/* * libjingle * Copyright 2012, Google Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #if defined(POSIX) #include <dirent.h> #endif #include "webrtc/p2p/base/basicpacketsocketfactory.h" #include "webrtc/p2p/base/constants.h" #include "webrtc/p2p/base/tcpport.h" #include "webrtc/p2p/base/testturnserver.h" #include "webrtc/p2p/base/turnport.h" #include "webrtc/p2p/base/udpport.h" #include "webrtc/base/asynctcpsocket.h" #include "webrtc/base/buffer.h" #include "webrtc/base/dscp.h" #include "webrtc/base/firewallsocketserver.h" #include "webrtc/base/gunit.h" #include "webrtc/base/helpers.h" #include "webrtc/base/logging.h" #include "webrtc/base/physicalsocketserver.h" #include "webrtc/base/scoped_ptr.h" #include "webrtc/base/socketaddress.h" #include "webrtc/base/ssladapter.h" #include "webrtc/base/thread.h" #include "webrtc/base/virtualsocketserver.h" using rtc::SocketAddress; using cricket::Connection; using cricket::Port; using cricket::PortInterface; using cricket::TurnPort; using cricket::UDPPort; static const SocketAddress kLocalAddr1("11.11.11.11", 0); static const SocketAddress kLocalAddr2("22.22.22.22", 0); static const SocketAddress kLocalIPv6Addr( "2401:fa00:4:1000:be30:5bff:fee5:c3", 0); static const SocketAddress kTurnUdpIntAddr("99.99.99.3", cricket::TURN_SERVER_PORT); static const SocketAddress kTurnTcpIntAddr("99.99.99.4", cricket::TURN_SERVER_PORT); static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0); static const SocketAddress kTurnAlternateUdpIntAddr( "99.99.99.6", cricket::TURN_SERVER_PORT); static const SocketAddress kTurnUdpIPv6IntAddr( "2400:4030:1:2c00:be30:abcd:efab:cdef", cricket::TURN_SERVER_PORT); static const SocketAddress kTurnUdpIPv6ExtAddr( "2620:0:1000:1b03:2e41:38ff:fea6:f2a4", 0); static const char kIceUfrag1[] = "TESTICEUFRAG0001"; static const char kIceUfrag2[] = "TESTICEUFRAG0002"; static const char kIcePwd1[] = "TESTICEPWD00000000000001"; static const char kIcePwd2[] = "TESTICEPWD00000000000002"; static const char kTurnUsername[] = "test"; static const char kTurnPassword[] = "test"; static const unsigned int kTimeout = 1000; static const cricket::ProtocolAddress kTurnUdpProtoAddr( kTurnUdpIntAddr, cricket::PROTO_UDP); static const cricket::ProtocolAddress kTurnTcpProtoAddr( kTurnTcpIntAddr, cricket::PROTO_TCP); static const cricket::ProtocolAddress kTurnUdpIPv6ProtoAddr( kTurnUdpIPv6IntAddr, cricket::PROTO_UDP); static const unsigned int MSG_TESTFINISH = 0; #if defined(LINUX) static int GetFDCount() { struct dirent *dp; int fd_count = 0; DIR *dir = opendir("/proc/self/fd/"); while ((dp = readdir(dir)) != NULL) { if (dp->d_name[0] == '.') continue; ++fd_count; } closedir(dir); return fd_count; } #endif class TurnPortTest : public testing::Test, public sigslot::has_slots<>, public rtc::MessageHandler { public: TurnPortTest() : main_(rtc::Thread::Current()), pss_(new rtc::PhysicalSocketServer), ss_(new rtc::VirtualSocketServer(pss_.get())), ss_scope_(ss_.get()), network_("unittest", "unittest", rtc::IPAddress(INADDR_ANY), 32), socket_factory_(rtc::Thread::Current()), turn_server_(main_, kTurnUdpIntAddr, kTurnUdpExtAddr), turn_ready_(false), turn_error_(false), turn_unknown_address_(false), turn_create_permission_success_(false), udp_ready_(false), test_finish_(false) { network_.AddIP(rtc::IPAddress(INADDR_ANY)); } virtual void OnMessage(rtc::Message* msg) { ASSERT(msg->message_id == MSG_TESTFINISH); if (msg->message_id == MSG_TESTFINISH) test_finish_ = true; } void OnTurnPortComplete(Port* port) { turn_ready_ = true; } void OnTurnPortError(Port* port) { turn_error_ = true; } void OnTurnUnknownAddress(PortInterface* port, const SocketAddress& addr, cricket::ProtocolType proto, cricket::IceMessage* msg, const std::string& rf, bool /*port_muxed*/) { turn_unknown_address_ = true; } void OnTurnCreatePermissionResult(TurnPort* port, const SocketAddress& addr, int code) { // Ignoring the address. if (code == 0) { turn_create_permission_success_ = true; } } void OnTurnReadPacket(Connection* conn, const char* data, size_t size, const rtc::PacketTime& packet_time) { turn_packets_.push_back(rtc::Buffer(data, size)); } void OnUdpPortComplete(Port* port) { udp_ready_ = true; } void OnUdpReadPacket(Connection* conn, const char* data, size_t size, const rtc::PacketTime& packet_time) { udp_packets_.push_back(rtc::Buffer(data, size)); } void OnSocketReadPacket(rtc::AsyncPacketSocket* socket, const char* data, size_t size, const rtc::SocketAddress& remote_addr, const rtc::PacketTime& packet_time) { turn_port_->HandleIncomingPacket(socket, data, size, remote_addr, packet_time); } rtc::AsyncSocket* CreateServerSocket(const SocketAddress addr) { rtc::AsyncSocket* socket = ss_->CreateAsyncSocket(SOCK_STREAM); EXPECT_GE(socket->Bind(addr), 0); EXPECT_GE(socket->Listen(5), 0); return socket; } void CreateTurnPort(const std::string& username, const std::string& password, const cricket::ProtocolAddress& server_address) { CreateTurnPort(kLocalAddr1, username, password, server_address); } void CreateTurnPort(const rtc::SocketAddress& local_address, const std::string& username, const std::string& password, const cricket::ProtocolAddress& server_address) { cricket::RelayCredentials credentials(username, password); turn_port_.reset(TurnPort::Create(main_, &socket_factory_, &network_, local_address.ipaddr(), 0, 0, kIceUfrag1, kIcePwd1, server_address, credentials, 0)); // Set ICE protocol type to ICEPROTO_RFC5245, as port by default will be // in Hybrid mode. Protocol type is necessary to send correct type STUN ping // messages. // This TURN port will be the controlling. turn_port_->SetIceProtocolType(cricket::ICEPROTO_RFC5245); turn_port_->SetIceRole(cricket::ICEROLE_CONTROLLING); ConnectSignals(); } void CreateSharedTurnPort(const std::string& username, const std::string& password, const cricket::ProtocolAddress& server_address) { ASSERT(server_address.proto == cricket::PROTO_UDP); if (!socket_) { socket_.reset(socket_factory_.CreateUdpSocket( rtc::SocketAddress(kLocalAddr1.ipaddr(), 0), 0, 0)); ASSERT_TRUE(socket_ != NULL); socket_->SignalReadPacket.connect( this, &TurnPortTest::OnSocketReadPacket); } cricket::RelayCredentials credentials(username, password); turn_port_.reset(cricket::TurnPort::Create( main_, &socket_factory_, &network_, socket_.get(), kIceUfrag1, kIcePwd1, server_address, credentials, 0)); // Set ICE protocol type to ICEPROTO_RFC5245, as port by default will be // in Hybrid mode. Protocol type is necessary to send correct type STUN ping // messages. // This TURN port will be the controlling. turn_port_->SetIceProtocolType(cricket::ICEPROTO_RFC5245); turn_port_->SetIceRole(cricket::ICEROLE_CONTROLLING); ConnectSignals(); } void ConnectSignals() { turn_port_->SignalPortComplete.connect(this, &TurnPortTest::OnTurnPortComplete); turn_port_->SignalPortError.connect(this, &TurnPortTest::OnTurnPortError); turn_port_->SignalUnknownAddress.connect(this, &TurnPortTest::OnTurnUnknownAddress); turn_port_->SignalCreatePermissionResult.connect(this, &TurnPortTest::OnTurnCreatePermissionResult); } void