Refactor Remote Estimators Test into a more reusable form.

BUG=
R=andresp@webrtc.org, mflodman@webrtc.org, stefan@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/4359004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@5186 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
solenberg@webrtc.org 2013-11-28 10:11:35 +00:00
parent 82eb3a690e
commit c8f76ddc19
9 changed files with 1301 additions and 978 deletions

View File

@ -184,6 +184,8 @@
'remote_bitrate_estimator/test/bwe_test_framework_unittest.cc',
'remote_bitrate_estimator/test/bwe_test_logging.cc',
'remote_bitrate_estimator/test/bwe_test_logging.h',
'remote_bitrate_estimator/test/bwe_test.cc',
'remote_bitrate_estimator/test/bwe_test.h',
'rtp_rtcp/source/mock/mock_rtp_payload_strategy.h',
'rtp_rtcp/source/fec_receiver_unittest.cc',
'rtp_rtcp/source/fec_test_helper.cc',

View File

@ -8,444 +8,225 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include "gtest/gtest.h"
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_framework.h"
#include "webrtc/modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/constructor_magic.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
#define ENABLE_1_SENDER 1
#define ENABLE_3_SENDERS 1
#define ENABLE_10_SENDERS 1
#define ENABLE_BASIC_TESTS 1
#define ENABLE_LOSS_TESTS 0
#define ENABLE_DELAY_TESTS 0
#define ENABLE_JITTER_TESTS 0
#define ENABLE_REORDER_TESTS 0
#define ENABLE_CHOKE_TESTS 0
#define ENABLE_MULTI_TESTS 0
#define ENABLE_TOF_ESTIMATOR 1
#define ENABLE_AST_ESTIMATOR 1
using std::vector;
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test.h"
namespace webrtc {
namespace testing {
namespace bwe {
const int64_t kSimulationIntervalMs = 1000;
std::vector<const PacketSenderFactory*> VideoSenderFactories(uint32_t count) {
class VideoPacketSenderFactory : public PacketSenderFactory {
public:
VideoPacketSenderFactory(float fps, uint32_t kbps, uint32_t ssrc,
float frame_offset)
: fps_(fps),
kbps_(kbps),
ssrc_(ssrc),
frame_offset_(frame_offset) {
}
virtual ~VideoPacketSenderFactory() {}
virtual PacketSender* Create() const {
return new VideoSender(NULL, fps_, kbps_, ssrc_, frame_offset_);
}
private:
float fps_;
uint32_t kbps_;
uint32_t ssrc_;
float frame_offset_;
};
namespace stl_helpers {
template<typename T> void DeleteElements(T* container) {
if (!container) return;
for (typename T::iterator it = container->begin(); it != container->end();
++it) {
delete *it;
static const VideoPacketSenderFactory factories[] = {
VideoPacketSenderFactory(30.00f, 150, 0x1234, 0.13f),
VideoPacketSenderFactory(15.00f, 500, 0x2345, 0.16f),
VideoPacketSenderFactory(30.00f, 1200, 0x3456, 0.26f),
VideoPacketSenderFactory(7.49f, 150, 0x4567, 0.05f),
VideoPacketSenderFactory(7.50f, 150, 0x5678, 0.15f),
VideoPacketSenderFactory(7.51f, 150, 0x6789, 0.25f),
VideoPacketSenderFactory(15.02f, 150, 0x7890, 0.27f),
VideoPacketSenderFactory(15.03f, 150, 0x8901, 0.38f),
VideoPacketSenderFactory(30.02f, 150, 0x9012, 0.39f),
VideoPacketSenderFactory(30.03f, 150, 0x0123, 0.52f)
};
assert(count <= sizeof(factories) / sizeof(factories[0]));
std::vector<const PacketSenderFactory*> result;
for (uint32_t i = 0; i < count; ++i) {
result.push_back(&factories[i]);
}
container->clear();
return result;
}
} // namespace stl_helpers
class TestedEstimator : public RemoteBitrateObserver {
public:
TestedEstimator(const std::string& debug_name,
const RemoteBitrateEstimatorFactory& factory)
: debug_name_(debug_name),
clock_(0),
stats_(),
relative_estimator_stats_(),
latest_estimate_kbps_(-1.0),
estimator_(factory.Create(this, &clock_)),
relative_estimator_(NULL) {
assert(estimator_.get());
// Default RTT in RemoteRateControl is 200 ms ; 50 ms is more realistic.
estimator_->OnRttUpdate(50);
std::vector<BweTestConfig::EstimatorConfig> EstimatorConfigs() {
static const RemoteBitrateEstimatorFactory factories[] = {
RemoteBitrateEstimatorFactory(),
AbsoluteSendTimeRemoteBitrateEstimatorFactory()
};
std::vector<BweTestConfig::EstimatorConfig> result;
result.push_back(BweTestConfig::EstimatorConfig("TOF", &factories[0]));
result.push_back(BweTestConfig::EstimatorConfig("AST", &factories[1]));
return result;
}
BweTestConfig MakeBweTestConfig(uint32_t sender_count) {
BweTestConfig result = {
VideoSenderFactories(sender_count), EstimatorConfigs()
};
return result;
}
INSTANTIATE_TEST_CASE_P(VideoSendersTest, BweTest,
::testing::Values(MakeBweTestConfig(1),
MakeBweTestConfig(3)));
TEST_P(BweTest, UnlimitedSpeed) {
VerboseLogging(false);
RunFor(10 * 60 * 1000);
}
TEST_P(BweTest, SteadyLoss) {
LossFilter loss(this);
loss.SetLoss(20.0);
RunFor(10 * 60 * 1000);
}
TEST_P(BweTest, IncreasingLoss1) {
LossFilter loss(this);
for (int i = 0; i < 76; ++i) {
loss.SetLoss(i);
RunFor(5000);
}
}
void SetRelativeEstimator(TestedEstimator* relative_estimator) {
relative_estimator_ = relative_estimator;
TEST_P(BweTest, SteadyDelay) {
DelayFilter delay(this);
delay.SetDelay(1000);
RunFor(10 * 60 * 1000);
}
TEST_P(BweTest, IncreasingDelay1) {
DelayFilter delay(this);
RunFor(10 * 60 * 1000);
for (int i = 0; i < 30 * 2; ++i) {
delay.SetDelay(i);
RunFor(10 * 1000);
}
RunFor(10 * 60 * 1000);
}
void EatPacket(const BwePacket& packet) {
BWE_TEST_LOGGING_CONTEXT(debug_name_);
latest_estimate_kbps_ = -1.0;
// We're treating the send time (from previous filter) as the arrival
// time once packet reaches the estimator.
int64_t packet_time_ms = (packet.send_time_us() + 500) / 1000;
BWE_TEST_LOGGING_TIME(packet_time_ms);
int64_t step_ms = estimator_->TimeUntilNextProcess();
while ((clock_.TimeInMilliseconds() + step_ms) < packet_time_ms) {
clock_.AdvanceTimeMilliseconds(step_ms);
estimator_->Process();
step_ms = estimator_->TimeUntilNextProcess();
}
