", 0);
static const SocketAddress kLocalAddr2("22.22.22.22", 0);
static const SocketAddress kLocalIPv6Addr(
"2401:fa00:4:1000:be30:5bff:fee5:c3", 0);
static const SocketAddress kTurnUdpIntAddr("99.99.99.3",
cricket::TURN_SERVER_PORT);
static const SocketAddress kTurnTcpIntAddr("99.99.99.4",
cricket::TURN_SERVER_PORT);
static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
static const SocketAddress kTurnAlternateUdpIntAddr(
"99.99.99.6", cricket::TURN_SERVER_PORT);
static const SocketAddress kTurnUdpIPv6IntAddr(
"2400:4030:1:2c00:be30:abcd:efab:cdef", cricket::TURN_SERVER_PORT);
static const SocketAddress kTurnUdpIPv6ExtAddr(
"2620:0:1000:1b03:2e41:38ff:fea6:f2a4", 0);
static const char kIceUfrag1[] = "TESTICEUFRAG0001";
static const char kIceUfrag2[] = "TESTICEUFRAG0002";
static const char kIcePwd1[] = "TESTICEPWD00000000000001";
static const char kIcePwd2[] = "TESTICEPWD00000000000002";
static const char kTurnUsername[] = "test";
static const char kTurnPassword[] = "test";
static const unsigned int kTimeout = 1000;
static const cricket::ProtocolAddress kTurnUdpProtoAddr(
kTurnUdpIntAddr, cricket::PROTO_UDP);
static const cricket::ProtocolAddress kTurnTcpProtoAddr(
kTurnTcpIntAddr, cricket::PROTO_TCP);
static const cricket::ProtocolAddress kTurnUdpIPv6ProtoAddr(
kTurnUdpIPv6IntAddr, cricket::PROTO_UDP);
static const unsigned int MSG_TESTFINISH = 0;
#if defined(LINUX)
static int GetFDCount() {
struct dirent *dp;
int fd_count = 0;
DIR *dir = opendir("/proc/self/fd/");
while ((dp = readdir(dir)) != NULL) {
if (dp->d_name[0] == '.')
continue;
++fd_count;
}
closedir(dir);
return fd_count;
}
#endif
class TurnPortTest : public testing::Test,
public sigslot::has_slots<>,
public rtc::MessageHandler {
public:
TurnPortTest()
: main_(rtc::Thread::Current()),
pss_(new rtc::PhysicalSocketServer),
ss_(new rtc::VirtualSocketServer(pss_.get())),
ss_scope_(ss_.get()),
network_("unittest", "unittest", rtc::IPAddress(INADDR_ANY), 32),
socket_factory_(rtc::Thread::Current()),
turn_server_(main_, kTurnUdpIntAddr, kTurnUdpExtAddr),
turn_ready_(false),
turn_error_(false),
turn_unknown_address_(false),
turn_create_permission_success_(false),
udp_ready_(false),
test_finish_(false) {
network_.AddIP(rtc::IPAddress(INADDR_ANY));
}
virtual void OnMessage(rtc::Message* msg) {
ASSERT(msg->message_id == MSG_TESTFINISH);
if (msg->message_id == MSG_TESTFINISH)
test_finish_ = true;
}
void OnTurnPortComplete(Port* port) {
turn_ready_ = true;
}
void OnTurnPortError(Port* port) {
turn_error_ = true;
}
void OnTurnUnknownAddress(PortInterface* port, const SocketAddress& addr,
cricket::ProtocolType proto,
cricket::IceMessage* msg, const std::string& rf,
bool /*port_muxed*/) {
turn_unknown_address_ = true;
}
void OnTurnCreatePermissionResult(TurnPort* port, const SocketAddress& addr,
int code) {
// Ignoring the address.