CreateUdpPort() { udp_port_.reset(UDPPort::Create(main_, &socket_factory_, &network_, kLocalAddr2.ipaddr(), 0, 0, kIceUfrag2, kIcePwd2)); // Set protocol type to RFC5245, as turn port is also in same mode. // UDP port will be controlled. udp_port_->SetIceProtocolType(cricket::ICEPROTO_RFC5245); udp_port_->SetIceRole(cricket::ICEROLE_CONTROLLED); udp_port_->SignalPortComplete.connect( this, &TurnPortTest::OnUdpPortComplete); } void TestTurnConnection() { // Create ports and prepare addresses. ASSERT_TRUE(turn_port_ != NULL); turn_port_->PrepareAddress(); ASSERT_TRUE_WAIT(turn_ready_, kTimeout); CreateUdpPort(); udp_port_->PrepareAddress(); ASSERT_TRUE_WAIT(udp_ready_, kTimeout); // Send ping from UDP to TURN. Connection* conn1 = udp_port_->CreateConnection( turn_port_->Candidates()[0], Port::ORIGIN_MESSAGE); ASSERT_TRUE(conn1 != NULL); conn1->Ping(0); WAIT(!turn_unknown_address_, kTimeout); EXPECT_FALSE(turn_unknown_address_); EXPECT_EQ(Connection::STATE_READ_INIT, conn1->read_state()); EXPECT_EQ(Connection::STATE_WRITE_INIT, conn1->write_state()); // Send ping from TURN to UDP. Connection* conn2 = turn_port_->CreateConnection( udp_port_->Candidates()[0], Port::ORIGIN_MESSAGE); ASSERT_TRUE(conn2 != NULL); ASSERT_TRUE_WAIT(turn_create_permission_success_, kTimeout); conn2->Ping(0); EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, conn2->write_state(), kTimeout); EXPECT_EQ(Connection::STATE_READABLE, conn1->read_state()); EXPECT_EQ(Connection::STATE_READ_INIT, conn2->read_state()); EXPECT_EQ(Connection::STATE_WRITE_INIT, conn1->write_state()); // Send another ping from UDP to TURN. conn1->Ping(0); EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, conn1->write_state(), kTimeout); EXPECT_EQ(Connection::STATE_READABLE, conn2->read_state()); } void TestTurnSendData() { turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_ready_, kTimeout); CreateUdpPort(); udp_port_->PrepareAddress(); EXPECT_TRUE_WAIT(udp_ready_, kTimeout); // Create connections and send pings. Connection* conn1 = turn_port_->CreateConnection( udp_port_->Candidates()[0], Port::ORIGIN_MESSAGE); Connection* conn2 = udp_port_->CreateConnection( turn_port_->Candidates()[0], Port::ORIGIN_MESSAGE); ASSERT_TRUE(conn1 != NULL); ASSERT_TRUE(conn2 != NULL); conn1->SignalReadPacket.connect(static_cast<TurnPortTest*>(this), &TurnPortTest::OnTurnReadPacket); conn2->SignalReadPacket.connect(static_cast<TurnPortTest*>(this), &TurnPortTest::OnUdpReadPacket); conn1->Ping(0); EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, conn1->write_state(), kTimeout); conn2->Ping(0); EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, conn2->write_state(), kTimeout); // Send some data. size_t num_packets = 256; for (size_t i = 0; i < num_packets; ++i) { unsigned char buf[256] = { 0 }; for (size_t j = 0; j < i + 1; ++j) { buf[j] = 0xFF - static_cast<unsigned char>(j); } conn1->Send(buf, i + 1, options); conn2->Send(buf, i + 1, options); main_->ProcessMessages(0); } // Check the data. ASSERT_EQ_WAIT(num_packets, turn_packets_.size(), kTimeout); ASSERT_EQ_WAIT(num_packets, udp_packets_.size(), kTimeout); for (size_t i = 0; i < num_packets; ++i) { EXPECT_EQ(i + 1, turn_packets_[i].length()); EXPECT_EQ(i + 