estimator_->IncomingPacket(packet_time_ms, packet.payload_size(),
packet.header());
clock_.AdvanceTimeMilliseconds(packet_time_ms -
clock_.TimeInMilliseconds());
ASSERT_TRUE(packet_time_ms == clock_.TimeInMilliseconds());
TEST_P(BweTest, IncreasingDelay2) {
DelayFilter delay(this);
RateCounterFilter counter(this);
RunFor(1 * 60 * 1000);
for (int i = 1; i < 51; ++i) {
delay.SetDelay(10.0f * i);
RunFor(10 * 1000);
}
delay.SetDelay(0.0f);
RunFor(10 * 60 * 1000);
}
void CheckEstimate() {
BWE_TEST_LOGGING_CONTEXT(debug_name_);
double estimated_kbps = 0.0;
if (LatestEstimate(&estimated_kbps)) {
stats_.Push(estimated_kbps);
BWE_TEST_LOGGING_PLOT("Estimate", clock_.TimeInMilliseconds(),
estimated_kbps / 100);
double relative_estimate_kbps = 0.0;
if (relative_estimator_ &&
relative_estimator_->LatestEstimate(&relative_estimate_kbps)) {
relative_estimator_stats_.Push(estimated_kbps - relative_estimate_kbps);
}
}
TEST_P(BweTest, JumpyDelay1) {
DelayFilter delay(this);
RunFor(10 * 60 * 1000);
for (int i = 1; i < 200; ++i) {
delay.SetDelay((10 * i) % 500);
RunFor(1000);
delay.SetDelay(1.0f);
RunFor(1000);
}
delay.SetDelay(0.0f);
RunFor(10 * 60 * 1000);
}
void LogStats() {
BWE_TEST_LOGGING_CONTEXT(debug_name_);
BWE_TEST_LOGGING_CONTEXT("Mean");
stats_.Log("kbps");
if (relative_estimator_) {
BWE_TEST_LOGGING_CONTEXT("Diff");
relative_estimator_stats_.Log("kbps");
}
TEST_P(BweTest, SteadyJitter) {
JitterFilter jitter(this);
RateCounterFilter counter(this);
jitter.SetJitter(20);
RunFor(2 * 60 * 1000);
}
TEST_P(BweTest, IncreasingJitter1) {
JitterFilter jitter(this);
for (int i = 0; i < 2 * 60 * 2; ++i) {
jitter.SetJitter(i);
RunFor(10 * 1000);
}
RunFor(10 * 60 * 1000);
}
virtual void OnReceiveBitrateChanged(const vector<unsigned int>& ssrcs,
unsigned int bitrate) {
TEST_P(BweTest, IncreasingJitter2) {
JitterFilter jitter(this);
RunFor(30 * 1000);
for (int i = 1; i < 51; ++i) {
jitter.SetJitter(10.0f * i);
RunFor(10 * 1000);
}
jitter.SetJitter(0.0f);
RunFor(10 * 60 * 1000);
}
private:
bool LatestEstimate(double* estimate_kbps) {
if (latest_estimate_kbps_ < 0.0) {
vector<unsigned int> ssrcs;
unsigned int bps = 0;
if (!estimator_->LatestEstimate(&ssrcs, &bps)) {
return false;
}
latest_estimate_kbps_ = bps / 1000.0;
}
*estimate_kbps = latest_estimate_kbps_;
return true;
TEST_P(BweTest, SteadyReorder) {
ReorderFilter reorder(this);
reorder.SetReorder(20.0);
RunFor(10 * 60 * 1000);
}
TEST_P(BweTest, IncreasingReorder1) {
ReorderFilter reorder(this);
for (int i = 0; i < 76; ++i) {
reorder.SetReorder(i);
RunFor(5000);
}
}
std::string debug_name_;
bool log_estimates_;
SimulatedClock clock_;
Stats<double> stats_;
Stats<double> relative_estimator_stats_;
double latest_estimate_kbps_;
scoped_ptr<RemoteBitrateEstimator> estimator_;
TestedEstimator* relative_estimator_;
TEST_P(BweTest, SteadyChoke) {
ChokeFilter choke(this);
choke.SetCapacity(140);
RunFor(10 * 60 * 1000);
}
DISALLOW_IMPLICIT_CONSTRUCTORS(TestedEstimator);
};
class RemoteBitrateEstimatorsTest : public ::testing::Test {
public:
RemoteBitrateEstimatorsTest()
: run_time_ms_(0),
estimators_(),
previous_packets_(),
processors_(),
video_senders_() {
}
virtual ~RemoteBitrateEstimatorsTest() {
stl_helpers::DeleteElements(&estimators_);
stl_helpers::DeleteElements(&video_senders_);
TEST_P(BweTest, IncreasingChoke1) {
ChokeFilter choke(this);
for (int i = 1200; i >= 100; i -= 100) {
choke.SetCapacity(i);
RunFor(5000);
}
}
virtual void SetUp() {
#if ENABLE_TOF_ESTIMATOR
estimators_.push_back(new TestedEstimator("TOF",
RemoteBitrateEstimatorFactory()));
#endif
#if ENABLE_AST_ESTIMATOR
estimators_.push_back(new TestedEstimator("AST",
AbsoluteSendTimeRemoteBitrateEstimatorFactory()));
#endif
// Set all estimators as relative to the first one.
for (uint32_t i = 1; i < estimators_.size(); ++i) {
estimators_[i]->SetRelativeEstimator(estimators_[0]);
}
TEST_P(BweTest, IncreasingChoke2) {
ChokeFilter choke(this);
RunFor(60 * 1000);
for (int i = 1200; i >= 100; i -= 20) {
choke.SetCapacity(i);
RunFor(1000);
}
}
protected:
void RunFor(int64_t time_ms) {
for (run_time_ms_ += time_ms; run_time_ms_ >= kSimulationIntervalMs;
run_time_ms_ -= kSimulationIntervalMs) {
Packets packets;
for (vector<PacketProcessorInterface*>::const_iterator it =
processors_.begin(); it != processors_.end(); ++it) {
(*it)->RunFor(kSimulationIntervalMs, &packets);
}
// Verify packets are in order between batches.
if (!packets.empty() && !previous_packets_.empty()) {
packets.splice(packets.begin(), previous_packets_,
--previous_packets_.end());
ASSERT_TRUE(IsTimeSorted(packets));
packets.erase(packets.begin());
} else {
ASSERT_TRUE(IsTimeSorted(packets));
}
for (PacketsConstIt pit = packets.begin(); pit != packets.end(); ++pit) {
for (vector<TestedEstimator*>::iterator eit = estimators_.begin();
eit != estimators_.end(); ++eit) {
(*eit)->EatPacket(*pit);
}
}
previous_packets_.swap(packets);
for (vector<TestedEstimator*>::iterator eit = estimators_.begin();
eit != estimators_.end(); ++eit) {
(*eit)->CheckEstimate();
}
}
}
void AddVideoSenders(uint32_t count) {
struct { float fps; uint32_t kbps; uint32_t ssrc; float frame_offset; }
configs[] = {
{ 30.00f, 150, 0x1234, 0.13f },
{ 15.00f, 500, 0x2345, 0.16f },
{ 30.00f, 1200, 0x3456, 0.26f },
{ 7.49f, 150, 0x4567, 0.05f },
{ 7.50f, 150, 0x5678, 0.15f },
{ 7.51f, 150, 0x6789, 0.25f },
{ 15.02f, 150, 0x7890, 0.27f },
{ 15.03f, 150, 0x8901, 0.38f },
{ 30.02f, 150, 0x9012, 0.39f },
{ 30.03f, 150, 0x0123, 0.52f }
};
assert(count <= sizeof(configs) / sizeof(configs[0]));
uint32_t total_capacity = 0;
for (uint32_t i = 0; i < count; ++i) {
video_senders_.push_back(new VideoSender(configs[i].fps, configs[i].kbps,
configs[i].ssrc, configs[i].frame_offset));