if (code == 0) {
turn_create_permission_success_ = true;
}
}
void OnTurnReadPacket(Connection* conn, const char* data, size_t size,
const rtc::PacketTime& packet_time) {
turn_packets_.push_back(rtc::Buffer(data, size));
}
void OnUdpPortComplete(Port* port) {
udp_ready_ = true;
}
void OnUdpReadPacket(Connection* conn, const char* data, size_t size,
const rtc::PacketTime& packet_time) {
udp_packets_.push_back(rtc::Buffer(data, size));
}
void OnSocketReadPacket(rtc::AsyncPacketSocket* socket,
const char* data, size_t size,
const rtc::SocketAddress& remote_addr,
const rtc::PacketTime& packet_time) {
turn_port_->HandleIncomingPacket(socket, data, size, remote_addr,
packet_time);
}
rtc::AsyncSocket* CreateServerSocket(const SocketAddress addr) {
rtc::AsyncSocket* socket = ss_->CreateAsyncSocket(SOCK_STREAM);
EXPECT_GE(socket->Bind(addr), 0);
EXPECT_GE(socket->Listen(5), 0);
return socket;
}
void CreateTurnPort(const std::string& username,
const std::string& password,
const cricket::ProtocolAddress& server_address) {
CreateTurnPort(kLocalAddr1, username, password, server_address);
}
void CreateTurnPort(const rtc::SocketAddress& local_address,
const std::string& username,
const std::string& password,
const cricket::ProtocolAddress& server_address) {
cricket::RelayCredentials credentials(username, password);
turn_port_.reset(TurnPort::Create(main_, &socket_factory_, &network_,
local_address.ipaddr(), 0, 0,
kIceUfrag1, kIcePwd1,
server_address, credentials, 0));
// Set ICE protocol type to ICEPROTO_RFC5245, as port by default will be
// in Hybrid mode. Protocol type is necessary to send correct type STUN ping
// messages.
// This TURN port will be the controlling.
turn_port_->SetIceProtocolType(cricket::ICEPROTO_RFC5245);
turn_port_->SetIceRole(cricket::ICEROLE_CONTROLLING);
ConnectSignals();
}
void CreateSharedTurnPort(const std::string& username,
const std::string& password,
const cricket::ProtocolAddress& server_address) {
ASSERT(server_address.proto == cricket::PROTO_UDP);
if (!socket_) {
socket_.reset(socket_factory_.CreateUdpSocket(
rtc::SocketAddress(kLocalAddr1.ipaddr(), 0), 0, 0));
ASSERT_TRUE(socket_ != NULL);
socket_->SignalReadPacket.connect(
this, &TurnPortTest::OnSocketReadPacket);
}
cricket::RelayCredentials credentials(username, password);
turn_port_.reset(cricket::TurnPort::Create(
main_, &socket_factory_, &network_, socket_.get(),
kIceUfrag1, kIcePwd1, server_address, credentials, 0));
// Set ICE protocol type to ICEPROTO_RFC5245, as port by default will be
// in Hybrid mode. Protocol type is necessary to send correct type STUN ping
// messages.
// This TURN port will be the controlling.
turn_port_->SetIceProtocolType(cricket::ICEPROTO_RFC5245);
turn_port_->SetIceRole(cricket::ICEROLE_CONTROLLING);
ConnectSignals();
}
void ConnectSignals() {
turn_port_->SignalPortComplete.connect(this,
&TurnPortTest::OnTurnPortComplete);
turn_port_->SignalPortError.connect(this,
&TurnPortTest::OnTurnPortError);
turn_port_->SignalUnknownAddress.connect(this,
&TurnPortTest::OnTurnUnknownAddress);
turn_port_->SignalCreatePermissionResult.connect(this,
&TurnPortTest::OnTurnCreatePermissionResult);
}
void CreateUdpPort() {
udp_port_.reset(UDPPort::Create(main_, &socket_factory_, &network_,
kLocalAddr2.ipaddr(), 0, 0,
kIceUfrag2, kIcePwd2));
// Set protocol type to RFC5245, as turn port is also in same mode.
// UDP port will be controlled.
udp_port_->SetIceProtocolType(cricket::ICEPROTO_RFC5245);
udp_port_->SetIceRole(cricket::ICEROLE_CONTROLLED);
udp_port_->SignalPortComplete.connect(
this, &TurnPortTest::OnUdpPortComplete);
}
void TestTurnConnection() {
// Create ports and prepare addresses.
ASSERT_TRUE(turn_port_ != NULL);
turn_port_->PrepareAddress();
ASSERT_TRUE_WAIT(turn_ready_, kTimeout);
CreateUdpPort();
udp_port_->PrepareAddress();
ASSERT_TRUE_WAIT(udp_ready_, kTimeout);
// Send ping from UDP to TURN.