1, udp_packets_[i].length()); EXPECT_EQ(turn_packets_[i], udp_packets_[i]); } } protected: rtc::Thread* main_; rtc::scoped_ptr<rtc::PhysicalSocketServer> pss_; rtc::scoped_ptr<rtc::VirtualSocketServer> ss_; rtc::SocketServerScope ss_scope_; rtc::Network network_; rtc::BasicPacketSocketFactory socket_factory_; rtc::scoped_ptr<rtc::AsyncPacketSocket> socket_; cricket::TestTurnServer turn_server_; rtc::scoped_ptr<TurnPort> turn_port_; rtc::scoped_ptr<UDPPort> udp_port_; bool turn_ready_; bool turn_error_; bool turn_unknown_address_; bool turn_create_permission_success_; bool udp_ready_; bool test_finish_; std::vector<rtc::Buffer> turn_packets_; std::vector<rtc::Buffer> udp_packets_; rtc::PacketOptions options; }; // Do a normal TURN allocation. TEST_F(TurnPortTest, TestTurnAllocate) { CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr); EXPECT_EQ(0, turn_port_->SetOption(rtc::Socket::OPT_SNDBUF, 10*1024)); turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_ready_, kTimeout); ASSERT_EQ(1U, turn_port_->Candidates().size()); EXPECT_EQ(kTurnUdpExtAddr.ipaddr(), turn_port_->Candidates()[0].address().ipaddr()); EXPECT_NE(0, turn_port_->Candidates()[0].address().port()); } // Testing a normal UDP allocation using TCP connection. TEST_F(TurnPortTest, TestTurnTcpAllocate) { turn_server_.AddInternalSocket(kTurnTcpIntAddr, cricket::PROTO_TCP); CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr); EXPECT_EQ(0, turn_port_->SetOption(rtc::Socket::OPT_SNDBUF, 10*1024)); turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_ready_, kTimeout); ASSERT_EQ(1U, turn_port_->Candidates().size()); EXPECT_EQ(kTurnUdpExtAddr.ipaddr(), turn_port_->Candidates()[0].address().ipaddr()); EXPECT_NE(0, turn_port_->Candidates()[0].address().port()); } // Testing turn port will attempt to create TCP socket on address resolution // failure. TEST_F(TurnPortTest, DISABLED_TestTurnTcpOnAddressResolveFailure) { turn_server_.AddInternalSocket(kTurnTcpIntAddr, cricket::PROTO_TCP); CreateTurnPort(kTurnUsername, kTurnPassword, cricket::ProtocolAddress( rtc::SocketAddress("www.webrtc-blah-blah.com", 3478), cricket::PROTO_TCP)); turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_error_, kTimeout); // As VSS doesn't provide a DNS resolution, name resolve will fail. TurnPort // will proceed in creating a TCP socket which will fail as there is no // server on the above domain and error will be set to SOCKET_ERROR. EXPECT_EQ(SOCKET_ERROR, turn_port_->error()); } // In case of UDP on address resolve failure, TurnPort will not create socket // and return allocate failure. TEST_F(TurnPortTest, DISABLED_TestTurnUdpOnAdressResolveFailure) { CreateTurnPort(kTurnUsername, kTurnPassword, cricket::ProtocolAddress( rtc::SocketAddress("www.webrtc-blah-blah.com", 3478), cricket::PROTO_UDP)); turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_error_, kTimeout); // Error from turn port will not be socket error. EXPECT_NE(SOCKET_ERROR, turn_port_->error()); } // Try to do a TURN allocation with an invalid password. TEST_F(TurnPortTest, TestTurnAllocateBadPassword) { CreateTurnPort(kTurnUsername, "bad", kTurnUdpProtoAddr); turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_error_, kTimeout); ASSERT_EQ(0U, turn_port_->Candidates().size()); } // Tests that a new local address is created after // STUN_ERROR_ALLOCATION_MISMATCH. TEST_F(TurnPortTest, TestTurnAllocateMismatch) { // Do a normal allocation first. CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr); turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_ready_, kTimeout); rtc::SocketAddress first_addr(turn_port_->socket()->GetLocalAddress()); // Forces the socket server to assign the same port. ss_->SetNextPortForTesting(first_addr.port()); turn_ready_ = false; CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr); turn_port_->PrepareAddress(); // Verifies that the new port has the same address. EXPECT_EQ(first_addr, turn_port_->socket()->GetLocalAddress()); EXPECT_TRUE_WAIT(turn_ready_, kTimeout); // Verifies that the new port has a different address now. EXPECT_NE(first_addr, turn_port_->socket()->GetLocalAddress()); } // Tests that a shared-socket-TurnPort creates its own socket after // STUN_ERROR_ALLOCATION_MISMATCH. TEST_F(TurnPortTest, TestSharedSocketAllocateMismatch) { // Do a normal allocation first. CreateSharedTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr); turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_ready_, kTimeout); rtc::SocketAddress first_addr(turn_port_->socket()->GetLocalAddress()); turn_ready_ = false; CreateSharedTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr); // Verifies that the new port has the same address. EXPECT_EQ(first_addr, turn_port_->socket()->GetLocalAddress()); EXPECT_TRUE(turn_port_->SharedSocket()); turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_ready_, kTimeout); // Verifies that the new port has a different address now. EXPECT_NE(first_addr, turn_port_->socket()->GetLocalAddress()); EXPECT_FALSE(turn_port_->SharedSocket()); } TEST_F(TurnPortTest, TestTurnTcpAllocateMismatch) { turn_server_.AddInternalSocket(kTurnTcpIntAddr, cricket::PROTO_TCP); CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr); // Do a normal allocation first. turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_ready_, kTimeout); rtc::SocketAddress first_addr(turn_port_->socket()->GetLocalAddress()); // Forces the socket server to assign the same port. ss_->SetNextPortForTesting(first_addr.port()); turn_ready_ = false; CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr); turn_port_->PrepareAddress(); // Verifies that the new port has the same address. EXPECT_EQ(first_addr, turn_port_->socket()->GetLocalAddress()); EXPECT_TRUE_WAIT(turn_ready_, kTimeout); // Verifies that the new port has a different address now. EXPECT_NE(first_addr, turn_port_->socket()->GetLocalAddress()); } // Do a TURN allocation and try to send a packet to it from the outside. // The packet should be dropped. Then, try to send a packet from TURN to the // outside. It should reach its destination. Finally, try again from the // outside. It should now work as well. TEST_F(TurnPortTest, TestTurnConnection) { CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr); TestTurnConnection(); } // Similar to above, except that this test will use the shared socket. TEST_F(TurnPortTest, TestTurnConnectionUsingSharedSocket) { CreateSharedTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr); TestTurnConnection(); } // Test that we can establish a TCP connection with TURN server. TEST_F(TurnPortTest, TestTurnTcpConnection) { turn_server_.AddInternalSocket(kTurnTcpIntAddr, cricket::PROTO_TCP); CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr); TestTurnConnection(); } // Test that we fail to create a connection when we want to use TLS over TCP. // This test should be removed once we have TLS