processors_.push_back(video_senders_.back());
total_capacity += configs[i].kbps;
}
BWE_TEST_LOGGING_LOG1("RequiredLinkCapacity", "%d kbps", total_capacity)
}
void LogStats() {
for (vector<TestedEstimator*>::iterator eit = estimators_.begin();
eit != estimators_.end(); ++eit) {
(*eit)->LogStats();
}
}
void UnlimitedSpeedTest() {
RunFor(10 * 60 * 1000);
}
void SteadyLossTest() {
LossFilter loss;
processors_.push_back(&loss);
loss.SetLoss(20.0);
RunFor(10 * 60 * 1000);
}
void IncreasingLoss1Test() {
LossFilter loss;
processors_.push_back(&loss);
for (int i = 0; i < 76; ++i) {
loss.SetLoss(i);
RunFor(5000);
}
}
void SteadyDelayTest() {
DelayFilter delay;
processors_.push_back(&delay);
delay.SetDelay(1000);
RunFor(10 * 60 * 1000);
}
void IncreasingDelay1Test() {
DelayFilter delay;
processors_.push_back(&delay);
RunFor(10 * 60 * 1000);
for (int i = 0; i < 30 * 2; ++i) {
delay.SetDelay(i);
RunFor(10 * 1000);
}
RunFor(10 * 60 * 1000);
}
void IncreasingDelay2Test() {
DelayFilter delay;
RateCounterFilter counter;
processors_.push_back(&delay);
processors_.push_back(&counter);
RunFor(1 * 60 * 1000);
for (int i = 1; i < 51; ++i) {
delay.SetDelay(10.0f * i);
RunFor(10 * 1000);
}
delay.SetDelay(0.0f);
RunFor(10 * 60 * 1000);
}
void JumpyDelay1Test() {
DelayFilter delay;
processors_.push_back(&delay);
RunFor(10 * 60 * 1000);
for (int i = 1; i < 200; ++i) {
delay.SetDelay((10 * i) % 500);
RunFor(1000);
delay.SetDelay(1.0f);
RunFor(1000);
}
delay.SetDelay(0.0f);
RunFor(10 * 60 * 1000);
}
void SteadyJitterTest() {
JitterFilter jitter;
RateCounterFilter counter;
processors_.push_back(&jitter);
processors_.push_back(&counter);
jitter.SetJitter(20);
RunFor(2 * 60 * 1000);
}
void IncreasingJitter1Test() {
JitterFilter jitter;
processors_.push_back(&jitter);
for (int i = 0; i < 2 * 60 * 2; ++i) {
jitter.SetJitter(i);
RunFor(10 * 1000);
}
RunFor(10 * 60 * 1000);
}
void IncreasingJitter2Test() {
JitterFilter jitter;
processors_.push_back(&jitter);
RunFor(30 * 1000);
for (int i = 1; i < 51; ++i) {
jitter.SetJitter(10.0f * i);
RunFor(10 * 1000);
}
jitter.SetJitter(0.0f);
RunFor(10 * 60 * 1000);
}
void SteadyReorderTest() {
ReorderFilter reorder;
processors_.push_back(&reorder);
reorder.SetReorder(20.0);
RunFor(10 * 60 * 1000);
}
void IncreasingReorder1Test() {
ReorderFilter reorder;
processors_.push_back(&reorder);
for (int i = 0; i < 76; ++i) {
reorder.SetReorder(i);
RunFor(5000);
}
}
void SteadyChokeTest() {
ChokeFilter choke;
processors_.push_back(&choke);
choke.SetCapacity(140);
RunFor(10 * 60 * 1000);
}
void IncreasingChoke1Test() {
ChokeFilter choke;
processors_.push_back(&choke);
for (int i = 1200; i >= 100; i -= 100) {
choke.SetCapacity(i);
RunFor(5000);
}
}
void IncreasingChoke2Test() {
ChokeFilter choke;
processors_.push_back(&choke);
RunFor(60 * 1000);
for (int i = 1200; i >= 100; i -= 20) {
choke.SetCapacity(i);
RunFor(1000);
}
}
void Multi1Test() {
DelayFilter delay;
ChokeFilter choke;
RateCounterFilter counter;
processors_.push_back(&delay);
processors_.push_back(&choke);
processors_.push_back(&counter);
choke.SetCapacity(1000);
RunFor(1 * 60 * 1000);
for (int i = 1; i < 51; ++i) {
delay.SetDelay(100.0f * i);
RunFor(10 * 1000);
}
delay.SetDelay(0.0f);
RunFor(5 * 60 * 1000);
}
void Multi2Test() {
ChokeFilter choke;
JitterFilter jitter;
RateCounterFilter counter;
processors_.push_back(&choke);
processors_.push_back(&jitter);
processors_.push_back(&counter);
choke.SetCapacity(2000);
jitter.SetJitter(120);
RunFor(5 * 60 * 1000);
}
private:
int64_t run_time_ms_;
vector<TestedEstimator*> estimators_;
Packets previous_packets_;
vector<PacketProcessorInterface*> processors_;
vector<VideoSender*> video_senders_;
DISALLOW_COPY_AND_ASSIGN(RemoteBitrateEstimatorsTest);
};
#define SINGLE_TEST(enabled, test_name, video_senders, log)\
TEST_F(RemoteBitrateEstimatorsTest, test_name##_##video_senders##Sender) {\
BWE_TEST_LOGGING_ENABLE(log);\
if (enabled) {\
BWE_TEST_LOGGING_CONTEXT(#test_name);\
AddVideoSenders(video_senders);\
test_name##Test();\
LogStats();\
}\
}
#define MULTI_TEST(enabled, test_name, log)\
SINGLE_TEST((enabled) && ENABLE_1_SENDER, test_name, 1, log)\
SINGLE_TEST((enabled) && ENABLE_3_SENDERS, test_name, 3, log)\
SINGLE_TEST((enabled) && ENABLE_10_SENDERS, test_name, 10, log)
MULTI_TEST(ENABLE_BASIC_TESTS, UnlimitedSpeed, true)
MULTI_TEST(ENABLE_LOSS_TESTS, SteadyLoss, true)
MULTI_TEST(ENABLE_LOSS_TESTS, IncreasingLoss1, true)
MULTI_TEST(ENABLE_DELAY_TESTS, SteadyDelay, true)
MULTI_TEST(ENABLE_DELAY_TESTS, IncreasingDelay1, true)
MULTI_TEST(ENABLE_DELAY_TESTS, IncreasingDelay2, true)
MULTI_TEST(ENABLE_DELAY_TESTS, JumpyDelay1, true)
MULTI_TEST(ENABLE_JITTER_TESTS, SteadyJitter, true)
MULTI_TEST(ENABLE_JITTER_TESTS, IncreasingJitter1, true)
MULTI_TEST(ENABLE_JITTER_TESTS, IncreasingJitter2, true)
MULTI_TEST(ENABLE_REORDER_TESTS, SteadyReorder, true)
MULTI_TEST(ENABLE_REORDER_TESTS, IncreasingReorder1, true)
MULTI_TEST(ENABLE_CHOKE_TESTS, SteadyChoke, true)
MULTI_TEST(ENABLE_CHOKE_TESTS, IncreasingChoke1, true)
MULTI_TEST(ENABLE_CHOKE_TESTS, IncreasingChoke2, true)
MULTI_TEST(ENABLE_MULTI_TESTS, Multi1, true)
MULTI_TEST(ENABLE_MULTI_TESTS, Multi2, true)
TEST_P(BweTest, Multi1) {
DelayFilter delay(this);
ChokeFilter choke(this);
RateCounterFilter counter(this);
choke.SetCapacity(1000);
RunFor(1 * 60 * 1000);
for (int i = 1; i < 51; ++i) {
delay.SetDelay(100.0f * i);
RunFor(10 * 1000);
}
RunFor(500 * 1000);
delay.SetDelay(0.0f);
RunFor(5 * 60 * 1000);
}
TEST_P(BweTest, Multi2) {
ChokeFilter choke(this);
JitterFilter jitter(this);
RateCounterFilter counter(this);
choke.SetCapacity(2000);
jitter.SetJitter(120);
RunFor(5 * 60 * 1000);
}
} // namespace bwe
} // namespace testing
} // namespace webrtc