Connection* conn1 = udp_port_->CreateConnection(
turn_port_->Candidates()[0], Port::ORIGIN_MESSAGE);
ASSERT_TRUE(conn1 != NULL);
conn1->Ping(0);
WAIT(!turn_unknown_address_, kTimeout);
EXPECT_FALSE(turn_unknown_address_);
EXPECT_EQ(Connection::STATE_READ_INIT, conn1->read_state());
EXPECT_EQ(Connection::STATE_WRITE_INIT, conn1->write_state());
// Send ping from TURN to UDP.
Connection* conn2 = turn_port_->CreateConnection(
udp_port_->Candidates()[0], Port::ORIGIN_MESSAGE);
ASSERT_TRUE(conn2 != NULL);
ASSERT_TRUE_WAIT(turn_create_permission_success_, kTimeout);
conn2->Ping(0);
EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, conn2->write_state(), kTimeout);
EXPECT_EQ(Connection::STATE_READABLE, conn1->read_state());
EXPECT_EQ(Connection::STATE_READ_INIT, conn2->read_state());
EXPECT_EQ(Connection::STATE_WRITE_INIT, conn1->write_state());
// Send another ping from UDP to TURN.
conn1->Ping(0);
EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, conn1->write_state(), kTimeout);
EXPECT_EQ(Connection::STATE_READABLE, conn2->read_state());
}
void TestTurnSendData() {
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_ready_, kTimeout);
CreateUdpPort();
udp_port_->PrepareAddress();
EXPECT_TRUE_WAIT(udp_ready_, kTimeout);
// Create connections and send pings.
Connection* conn1 = turn_port_->CreateConnection(
udp_port_->Candidates()[0], Port::ORIGIN_MESSAGE);
Connection* conn2 = udp_port_->CreateConnection(
turn_port_->Candidates()[0], Port::ORIGIN_MESSAGE);
ASSERT_TRUE(conn1 != NULL);
ASSERT_TRUE(conn2 != NULL);
conn1->SignalReadPacket.connect(static_cast<TurnPortTest*>(this),
&TurnPortTest::OnTurnReadPacket);
conn2->SignalReadPacket.connect(static_cast<TurnPortTest*>(this),
&TurnPortTest::OnUdpReadPacket);
conn1->Ping(0);
EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, conn1->write_state(), kTimeout);
conn2->Ping(0);
EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, conn2->write_state(), kTimeout);
// Send some data.
size_t num_packets = 256;
for (size_t i = 0; i < num_packets; ++i) {
unsigned char buf[256] = { 0 };
for (size_t j = 0; j < i + 1; ++j) {
buf[j] = 0xFF - static_cast<unsigned char>(j);
}
conn1->Send(buf, i + 1, options);
conn2->Send(buf, i + 1, options);
main_->ProcessMessages(0);
}
// Check the data.
ASSERT_EQ_WAIT(num_packets, turn_packets_.size(), kTimeout);
ASSERT_EQ_WAIT(num_packets, udp_packets_.size(), kTimeout);
for (size_t i = 0; i < num_packets; ++i) {
EXPECT_EQ(i + 1, turn_packets_[i].length());
EXPECT_EQ(i + 1, udp_packets_[i].length());
EXPECT_EQ(turn_packets_[i], udp_packets_[i]);
}
}
protected:
rtc::Thread* main_;
rtc::scoped_ptr<rtc::PhysicalSocketServer> pss_;
rtc::scoped_ptr<rtc::VirtualSocketServer> ss_;
rtc::SocketServerScope ss_scope_;
rtc::Network network_;
rtc::BasicPacketSocketFactory socket_factory_;
rtc::scoped_ptr<rtc::AsyncPacketSocket> socket_;
cricket::TestTurnServer turn_server_;
rtc::scoped_ptr<TurnPort> turn_port_;
rtc::scoped_ptr<UDPPort> udp_port_;
bool turn_ready_;
bool turn_error_;
bool turn_unknown_address_;
bool turn_create_permission_success_;
bool udp_ready_;
bool test_finish_;
std::vector<rtc::Buffer> turn_packets_;
std::vector<rtc::Buffer> udp_packets_;
rtc::PacketOptions options;
};
// Do a normal TURN allocation.
TEST_F(TurnPortTest, TestTurnAllocate) {
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
EXPECT_EQ(0, turn_port_->SetOption(rtc::Socket::OPT_SNDBUF, 10*1024));
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_ready_, kTimeout);
ASSERT_EQ(1U, turn_port_->Candidates().size());
EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
turn_port_->Candidates()[0].address().ipaddr());
EXPECT_NE(0, turn_port_->Candidates()[0].address().port());
}
// Testing a normal UDP allocation using TCP connection.