support. TEST_F(TurnPortTest, TestTurnTlsTcpConnectionFails) { cricket::ProtocolAddress secure_addr(kTurnTcpProtoAddr.address, kTurnTcpProtoAddr.proto, true); CreateTurnPort(kTurnUsername, kTurnPassword, secure_addr); turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_error_, kTimeout); ASSERT_EQ(0U, turn_port_->Candidates().size()); } // Test try-alternate-server feature. TEST_F(TurnPortTest, TestTurnAlternateServer) { std::vector<rtc::SocketAddress> redirect_addresses; redirect_addresses.push_back(kTurnAlternateUdpIntAddr); cricket::TestTurnRedirector redirector(redirect_addresses); turn_server_.AddInternalSocket(kTurnAlternateUdpIntAddr, cricket::PROTO_UDP); turn_server_.set_redirect_hook(&redirector); CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr); // Retrieve the address before we run the state machine. const SocketAddress old_addr = turn_port_->server_address().address; turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_ready_, kTimeout); // Retrieve the address again, the turn port's address should be // changed. const SocketAddress new_addr = turn_port_->server_address().address; EXPECT_NE(old_addr, new_addr); ASSERT_EQ(1U, turn_port_->Candidates().size()); EXPECT_EQ(kTurnUdpExtAddr.ipaddr(), turn_port_->Candidates()[0].address().ipaddr()); EXPECT_NE(0, turn_port_->Candidates()[0].address().port()); } // Test that we fail when we redirect to an address different from // current IP family. TEST_F(TurnPortTest, TestTurnAlternateServerV4toV6) { std::vector<rtc::SocketAddress> redirect_addresses; redirect_addresses.push_back(kTurnUdpIPv6IntAddr); cricket::TestTurnRedirector redirector(redirect_addresses); turn_server_.AddInternalSocket(kTurnAlternateUdpIntAddr, cricket::PROTO_UDP); turn_server_.set_redirect_hook(&redirector); CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr); turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_error_, kTimeout); } // Test that we fail to handle alternate-server response over TCP protocol. TEST_F(TurnPortTest, TestTurnAlternateServerTcp) { std::vector<rtc::SocketAddress> redirect_addresses; redirect_addresses.push_back(kTurnAlternateUdpIntAddr); cricket::TestTurnRedirector redirector(redirect_addresses); turn_server_.set_redirect_hook(&redirector); turn_server_.AddInternalSocket(kTurnTcpIntAddr, cricket::PROTO_TCP); CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr); turn_server_.AddInternalSocket(kTurnAlternateUdpIntAddr, cricket::PROTO_TCP); turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_error_, kTimeout); } // Test try-alternate-server catches the case of pingpong. TEST_F(TurnPortTest, TestTurnAlternateServerPingPong) { std::vector<rtc::SocketAddress> redirect_addresses; redirect_addresses.push_back(kTurnAlternateUdpIntAddr); redirect_addresses.push_back(kTurnUdpIntAddr); cricket::TestTurnRedirector redirector(redirect_addresses); turn_server_.AddInternalSocket(kTurnAlternateUdpIntAddr, cricket::PROTO_UDP); turn_server_.set_redirect_hook(&redirector); CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr); turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_error_, kTimeout); ASSERT_EQ(0U, turn_port_->Candidates().size()); rtc::SocketAddress address; // Verify that we have exhausted all alternate servers instead of // failure caused by other errors. EXPECT_FALSE(redirector.ShouldRedirect(address, &address)); } // Test try-alternate-server catch the case of repeated