View File

@ -0,0 +1,263 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test.h"
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_framework.h"
#include "webrtc/modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
using std::string;
using std::vector;
namespace webrtc {
namespace testing {
namespace bwe {
namespace stl_helpers {
template<typename T> void DeleteElements(T* container) {
if (!container) return;
for (typename T::iterator it = container->begin(); it != container->end();
++it) {
delete *it;
}
container->clear();
}
} // namespace stl_helpers
class BweTest::TestedEstimator : public RemoteBitrateObserver {
public:
explicit TestedEstimator(const BweTestConfig::EstimatorConfig& config)
: debug_name_(config.debug_name),
clock_(0),
stats_(),
relative_estimator_stats_(),
latest_estimate_kbps_(-1.0),
estimator_(config.estimator_factory->Create(this, &clock_)),
relative_estimator_(NULL) {
assert(estimator_.get());
// Default RTT in RemoteRateControl is 200 ms ; 50 ms is more realistic.
estimator_->OnRttUpdate(50);
}
void SetRelativeEstimator(TestedEstimator* relative_estimator) {
relative_estimator_ = relative_estimator;
}
void EatPacket(const Packet& packet) {
BWE_TEST_LOGGING_CONTEXT(debug_name_);
latest_estimate_kbps_ = -1.0;
// We're treating the send time (from previous filter) as the arrival
// time once packet reaches the estimator.
int64_t packet_time_ms = (packet.send_time_us() + 500) / 1000;
BWE_TEST_LOGGING_TIME(packet_time_ms);
int64_t step_ms = estimator_->TimeUntilNextProcess();
while ((clock_.TimeInMilliseconds() + step_ms) < packet_time_ms) {
clock_.AdvanceTimeMilliseconds(step_ms);
estimator_->Process();
step_ms = estimator_->TimeUntilNextProcess();
}
estimator_->IncomingPacket(packet_time_ms, packet.payload_size(),
packet.header());
clock_.AdvanceTimeMilliseconds(packet_time_ms -
clock_.TimeInMilliseconds());
ASSERT_TRUE(packet_time_ms == clock_.TimeInMilliseconds());
}
bool CheckEstimate(PacketSender::Feedback* feedback) {
assert(feedback);
BWE_TEST_LOGGING_CONTEXT(debug_name_);
double estimated_kbps = 0.0;
if (LatestEstimate(&estimated_kbps)) {
stats_.Push(estimated_kbps);
BWE_TEST_LOGGING_PLOT("Estimate", clock_.TimeInMilliseconds(),
estimated_kbps / 100);
double relative_estimate_kbps = 0.0;
if (relative_estimator_ &&
relative_estimator_->LatestEstimate(&relative_estimate_kbps)) {
relative_estimator_stats_.Push(estimated_kbps - relative_estimate_kbps);
}
feedback->estimated_kbps = estimated_kbps;
return true;
}
return false;
}
void LogStats() {
BWE_TEST_LOGGING_CONTEXT(debug_name_);
BWE_TEST_LOGGING_CONTEXT("Mean");
stats_.Log("kbps");
if (relative_estimator_) {
BWE_TEST_LOGGING_CONTEXT("Diff");
relative_estimator_stats_.Log("kbps");
}
}
virtual void OnReceiveBitrateChanged(const vector<unsigned int>& ssrcs,
unsigned int bitrate) {
}
private:
bool LatestEstimate(double* estimate_kbps) {
if (latest_estimate_kbps_ < 0.0) {
vector<unsigned int> ssrcs;
unsigned int bps = 0;
if (!estimator_->LatestEstimate(&ssrcs, &bps)) {
return false;
}
latest_estimate_kbps_ = bps / 1000.0;
}
*estimate_kbps = latest_estimate_kbps_;
return true;
}
string debug_name_;
bool log_estimates_;
SimulatedClock clock_;
Stats<double> stats_;
Stats<double> relative_estimator_stats_;
double latest_estimate_kbps_;
scoped_ptr<RemoteBitrateEstimator> estimator_;
TestedEstimator* relative_estimator_;
DISALLOW_IMPLICIT_CONSTRUCTORS(TestedEstimator);
};
BweTest::BweTest()
: run_time_ms_(0),
simulation_interval_ms_(-1),
previous_packets_(),
packet_senders_(),
estimators_(),
processors_() {
}
BweTest::~BweTest() {
stl_helpers::DeleteElements(&estimators_);
stl_helpers::DeleteElements(&packet_senders_);
}
void BweTest::SetUp() {
BWE_TEST_LOGGING_GLOBAL_CONTEXT(::testing::UnitTest::GetInstance()->
current_test_info()->test_case_name());
const BweTestConfig& config = GetParam();
uint32_t total_capacity = 0;
for (vector<const PacketSenderFactory*>::const_iterator it =
config.sender_factories.begin(); it != config.sender_factories.end();
++it) {
PacketSender* sender = (*it)->Create();
assert(sender);
total_capacity += sender->GetCapacityKbps();
packet_senders_.push_back(sender);
processors_.push_back(sender);
}
BWE_TEST_LOGGING_LOG1("RequiredLinkCapacity", "%d kbps", total_capacity)
// Set simulation interval from first packet sender.
if (packet_senders_.size() > 0) {
simulation_interval_ms_ = packet_senders_[0]->GetFeedbackIntervalMs();
}
for (vector<BweTestConfig::EstimatorConfig>:: const_iterator it =
config.estimator_configs.begin(); it != config.estimator_configs.end();
++it) {
estimators_.push_back(new TestedEstimator(*it));
}
if (estimators_.size() > 1) {
// Set all estimators as relative to the first one.
for (uint32_t i = 1; i < estimators_.size(); ++i) {
estimators_[i]->SetRelativeEstimator(estimators_[0]);
}
}
BWE_TEST_LOGGING_GLOBAL_ENABLE(false);
}
void BweTest::TearDown() {
BWE_TEST_LOGGING_GLOBAL_ENABLE(true);
LogStats();
BWE_TEST_LOGGING_GLOBAL_CONTEXT("");
}
void BweTest::AddPacketProcessor(
PacketProcessor* processor) {
assert(processor);
processors_.push_back(processor);
}
void BweTest::RemovePacketProcessor(
PacketProcessor* processor) {
vector<PacketProcessor*>::iterator it =
std::find(processors_.begin(), processors_.end(), processor);
assert(it != processors_.end());
processors_.erase(it);
}
void BweTest::VerboseLogging(bool enable) {
BWE_TEST_LOGGING_GLOBAL_ENABLE(enable);
}
void BweTest::RunFor(int64_t time_ms) {
for (run_time_ms_ += time_ms; run_time_ms_ >= simulation_interval_ms_;
run_time_ms_ -= simulation_interval_ms_) {
Packets packets;
for (vector<PacketProcessor*>::const_iterator it =
processors_.begin(); it != processors_.end(); ++it) {
(*it)->RunFor(simulation_interval_ms_, &packets);
}
// Verify packets are in order between batches.
if (!packets.empty() && !previous_packets_.empty()) {
packets.splice(packets.begin(), previous_packets_,
--previous_packets_.end());
ASSERT_TRUE(IsTimeSorted(packets));
packets.erase(packets.begin());
} else {
ASSERT_TRUE(IsTimeSorted(packets));
}
for (PacketsConstIt pit = packets.begin(); pit != packets.end(); ++pit) {
for (vector<TestedEstimator*>::iterator eit = estimators_.begin();
eit != estimators_.end(); ++eit) {
(*eit)->EatPacket(*pit);
}
}
previous_packets_.swap(packets);
for (vector<TestedEstimator*>::iterator eit = estimators_.begin();
eit != estimators_.end(); ++eit) {
PacketSender::Feedback feedback = {0};
if ((*eit)->CheckEstimate(&feedback)) {
for (vector<PacketSender*>::iterator psit = packet_senders_.begin();
psit != packet_senders_.end(); ++psit) {
(*psit)->GiveFeedback(feedback);
}
}
}
}
}
void BweTest::LogStats() {
for (vector<TestedEstimator*>::iterator eit = estimators_.begin();
eit != estimators_.end(); ++eit) {
(*eit)->LogStats();
}
}
} // namespace bwe
} // namespace testing
} // namespace webrtc

View File

@ -0,0 +1,70 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "webrtc/modules/remote_bitrate_estimator/test/bwe_test_framework.h"
#include "webrtc/system_wrappers/interface/constructor_magic.h"
namespace webrtc {
struct RemoteBitrateEstimatorFactory;
namespace testing {
namespace bwe {
struct BweTestConfig {
struct EstimatorConfig {
EstimatorConfig() : debug_name(), estimator_factory(NULL) {}
EstimatorConfig(std::string debug_name,
const RemoteBitrateEstimatorFactory* estimator_factory)
: debug_name(debug_name),
estimator_factory(estimator_factory) {
}
std::string debug_name;
const RemoteBitrateEstimatorFactory* estimator_factory;
};
std::vector<const PacketSenderFactory*> sender_factories;
std::vector<EstimatorConfig> estimator_configs;
};
class BweTest : public ::testing::TestWithParam<BweTestConfig>,
public PacketProcessorListener {
public:
BweTest();
virtual ~BweTest();
virtual void SetUp();
virtual void TearDown();
virtual void AddPacketProcessor(PacketProcessor* processor);
virtual void RemovePacketProcessor(PacketProcessor* processor);
protected:
void VerboseLogging(bool enable);
void RunFor(int64_t time_ms);
void LogStats();
private:
class TestedEstimator;
int64_t run_time_ms_;
int64_t simulation_interval_ms_;
Packets previous_packets_;
std::vector<PacketSender*> packet_senders_;
std::vector<TestedEstimator*> estimators_;
std::vector<PacketProcessor*> processors_;
DISALLOW_COPY_AND_ASSIGN(BweTest);
};
} // namespace bwe
} // namespace testing
} // namespace webrtc