TEST_F(TurnPortTest, TestTurnTcpAllocate) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, cricket::PROTO_TCP);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
EXPECT_EQ(0, turn_port_->SetOption(rtc::Socket::OPT_SNDBUF, 10*1024));
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_ready_, kTimeout);
ASSERT_EQ(1U, turn_port_->Candidates().size());
EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
turn_port_->Candidates()[0].address().ipaddr());
EXPECT_NE(0, turn_port_->Candidates()[0].address().port());
}
// Testing turn port will attempt to create TCP socket on address resolution
// failure.
TEST_F(TurnPortTest, DISABLED_TestTurnTcpOnAddressResolveFailure) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, cricket::PROTO_TCP);
CreateTurnPort(kTurnUsername, kTurnPassword, cricket::ProtocolAddress(
rtc::SocketAddress("www.webrtc-blah-blah.com", 3478),
cricket::PROTO_TCP));
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_error_, kTimeout);
// As VSS doesn't provide a DNS resolution, name resolve will fail. TurnPort
// will proceed in creating a TCP socket which will fail as there is no
// server on the above domain and error will be set to SOCKET_ERROR.
EXPECT_EQ(SOCKET_ERROR, turn_port_->error());
}
// In case of UDP on address resolve failure, TurnPort will not create socket
// and return allocate failure.
TEST_F(TurnPortTest, DISABLED_TestTurnUdpOnAdressResolveFailure) {
CreateTurnPort(kTurnUsername, kTurnPassword, cricket::ProtocolAddress(
rtc::SocketAddress("www.webrtc-blah-blah.com", 3478),
cricket::PROTO_UDP));
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_error_, kTimeout);
// Error from turn port will not be socket error.
EXPECT_NE(SOCKET_ERROR, turn_port_->error());
}
// Try to do a TURN allocation with an invalid password.
TEST_F(TurnPortTest, TestTurnAllocateBadPassword) {
CreateTurnPort(kTurnUsername, "bad", kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_error_, kTimeout);
ASSERT_EQ(0U, turn_port_->Candidates().size());
}
// Tests that a new local address is created after
// STUN_ERROR_ALLOCATION_MISMATCH.
TEST_F(TurnPortTest, TestTurnAllocateMismatch) {
// Do a normal allocation first.
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_ready_, kTimeout);
rtc::SocketAddress first_addr(turn_port_->socket()->GetLocalAddress());
// Forces the socket server to assign the same port.
ss_->SetNextPortForTesting(first_addr.port());
turn_ready_ = false;
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
// Verifies that the new port has the same address.
EXPECT_EQ(first_addr, turn_port_->socket()->GetLocalAddress());
EXPECT_TRUE_WAIT(turn_ready_, kTimeout);
// Verifies that the new port has a different address now.
EXPECT_NE(first_addr, turn_port_->socket()->GetLocalAddress());
}
// Tests that a shared-socket-TurnPort creates its own socket after
// STUN_ERROR_ALLOCATION_MISMATCH.
TEST_F(TurnPortTest, TestSharedSocketAllocateMismatch) {
// Do a normal allocation first.
CreateSharedTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_ready_, kTimeout);
rtc::SocketAddress first_addr(turn_port_->socket()->GetLocalAddress());
turn_ready_ = false;
CreateSharedTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
// Verifies that the new port has the same address.
EXPECT_EQ(first_addr, turn_port_->socket()->GetLocalAddress());
EXPECT_TRUE(turn_port_->SharedSocket());
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_ready_, kTimeout);
// Verifies that the new port has a different address now.
EXPECT_NE(first_addr, turn_port_->socket()->GetLocalAddress());
EXPECT_FALSE(turn_port_->SharedSocket());
}
TEST_F(TurnPortTest, TestTurnTcpAllocateMismatch) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, cricket::PROTO_TCP);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
// Do a normal allocation first.
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_ready_, kTimeout);
rtc::SocketAddress first_addr(turn_port_->socket()->GetLocalAddress());
// Forces the socket server to assign the same port.
ss_->SetNextPortForTesting(first_addr.port());
turn_ready_ = false;
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
turn_port_->PrepareAddress();
// Verifies that the new port has the same address.