server. TEST_F(TurnPortTest, TestTurnAlternateServerDetectRepetition) { std::vector<rtc::SocketAddress> redirect_addresses; redirect_addresses.push_back(kTurnAlternateUdpIntAddr); redirect_addresses.push_back(kTurnAlternateUdpIntAddr); cricket::TestTurnRedirector redirector(redirect_addresses); turn_server_.AddInternalSocket(kTurnAlternateUdpIntAddr, cricket::PROTO_UDP); turn_server_.set_redirect_hook(&redirector); CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr); turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_error_, kTimeout); ASSERT_EQ(0U, turn_port_->Candidates().size()); } // Run TurnConnectionTest with one-time-use nonce feature. // Here server will send a 438 STALE_NONCE error message for // every TURN transaction. TEST_F(TurnPortTest, TestTurnConnectionUsingOTUNonce) { turn_server_.set_enable_otu_nonce(true); CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr); TestTurnConnection(); } // Do a TURN allocation, establish a UDP connection, and send some data. TEST_F(TurnPortTest, TestTurnSendDataTurnUdpToUdp) { // Create ports and prepare addresses. CreateTurnPort(kTurnUsername, kTurnPassword, kTurnUdpProtoAddr); TestTurnSendData(); } // Do a TURN allocation, establish a TCP connection, and send some data. TEST_F(TurnPortTest, TestTurnSendDataTurnTcpToUdp) { turn_server_.AddInternalSocket(kTurnTcpIntAddr, cricket::PROTO_TCP); // Create ports and prepare addresses. CreateTurnPort(kTurnUsername, kTurnPassword, kTurnTcpProtoAddr); TestTurnSendData(); } // Test TURN fails to make a connection from IPv6 address to a server which has // IPv4 address. TEST_F(TurnPortTest, TestTurnLocalIPv6AddressServerIPv4) { turn_server_.AddInternalSocket(kTurnUdpIPv6IntAddr, cricket::PROTO_UDP); CreateTurnPort(kLocalIPv6Addr, kTurnUsername, kTurnPassword, kTurnUdpProtoAddr); turn_port_->PrepareAddress(); ASSERT_TRUE_WAIT(turn_error_, kTimeout); EXPECT_TRUE(turn_port_->Candidates().empty()); } // Test TURN make a connection from IPv6 address to a server which has // IPv6 intenal address. But in this test external address is a IPv4 address, // hence allocated address will be a IPv4 address. TEST_F(TurnPortTest, TestTurnLocalIPv6AddressServerIPv6ExtenalIPv4) { turn_server_.AddInternalSocket(kTurnUdpIPv6IntAddr, cricket::PROTO_UDP); CreateTurnPort(kLocalIPv6Addr, kTurnUsername, kTurnPassword, kTurnUdpIPv6ProtoAddr); turn_port_->PrepareAddress(); EXPECT_TRUE_WAIT(turn_ready_, kTimeout); ASSERT_EQ(1U, turn_port_->Candidates().size()); EXPECT_EQ(kTurnUdpExtAddr.ipaddr(), turn_port_->Candidates()[0].address().ipaddr()); EXPECT_NE(0, turn_port_->Candidates()[0].address().port()); } // This test verifies any FD's are not leaked after TurnPort is destroyed. // https://code.google.com/p/webrtc/issues/detail?id=2651 #if defined(LINUX) TEST_F(TurnPortTest, TestResolverShutdown) { turn_server_.AddInternalSocket(kTurnUdpIPv6IntAddr, cricket::PROTO_UDP); int last_fd_count = GetFDCount(); // Need to supply unresolved address to kick off resolver. CreateTurnPort(kLocalIPv6Addr, kTurnUsername, kTurnPassword, cricket::ProtocolAddress(rtc::SocketAddress( "stun.l.google.com", 3478), cricket::PROTO_UDP)); turn_port_->PrepareAddress(); ASSERT_TRUE_WAIT(turn_error_, kTimeout); EXPECT_TRUE(turn_port_->Candidates().empty()); turn_port_.reset(); rtc::Thread::Current()->Post(this, MSG_TESTFINISH); // Waiting for above message to be processed. ASSERT_TRUE_WAIT(test_finish_, kTimeout); EXPECT_EQ(last_fd_count, GetFDCount()); } #endif