View File

@ -14,6 +14,62 @@ namespace webrtc {
namespace testing {
namespace bwe {
Random::Random(uint32_t seed)
: a_(0x531FDB97 ^ seed),
b_(0x6420ECA8 + seed) {
}
float Random::Rand() {
const float kScale = 1.0f / 0xffffffff;
float result = kScale * b_;
a_ ^= b_;
b_ += a_;
return result;
}
int Random::Gaussian(int mean, int standard_deviation) {
// Creating a Normal distribution variable from two independent uniform
// variables based on the Box-Muller transform, which is defined on the
// interval (0, 1], hence the mask+add below.
const double kPi = 3.14159265358979323846;
const double kScale = 1.0 / 0x80000000ul;
double u1 = kScale * ((a_ & 0x7ffffffful) + 1);
double u2 = kScale * ((b_ & 0x7ffffffful) + 1);
a_ ^= b_;
b_ += a_;
return static_cast<int>(mean + standard_deviation *
std::sqrt(-2 * std::log(u1)) * std::cos(2 * kPi * u2));
}
Packet::Packet()
: send_time_us_(0),
payload_size_(0) {
memset(&header_, 0, sizeof(header_));
}
Packet::Packet(int64_t send_time_us, uint32_t payload_size,
const RTPHeader& header)
: send_time_us_(send_time_us),
payload_size_(payload_size),
header_(header) {
}
Packet::Packet(int64_t send_time_us, uint32_t sequence_number)
: send_time_us_(send_time_us),
payload_size_(0) {
memset(&header_, 0, sizeof(header_));
header_.sequenceNumber = sequence_number;
}
bool Packet::operator<(const Packet& rhs) const {
return send_time_us_ < rhs.send_time_us_;
}
void Packet::set_send_time_us(int64_t send_time_us) {
assert(send_time_us >= 0);
send_time_us_ = send_time_us;
}
bool IsTimeSorted(const Packets& packets) {
PacketsConstIt last_it = packets.begin();
for (PacketsConstIt it = last_it; it != packets.end(); ++it) {
@ -24,6 +80,261 @@ bool IsTimeSorted(const Packets& packets) {
}
return true;
}
PacketProcessor::PacketProcessor(PacketProcessorListener* listener)
: listener_(listener) {
if (listener_) {
listener_->AddPacketProcessor(this);
}
}
PacketProcessor::~PacketProcessor() {
if (listener_) {
listener_->RemovePacketProcessor(this);
}
}
RateCounterFilter::RateCounterFilter(PacketProcessorListener* listener)
: PacketProcessor(listener),
kWindowSizeUs(1000000),
packets_per_second_(0),
bytes_per_second_(0),
last_accumulated_us_(0),
window_(),
pps_stats_(),
kbps_stats_() {
}
RateCounterFilter::~RateCounterFilter() {
LogStats();
}
void RateCounterFilter::LogStats() {
BWE_TEST_LOGGING_CONTEXT("RateCounterFilter");
pps_stats_.Log("pps");
kbps_stats_.Log("kbps");
}
void RateCounterFilter::RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsConstIt it = in_out->begin(); it != in_out->end(); ++it) {
packets_per_second_++;
bytes_per_second_ += it->payload_size();
last_accumulated_us_ = it->send_time_us();
}
window_.insert(window_.end(), in_out->begin(), in_out->end());
while (!window_.empty()) {
const Packet& packet = window_.front();
if (packet.send_time_us() > (last_accumulated_us_ - kWindowSizeUs)) {
break;
}
assert(packets_per_second_ >= 1);
assert(bytes_per_second_ >= packet.payload_size());
packets_per_second_--;
bytes_per_second_ -= packet.payload_size();
window_.pop_front();
}
pps_stats_.Push(packets_per_second_);
kbps_stats_.Push((bytes_per_second_ * 8) / 1000.0);
}
LossFilter::LossFilter(PacketProcessorListener* listener)
: PacketProcessor(listener),
random_(0x12345678),
loss_fraction_(0.0f) {
}
void LossFilter::SetLoss(float loss_percent) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Loss", "%f%%", loss_percent);
assert(loss_percent >= 0.0f);
assert(loss_percent <= 100.0f);
loss_fraction_ = loss_percent * 0.01f;
}
void LossFilter::RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end(); ) {
if (random_.Rand() < loss_fraction_) {
it = in_out->erase(it);
} else {
++it;
}
}
}
DelayFilter::DelayFilter(PacketProcessorListener* listener)
: PacketProcessor(listener),
delay_us_(0),
last_send_time_us_(0) {
}
void DelayFilter::SetDelay(int64_t delay_ms) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Delay", "%d ms", static_cast<int>(delay_ms));
assert(delay_ms >= 0);
delay_us_ = delay_ms * 1000;
}
void DelayFilter::RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end(); ++it) {
int64_t new_send_time_us = it->send_time_us() + delay_us_;
last_send_time_us_ = std::max(last_send_time_us_, new_send_time_us);
it->set_send_time_us(last_send_time_us_);
}
}
JitterFilter::JitterFilter(PacketProcessorListener* listener)
: PacketProcessor(listener),
random_(0x89674523),
stddev_jitter_us_(0),
last_send_time_us_(0) {
}
void JitterFilter::SetJitter(int64_t stddev_jitter_ms) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Jitter", "%d ms",
static_cast<int>(stddev_jitter_ms));
assert(stddev_jitter_ms >= 0);
stddev_jitter_us_ = stddev_jitter_ms * 1000;
}
void JitterFilter::RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end(); ++it) {
int64_t new_send_time_us = it->send_time_us();
new_send_time_us += random_.Gaussian(0, stddev_jitter_us_);
last_send_time_us_ = std::max(last_send_time_us_, new_send_time_us);
it->set_send_time_us(last_send_time_us_);
}
}
ReorderFilter::ReorderFilter(PacketProcessorListener* listener)
: PacketProcessor(listener),
random_(0x27452389),
reorder_fraction_(0.0f) {
}
void ReorderFilter::SetReorder(float reorder_percent) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Reordering", "%f%%", reorder_percent);
assert(reorder_percent >= 0.0f);
assert(reorder_percent <= 100.0f);
reorder_fraction_ = reorder_percent * 0.01f;
}
void ReorderFilter::RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
if (in_out->size() >= 2) {
PacketsIt last_it = in_out->begin();
PacketsIt it = last_it;
while (++it != in_out->end()) {
if (random_.Rand() < reorder_fraction_) {
int64_t t1 = last_it->send_time_us();
int64_t t2 = it->send_time_us();
std::swap(*last_it, *it);
last_it->set_send_time_us(t1);
it->set_send_time_us(t2);
}
last_it = it;
}
}
}
ChokeFilter::ChokeFilter(PacketProcessorListener* listener)
: PacketProcessor(listener),
kbps_(1200),
max_delay_us_(0),
last_send_time_us_(0) {
}
void ChokeFilter::SetCapacity(uint32_t kbps) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("BitrateChoke", "%d kbps", kbps);
kbps_ = kbps;
}
void ChokeFilter::SetMaxDelay(int64_t max_delay_ms) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Max Delay", "%d ms", static_cast<int>(max_delay_ms));
assert(max_delay_ms >= 0);
max_delay_us_ = max_delay_ms * 1000;
}
void ChokeFilter::RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end(); ) {
int64_t earliest_send_time_us = last_send_time_us_ +
(it->payload_size() * 8 * 1000 + kbps_ / 2) / kbps_;
int64_t new_send_time_us = std::max(it->send_time_us(),
earliest_send_time_us);
if (max_delay_us_ == 0 ||
max_delay_us_ >= (new_send_time_us - it->send_time_us())) {
it->set_send_time_us(new_send_time_us);
last_send_time_us_ = new_send_time_us;
++it;
} else {
it = in_out->erase(it);
}
}
}
PacketSender::PacketSender(PacketProcessorListener* listener)
: PacketProcessor(listener) {
}
VideoSender::VideoSender(PacketProcessorListener* listener, float fps,
uint32_t kbps, uint32_t ssrc, float first_frame_offset)
: PacketSender(listener),
kMaxPayloadSizeBytes(1000),
kTimestampBase(0xff80ff00ul),
frame_period_ms_(1000.0 / fps),
next_frame_ms_(frame_period_ms_ * first_frame_offset),
now_ms_(0.0),
bytes_per_second_((1000 * kbps) / 8),
frame_size_bytes_(bytes_per_second_ / fps),
prototype_header_() {
assert(first_frame_offset >= 0.0f);
assert(first_frame_offset < 1.0f);
memset(&prototype_header_, 0, sizeof(prototype_header_));
prototype_header_.ssrc = ssrc;
prototype_header_.sequenceNumber = 0xf000u;
}
uint32_t VideoSender::GetCapacityKbps() const {
return (bytes_per_second_ * 8) / 1000;
}
void VideoSender::RunFor(int64_t time_ms, Packets* in_out) {
assert(in_out);
now_ms_ += time_ms;
Packets newPackets;
while (now_ms_ >= next_frame_ms_) {
prototype_header_.sequenceNumber++;
prototype_header_.timestamp = kTimestampBase +
static_cast<uint32_t>(next_frame_ms_ * 90.0);
prototype_header_.extension.absoluteSendTime = (kTimestampBase +
((static_cast<int64_t>(next_frame_ms_ * (1 << 18)) + 500) / 1000)) &
0x00fffffful;
prototype_header_.extension.transmissionTimeOffset = 0;
// Generate new packets for this frame, all with the same timestamp,
// but the payload size is capped, so if the whole frame doesn't fit in
// one packet, we will see a number of equally sized packets followed by
// one smaller at the tail.
int64_t send_time_us = next_frame_ms_ * 1000.0;
uint32_t payload_size = frame_size_bytes_;
while (payload_size > 0) {
uint32_t size = std::min(kMaxPayloadSizeBytes, payload_size);
newPackets.push_back(Packet(send_time_us, size, prototype_header_));
payload_size -= size;
}
next_frame_ms_ += frame_period_ms_;
}
in_out->merge(newPackets);
}
} // namespace bwe
} // namespace testing
} // namespace webrtc