EXPECT_EQ(first_addr, turn_port_->socket()->GetLocalAddress());
EXPECT_TRUE_WAIT(turn_ready_, kTimeout);
// Verifies that the new port has a different address now.
EXPECT_NE(first_addr, turn_port_->socket()->GetLocalAddress());
}
// Do a TURN allocation and try to send a packet to it from the outside.
// The packet should be dropped. Then, try to send a packet from TURN to the
// outside. It should reach its destination. Finally, try again from the
// outside. It should now work as well.
TEST_F(TurnPortTest, TestTurnConnection) {
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
TestTurnConnection();
}
// Similar to above, except that this test will use the shared socket.
TEST_F(TurnPortTest, TestTurnConnectionUsingSharedSocket) {
CreateSharedTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
TestTurnConnection();
}
// Test that we can establish a TCP connection with TURN server.
TEST_F(TurnPortTest, TestTurnTcpConnection) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, cricket::PROTO_TCP);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
TestTurnConnection();
}
// Test that we fail to create a connection when we want to use TLS over TCP.
// This test should be removed once we have TLS support.
TEST_F(TurnPortTest, TestTurnTlsTcpConnectionFails) {
cricket::ProtocolAddress secure_addr(kTurnTcpProtoAddr.address,
kTurnTcpProtoAddr.proto,
true);
CreateTurnPort(kTurnUsername, kTurnPassword, secure_addr);
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_error_, kTimeout);
ASSERT_EQ(0U, turn_port_->Candidates().size());
}
// Test try-alternate-server feature.
TEST_F(TurnPortTest, TestTurnAlternateServer) {
std::vector<rtc::SocketAddress> redirect_addresses;
redirect_addresses.push_back(kTurnAlternateUdpIntAddr);
cricket::TestTurnRedirector redirector(redirect_addresses);
turn_server_.AddInternalSocket(kTurnAlternateUdpIntAddr,
cricket::PROTO_UDP);
turn_server_.set_redirect_hook(&redirector);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
// Retrieve the address before we run the state machine.
const SocketAddress old_addr = turn_port_->server_address().address;
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_ready_, kTimeout);
// Retrieve the address again, the turn port's address should be
// changed.
const SocketAddress new_addr = turn_port_->server_address().address;
EXPECT_NE(old_addr, new_addr);
ASSERT_EQ(1U, turn_port_->Candidates().size());
EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
turn_port_->Candidates()[0].address().ipaddr());
EXPECT_NE(0, turn_port_->Candidates()[0].address().port());
}
// Test that we fail when we redirect to an address different from
// current IP family.
TEST_F(TurnPortTest, TestTurnAlternateServerV4toV6) {
std::vector<rtc::SocketAddress> redirect_addresses;
redirect_addresses.push_back(kTurnUdpIPv6IntAddr);
cricket::TestTurnRedirector redirector(redirect_addresses);
turn_server_.AddInternalSocket(kTurnAlternateUdpIntAddr,
cricket::PROTO_UDP);
turn_server_.set_redirect_hook(&redirector);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_error_, kTimeout);
}
// Test that we fail to handle alternate-server response over TCP protocol.
TEST_F(TurnPortTest, TestTurnAlternateServerTcp) {
std::vector<rtc::SocketAddress> redirect_addresses;
redirect_addresses.push_back(kTurnAlternateUdpIntAddr);
cricket::TestTurnRedirector redirector(redirect_addresses);
turn_server_.set_redirect_hook(&redirector);
turn_server_.AddInternalSocket(kTurnTcpIntAddr, cricket::PROTO_TCP);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
turn_server_.AddInternalSocket(kTurnAlternateUdpIntAddr, cricket::PROTO_TCP);
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_error_, kTimeout);
}
// Test try-alternate-server catches the case of pingpong.
TEST_F(TurnPortTest, TestTurnAlternateServerPingPong) {
std::vector<rtc::SocketAddress> redirect_addresses;
redirect_addresses.push_back(kTurnAlternateUdpIntAddr);
redirect_addresses.push_back(kTurnUdpIntAddr);
cricket::TestTurnRedirector redirector(redirect_addresses);
turn_server_.AddInternalSocket(kTurnAlternateUdpIntAddr,
cricket::PROTO_UDP);
turn_server_.set_redirect_hook(&redirector);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_error_, kTimeout);
ASSERT_EQ(0U, turn_port_->Candidates().size());
rtc::SocketAddress address;
// Verify that we have exhausted all alternate servers instead of
// failure caused by other errors.