View File

@ -26,44 +26,6 @@ namespace webrtc {
namespace testing {
namespace bwe {
class Random {
public:
explicit Random(uint32_t seed)
: a_(0x531FDB97 ^ seed),
b_(0x6420ECA8 + seed) {
}
// Return semi-random number in the interval [0.0, 1.0].
float Rand() {
const float kScale = 1.0f / 0xffffffff;
float result = kScale * b_;
a_ ^= b_;
b_ += a_;
return result;
}
// Normal Distribution.
int Gaussian(int mean, int standard_deviation) {
// Creating a Normal distribution variable from two independent uniform
// variables based on the Box-Muller transform, which is defined on the
// interval (0, 1], hence the mask+add below.
const double kPi = 3.14159265358979323846;
const double kScale = 1.0 / 0x80000000ul;
double u1 = kScale * ((a_ & 0x7ffffffful) + 1);
double u2 = kScale * ((b_ & 0x7ffffffful) + 1);
a_ ^= b_;
b_ += a_;
return static_cast<int>(mean + standard_deviation *
std::sqrt(-2 * std::log(u1)) * std::cos(2 * kPi * u2));
}
private:
uint32_t a_;
uint32_t b_;
DISALLOW_IMPLICIT_CONSTRUCTORS(Random);
};
template<typename T> class Stats {
public:
Stats()
@ -149,36 +111,36 @@ template<typename T> class Stats {
T max_;
};
class BwePacket {
class Random {
public:
BwePacket()
: send_time_us_(0),
payload_size_(0) {
memset(&header_, 0, sizeof(header_));
}
explicit Random(uint32_t seed);
BwePacket(int64_t send_time_us, uint32_t payload_size,
const RTPHeader& header)
: send_time_us_(send_time_us),
payload_size_(payload_size),
header_(header) {
}
// Return pseudo random number in the interval [0.0, 1.0].
float Rand();
BwePacket(int64_t send_time_us, uint32_t sequence_number)
: send_time_us_(send_time_us),
payload_size_(0) {
memset(&header_, 0, sizeof(header_));
header_.sequenceNumber = sequence_number;
}
// Normal Distribution.
int Gaussian(int mean, int standard_deviation);
bool operator<(const BwePacket& rhs) const {
return send_time_us_ < rhs.send_time_us_;
}
// TODO(solenberg): Random from histogram.
// template<typename T> int Distribution(const std::vector<T> histogram) {
void set_send_time_us(int64_t send_time_us) {
assert(send_time_us >= 0);
send_time_us_ = send_time_us;
}
private:
uint32_t a_;
uint32_t b_;
DISALLOW_IMPLICIT_CONSTRUCTORS(Random);
};
class Packet {
public:
Packet();
Packet(int64_t send_time_us, uint32_t payload_size,
const RTPHeader& header);
Packet(int64_t send_time_us, uint32_t sequence_number);
bool operator<(const Packet& rhs) const;
void set_send_time_us(int64_t send_time_us);
int64_t send_time_us() const { return send_time_us_; }
uint32_t payload_size() const { return payload_size_; }
const RTPHeader& header() const { return header_; }
@ -189,73 +151,180 @@ class BwePacket {
RTPHeader header_; // Actual contents.
};
typedef std::list<BwePacket> Packets;
typedef std::list<BwePacket>::iterator PacketsIt;
typedef std::list<BwePacket>::const_iterator PacketsConstIt;
typedef std::list<Packet> Packets;
typedef std::list<Packet>::iterator PacketsIt;
typedef std::list<Packet>::const_iterator PacketsConstIt;
bool IsTimeSorted(const Packets& packets);
class PacketProcessorInterface {
class PacketProcessor;
class PacketProcessorListener {
public:
virtual ~PacketProcessorInterface() {}
virtual ~PacketProcessorListener() {}
virtual void AddPacketProcessor(PacketProcessor* processor) = 0;
virtual void RemovePacketProcessor(PacketProcessor* processor) = 0;
};
class PacketProcessor {
public:
explicit PacketProcessor(PacketProcessorListener* listener);
virtual ~PacketProcessor();
// Run simulation for |time_ms| micro seconds, consuming packets from, and
// producing packets into in_out. The outgoing packet list must be sorted on
// |send_time_us_|. The simulation time |time_ms| is optional to use.
virtual void RunFor(int64_t time_ms, Packets* in_out) = 0;
private:
PacketProcessorListener* listener_;
DISALLOW_COPY_AND_ASSIGN(PacketProcessor);
};
class VideoSender : public PacketProcessorInterface {
class RateCounterFilter : public PacketProcessor {
public:
VideoSender(float fps, uint32_t kbps, uint32_t ssrc, float first_frame_offset)
: kMaxPayloadSizeBytes(1000),
kTimestampBase(0xff80ff00ul),
frame_period_ms_(1000.0 / fps),
next_frame_ms_(frame_period_ms_ * first_frame_offset),
now_ms_(0.0),
bytes_per_second_(1000 * kbps / 8),
frame_size_bytes_(bytes_per_second_ / fps),
prototype_header_() {
assert(first_frame_offset >= 0.0f);
assert(first_frame_offset < 1.0f);
memset(&prototype_header_, 0, sizeof(prototype_header_));
prototype_header_.ssrc = ssrc;
prototype_header_.sequenceNumber = 0xf000u;
}
explicit RateCounterFilter(PacketProcessorListener* listener);
virtual ~RateCounterFilter();
uint32_t packets_per_second() const { return packets_per_second_; }
uint32_t bits_per_second() const { return bytes_per_second_ * 8; }
void LogStats();
virtual void RunFor(int64_t time_ms, Packets* in_out);
private:
const int64_t kWindowSizeUs;
uint32_t packets_per_second_;
uint32_t bytes_per_second_;
int64_t last_accumulated_us_;
Packets window_;
Stats<double> pps_stats_;
Stats<double> kbps_stats_;
DISALLOW_IMPLICIT_CONSTRUCTORS(RateCounterFilter);
};
class LossFilter : public PacketProcessor {
public:
explicit LossFilter(PacketProcessorListener* listener);
virtual ~LossFilter() {}
void SetLoss(float loss_percent);
virtual void RunFor(int64_t time_ms, Packets* in_out);
private:
Random random_;
float loss_fraction_;
DISALLOW_IMPLICIT_CONSTRUCTORS(LossFilter);
};
class DelayFilter : public PacketProcessor {
public:
explicit DelayFilter(PacketProcessorListener* listener);
virtual ~DelayFilter() {}
void SetDelay(int64_t delay_ms);
virtual void RunFor(int64_t time_ms, Packets* in_out);
private:
int64_t delay_us_;
int64_t last_send_time_us_;
DISALLOW_IMPLICIT_CONSTRUCTORS(DelayFilter);
};
class JitterFilter : public PacketProcessor {
public:
explicit JitterFilter(PacketProcessorListener* listener);
virtual ~JitterFilter() {}
void SetJitter(int64_t stddev_jitter_ms);
virtual void RunFor(int64_t time_ms, Packets* in_out);
private:
Random random_;
int64_t stddev_jitter_us_;
int64_t last_send_time_us_;
DISALLOW_IMPLICIT_CONSTRUCTORS(JitterFilter);
};
class ReorderFilter : public PacketProcessor {
public:
explicit ReorderFilter(PacketProcessorListener* listener);
virtual ~ReorderFilter() {}
void SetReorder(float reorder_percent);
virtual void RunFor(int64_t time_ms, Packets* in_out);
private:
Random random_;
float reorder_fraction_;
DISALLOW_IMPLICIT_CONSTRUCTORS(ReorderFilter);
};
// Apply a bitrate choke with an infinite queue on the packet stream.
class ChokeFilter : public PacketProcessor {
public:
explicit ChokeFilter(PacketProcessorListener* listener);
virtual ~ChokeFilter() {}
void SetCapacity(uint32_t kbps);
void SetMaxDelay(int64_t max_delay_ms);
virtual void RunFor(int64_t time_ms, Packets* in_out);
private:
uint32_t kbps_;
int64_t max_delay_us_;
int64_t last_send_time_us_;
DISALLOW_IMPLICIT_CONSTRUCTORS(ChokeFilter);
};
class PacketSender : public PacketProcessor {
public:
struct Feedback {
double estimated_kbps;
};
explicit PacketSender(PacketProcessorListener* listener);
virtual ~PacketSender() {}
virtual uint32_t GetCapacityKbps() const { return 0; }
// Call GiveFeedback() with the returned interval in milliseconds, provided
// there is a new estimate available.
virtual int64_t GetFeedbackIntervalMs() const { return 1000; }
virtual void GiveFeedback(const Feedback& feedback) {}
private:
DISALLOW_COPY_AND_ASSIGN(PacketSender);
};
struct PacketSenderFactory {
PacketSenderFactory() {}
virtual ~PacketSenderFactory() {}
virtual PacketSender* Create() const = 0;
};
class VideoSender : public PacketSender {