EXPECT_FALSE(redirector.ShouldRedirect(address, &address));
}
// Test try-alternate-server catch the case of repeated server.
TEST_F(TurnPortTest, TestTurnAlternateServerDetectRepetition) {
std::vector<rtc::SocketAddress> redirect_addresses;
redirect_addresses.push_back(kTurnAlternateUdpIntAddr);
redirect_addresses.push_back(kTurnAlternateUdpIntAddr);
cricket::TestTurnRedirector redirector(redirect_addresses);
turn_server_.AddInternalSocket(kTurnAlternateUdpIntAddr,
cricket::PROTO_UDP);
turn_server_.set_redirect_hook(&redirector);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_error_, kTimeout);
ASSERT_EQ(0U, turn_port_->Candidates().size());
}
// Run TurnConnectionTest with one-time-use nonce feature.
// Here server will send a 438 STALE_NONCE error message for
// every TURN transaction.
TEST_F(TurnPortTest, TestTurnConnectionUsingOTUNonce) {
turn_server_.set_enable_otu_nonce(true);
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
TestTurnConnection();
}
// Do a TURN allocation, establish a UDP connection, and send some data.
TEST_F(TurnPortTest, TestTurnSendDataTurnUdpToUdp) {
// Create ports and prepare addresses.
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr);
TestTurnSendData();
}
// Do a TURN allocation, establish a TCP connection, and send some data.
TEST_F(TurnPortTest, TestTurnSendDataTurnTcpToUdp) {
turn_server_.AddInternalSocket(kTurnTcpIntAddr, cricket::PROTO_TCP);
// Create ports and prepare addresses.
CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr);
TestTurnSendData();
}
// Test TURN fails to make a connection from IPv6 address to a server which has
// IPv4 address.
TEST_F(TurnPortTest, TestTurnLocalIPv6AddressServerIPv4) {
turn_server_.AddInternalSocket(kTurnUdpIPv6IntAddr, cricket::PROTO_UDP);
CreateTurnPort(kLocalIPv6Addr, kTurnUsername, kTurnPassword,
kTurnUdpProtoAddr);
turn_port_->PrepareAddress();
ASSERT_TRUE_WAIT(turn_error_, kTimeout);
EXPECT_TRUE(turn_port_->Candidates().empty());
}
// Test TURN make a connection from IPv6 address to a server which has
// IPv6 intenal address. But in this test external address is a IPv4 address,
// hence allocated address will be a IPv4 address.
TEST_F(TurnPortTest, TestTurnLocalIPv6AddressServerIPv6ExtenalIPv4) {
turn_server_.AddInternalSocket(kTurnUdpIPv6IntAddr, cricket::PROTO_UDP);
CreateTurnPort(kLocalIPv6Addr, kTurnUsername, kTurnPassword,
kTurnUdpIPv6ProtoAddr);
turn_port_->PrepareAddress();
EXPECT_TRUE_WAIT(turn_ready_, kTimeout);
ASSERT_EQ(1U, turn_port_->Candidates().size());
EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
turn_port_->Candidates()[0].address().ipaddr());
EXPECT_NE(0, turn_port_->Candidates()[0].address().port());
}
// This test verifies any FD's are not leaked after TurnPort is destroyed.
// https://code.google.com/p/webrtc/issues/detail?id=2651
#if defined(LINUX)
TEST_F(TurnPortTest, TestResolverShutdown) {
turn_server_.AddInternalSocket(kTurnUdpIPv6IntAddr, cricket::PROTO_UDP);
int last_fd_count = GetFDCount();
// Need to supply unresolved address to kick off resolver.
CreateTurnPort(kLocalIPv6Addr, kTurnUsername, kTurnPassword,
cricket::ProtocolAddress(rtc::SocketAddress(
"stun.l.google.com", 3478), cricket::PROTO_UDP));
turn_port_->PrepareAddress();
ASSERT_TRUE_WAIT(turn_error_, kTimeout);
EXPECT_TRUE(turn_port_->Candidates().empty());
turn_port_.reset();
rtc::Thread::Current()->Post(this, MSG_TESTFINISH);
// Waiting for above message to be processed.
ASSERT_TRUE_WAIT(test_finish_, kTimeout);
EXPECT_EQ(last_fd_count, GetFDCount());
}
#endif