public:
VideoSender(PacketProcessorListener* listener, float fps, uint32_t kbps,
uint32_t ssrc, float first_frame_offset);
virtual ~VideoSender() {}
uint32_t max_payload_size_bytes() const { return kMaxPayloadSizeBytes; }
uint32_t bytes_per_second() const { return bytes_per_second_; }
virtual void RunFor(int64_t time_ms, Packets* in_out) {
assert(in_out);
now_ms_ += time_ms;
Packets newPackets;
while (now_ms_ >= next_frame_ms_) {
prototype_header_.sequenceNumber++;
prototype_header_.timestamp = kTimestampBase +
static_cast<uint32_t>(next_frame_ms_ * 90.0);
prototype_header_.extension.absoluteSendTime = (kTimestampBase +
((static_cast<int64_t>(next_frame_ms_ * (1 << 18)) + 500) / 1000)) &
0x00fffffful;
prototype_header_.extension.transmissionTimeOffset = 0;
virtual uint32_t GetCapacityKbps() const;
// Generate new packets for this frame, all with the same timestamp,
// but the payload size is capped, so if the whole frame doesn't fit in
// one packet, we will see a number of equally sized packets followed by
// one smaller at the tail.
int64_t send_time_us = next_frame_ms_ * 1000.0;
uint32_t payload_size = frame_size_bytes_;
while (payload_size > 0) {
uint32_t size = std::min(kMaxPayloadSizeBytes, payload_size);
newPackets.push_back(BwePacket(send_time_us, size, prototype_header_));
payload_size -= size;
}
next_frame_ms_ += frame_period_ms_;
}
in_out->merge(newPackets);
}
// TODO(solenberg): void SetFrameRate(float fps);
// TODO(solenberg): void SetRate(uint32_t kbps);
virtual void RunFor(int64_t time_ms, Packets* in_out);
private:
const uint32_t kMaxPayloadSizeBytes;
@ -269,242 +338,6 @@ class VideoSender : public PacketProcessorInterface {
DISALLOW_IMPLICIT_CONSTRUCTORS(VideoSender);
};
class RateCounterFilter : public PacketProcessorInterface {
public:
RateCounterFilter()
: kWindowSizeUs(1000000),
packets_per_second_(0),
bytes_per_second_(0),
last_accumulated_us_(0),
window_(),
pps_stats_(),
kbps_stats_() {
}
virtual ~RateCounterFilter() {
LogStats();
}
uint32_t packets_per_second() const { return packets_per_second_; }
uint32_t bits_per_second() const { return bytes_per_second_ * 8; }
void LogStats() {
BWE_TEST_LOGGING_CONTEXT("RateCounterFilter");
pps_stats_.Log("pps");
kbps_stats_.Log("kbps");
}
virtual void RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsConstIt it = in_out->begin(); it != in_out->end(); ++it) {
packets_per_second_++;
bytes_per_second_ += it->payload_size();
last_accumulated_us_ = it->send_time_us();
}
window_.insert(window_.end(), in_out->begin(), in_out->end());
while (!window_.empty()) {
const BwePacket& packet = window_.front();
if (packet.send_time_us() > (last_accumulated_us_ - kWindowSizeUs)) {
break;
}
assert(packets_per_second_ >= 1);
assert(bytes_per_second_ >= packet.payload_size());
packets_per_second_--;
bytes_per_second_ -= packet.payload_size();
window_.pop_front();
}
pps_stats_.Push(packets_per_second_);
kbps_stats_.Push((bytes_per_second_ * 8) / 1000.0);
}
private:
const int64_t kWindowSizeUs;
uint32_t packets_per_second_;
uint32_t bytes_per_second_;
int64_t last_accumulated_us_;
Packets window_;
Stats<double> pps_stats_;
Stats<double> kbps_stats_;
DISALLOW_COPY_AND_ASSIGN(RateCounterFilter);
};
class LossFilter : public PacketProcessorInterface {
public:
LossFilter() : random_(0x12345678), loss_fraction_(0.0f) {}
virtual ~LossFilter() {}
void SetLoss(float loss_percent) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Loss", "%f%%", loss_percent);
assert(loss_percent >= 0.0f);
assert(loss_percent <= 100.0f);
loss_fraction_ = loss_percent * 0.01f;
}
virtual void RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end(); ) {
if (random_.Rand() < loss_fraction_) {
it = in_out->erase(it);
} else {
++it;
}
}
}
private:
Random random_;
float loss_fraction_;
DISALLOW_COPY_AND_ASSIGN(LossFilter);
};
class DelayFilter : public PacketProcessorInterface {
public:
DelayFilter() : delay_us_(0), last_send_time_us_(0) {}
virtual ~DelayFilter() {}
void SetDelay(int64_t delay_ms) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Delay", "%d ms", static_cast<int>(delay_ms));
assert(delay_ms >= 0);
delay_us_ = delay_ms * 1000;
}
virtual void RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end(); ++it) {
int64_t new_send_time_us = it->send_time_us() + delay_us_;
last_send_time_us_ = std::max(last_send_time_us_, new_send_time_us);
it->set_send_time_us(last_send_time_us_);
}
}
private:
int64_t delay_us_;
int64_t last_send_time_us_;
DISALLOW_COPY_AND_ASSIGN(DelayFilter);
};
class JitterFilter : public PacketProcessorInterface {
public:
JitterFilter()
: random_(0x89674523),
stddev_jitter_us_(0),
last_send_time_us_(0) {
}
virtual ~JitterFilter() {}
void SetJitter(int64_t stddev_jitter_ms) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Jitter", "%d ms",
static_cast<int>(stddev_jitter_ms));
assert(stddev_jitter_ms >= 0);
stddev_jitter_us_ = stddev_jitter_ms * 1000;
}
virtual void RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end(); ++it) {
int64_t new_send_time_us = it->send_time_us();
new_send_time_us += random_.Gaussian(0, stddev_jitter_us_);
last_send_time_us_ = std::max(last_send_time_us_, new_send_time_us);
it->set_send_time_us(last_send_time_us_);
}
}
private:
Random random_;
int64_t stddev_jitter_us_;
int64_t last_send_time_us_;
DISALLOW_COPY_AND_ASSIGN(JitterFilter);
};
class ReorderFilter : public PacketProcessorInterface {
public:
ReorderFilter() : random_(0x27452389), reorder_fraction_(0.0f) {}
virtual ~ReorderFilter() {}
void SetReorder(float reorder_percent) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Reordering", "%f%%", reorder_percent);
assert(reorder_percent >= 0.0f);
assert(reorder_percent <= 100.0f);
reorder_fraction_ = reorder_percent * 0.01f;
}
virtual void RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
if (in_out->size() >= 2) {
PacketsIt last_it = in_out->begin();
PacketsIt it = last_it;
while (++it != in_out->end()) {
if (random_.Rand() < reorder_fraction_) {
int64_t t1 = last_it->send_time_us();
int64_t t2 = it->send_time_us();
std::swap(*last_it, *it);
last_it->set_send_time_us(t1);
it->set_send_time_us(t2);
}
last_it = it;
}
}
}
private:
Random random_;
float reorder_fraction_;
DISALLOW_COPY_AND_ASSIGN(ReorderFilter);
};
// Apply a bitrate choke with an infinite queue on the packet stream.
class ChokeFilter : public PacketProcessorInterface {
public:
ChokeFilter() : kbps_(1200), max_delay_us_(0), last_send_time_us_(0) {}
virtual ~ChokeFilter() {}
void SetCapacity(uint32_t kbps) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("BitrateChoke", "%d kbps", kbps);
kbps_ = kbps;
}
void SetMaxDelay(int64_t max_delay_ms) {
BWE_TEST_LOGGING_ENABLE(false);
BWE_TEST_LOGGING_LOG1("Max Delay", "%d ms", static_cast<int>(max_delay_ms));
assert(max_delay_ms >= 0);
max_delay_us_ = max_delay_ms * 1000;
}
virtual void RunFor(int64_t /*time_ms*/, Packets* in_out) {
assert(in_out);
for (PacketsIt it = in_out->begin(); it != in_out->end(); ) {
int64_t earliest_send_time_us = last_send_time_us_ +
(it->payload_size() * 8 * 1000 + kbps_ / 2) / kbps_;
int64_t new_send_time_us = std::max(it->send_time_us(),
earliest_send_time_us);
if (max_delay_us_ == 0 ||
max_delay_us_ >= (new_send_time_us - it->send_time_us())) {
it->set_send_time_us(new_send_time_us);
last_send_time_us_ = new_send_time_us;
++it;
} else {
it = in_out->erase(it);
}
}
}
private:
uint32_t kbps_;
int64_t max_delay_us_;
int64_t last_send_time_us_;
DISALLOW_COPY_AND_ASSIGN(ChokeFilter);
};
} // namespace bwe
} // namespace testing
} // namespace webrtc

View File

@ -66,45 +66,45 @@ static bool IsSequenceNumberSorted(const Packets& packets) {
return true;
}
TEST(BweTestFramework_BwePacketTest, IsTimeSorted) {
TEST(BweTestFramework_PacketTest, IsTimeSorted) {
Packets packets;
// Insert some packets in order...
EXPECT_TRUE(IsTimeSorted(packets));
packets.push_back(BwePacket(100, 0));
packets.push_back(Packet(100, 0));
EXPECT_TRUE(IsTimeSorted(packets));
packets.push_back(BwePacket(110, 0));
packets.push_back(Packet(110, 0));
EXPECT_TRUE(IsTimeSorted(packets));
// ...and one out-of-order...
packets.push_back(BwePacket(100, 0));
packets.push_back(Packet(100, 0));
EXPECT_FALSE(IsTimeSorted(packets));
// ...remove the out-of-order packet, insert another in-order packet.
packets.pop_back();
packets.push_back(BwePacket(120, 0));
packets.push_back(Packet(120, 0));
EXPECT_TRUE(IsTimeSorted(packets));
}
TEST(BweTestFramework_BwePacketTest, IsSequenceNumberSorted) {
TEST(BweTestFramework_PacketTest, IsSequenceNumberSorted) {
Packets packets;
// Insert some packets in order...
EXPECT_TRUE(IsSequenceNumberSorted(packets));
packets.push_back(BwePacket(0, 100));
packets.push_back(Packet(0, 100));
EXPECT_TRUE(IsSequenceNumberSorted(packets));
packets.push_back(BwePacket(0, 110));
packets.push_back(Packet(0, 110));
EXPECT_TRUE(IsSequenceNumberSorted(packets));
// ...and one out-of-order...
packets.push_back(BwePacket(0, 100));
packets.push_back(Packet(0, 100));
EXPECT_FALSE(IsSequenceNumberSorted(packets));
// ...remove the out-of-order packet, insert another in-order packet.
packets.pop_back();
packets.push_back(BwePacket(0, 120));
packets.push_back(Packet(0, 120));
EXPECT_TRUE(IsSequenceNumberSorted(packets));
}
@ -168,167 +168,10 @@ TEST(BweTestFramework_StatsTest, MinMax) {
EXPECT_EQ(3, stats.GetMax());
}
void TestVideoSender(VideoSender* sender, int64_t run_for_ms,
uint32_t expected_packets,
uint32_t expected_payload_size,
uint32_t expected_total_payload_size) {
assert(sender);
Packets packets;
sender->RunFor(run_for_ms, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
EXPECT_EQ(expected_packets, packets.size());
int64_t send_time_us = -1;
uint32_t total_payload_size = 0;
uint32_t absolute_send_time = 0;
uint32_t absolute_send_time_wraps = 0;
uint32_t rtp_timestamp = 0;
uint32_t rtp_timestamp_wraps = 0;
for (PacketsIt it = packets.begin(); it != packets.end(); ++it) {
EXPECT_LE(send_time_us, it->send_time_us());
send_time_us = it->send_time_us();
if (sender->max_payload_size_bytes() != it->payload_size()) {
EXPECT_EQ(expected_payload_size, it->payload_size());
}
total_payload_size += it->payload_size();
if (absolute_send_time > it->header().extension.absoluteSendTime) {
absolute_send_time_wraps++;
}
absolute_send_time = it->header().extension.absoluteSendTime;
if (rtp_timestamp > it->header().timestamp) {
rtp_timestamp_wraps++;
}
rtp_timestamp = it->header().timestamp;
}
EXPECT_EQ(expected_total_payload_size, total_payload_size);
EXPECT_GE(1u, absolute_send_time_wraps);
EXPECT_GE(1u, rtp_timestamp_wraps);
}
TEST(BweTestFramework_VideoSenderTest, Fps1Kpbs80_1s) {
// 1 fps, 80 kbps
VideoSender sender(1.0f, 80, 0x1234, 0);
EXPECT_EQ(10000u, sender.bytes_per_second());
// We're at 1 fps, so all packets should be generated on first call, giving 10
// packets of each 1000 bytes, total 10000 bytes.
TestVideoSender(&sender, 1, 10, 1000, 10000);
// 999ms, should see no output here.
TestVideoSender(&sender, 998, 0, 0, 0);
// 1999ms, should get data for one more frame.
TestVideoSender(&sender, 1000, 10, 1000, 10000);
// 2000ms, one more frame.
TestVideoSender(&sender, 1, 10, 1000, 10000);
// 2999ms, should see nothing.
TestVideoSender(&sender, 999, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps1Kpbs80_1s_Offset) {
// 1 fps, 80 kbps, offset 0.5 of a frame period, ==0.5s in this case.
VideoSender sender(1.0f, 80, 0x1234, 0.5f);
EXPECT_EQ(10000u, sender.bytes_per_second());
// 499ms, no output.
TestVideoSender(&sender, 499, 0, 0, 0);
// 500ms, first frame (this is the offset we set), 10 packets of 1000 bytes.
TestVideoSender(&sender, 1, 10, 1000, 10000);
// 1499ms, nothing.
TestVideoSender(&sender, 999, 0, 0, 0);
// 1999ms, second frame.
TestVideoSender(&sender, 500, 10, 1000, 10000);
// 2499ms, nothing.
TestVideoSender(&sender, 500, 0, 0, 0);
// 2500ms, third frame.
TestVideoSender(&sender, 1, 10, 1000, 10000);
// 3499ms, nothing.
TestVideoSender(&sender, 999, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps50Kpbs80_11s) {
// 50 fps, 80 kbps.
VideoSender sender(50.0f, 80, 0x1234, 0);
EXPECT_EQ(10000u, sender.bytes_per_second());
// 9998ms, should see 500 frames, 200 byte payloads, total 100000 bytes.
TestVideoSender(&sender, 9998, 500, 200, 100000);
// 9999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
// 10000ms, 501st frame as a single packet.
TestVideoSender(&sender, 1, 1, 200, 200);
// 10998ms, 49 more frames.
TestVideoSender(&sender, 998, 49, 200, 9800);
// 10999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps10Kpbs120_1s) {
// 20 fps, 120 kbps.
VideoSender sender(20.0f, 120, 0x1234, 0);
EXPECT_EQ(15000u, sender.bytes_per_second());
// 498ms, 10 frames with 750 byte payloads, total 7500 bytes.
TestVideoSender(&sender, 498, 10, 750, 7500);
// 499ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
// 500ms, one more frame.
TestVideoSender(&sender, 1, 1, 750, 750);
// 998ms, 9 more frames.
TestVideoSender(&sender, 498, 9, 750, 6750);
// 999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps30Kpbs800_20s) {
// 20 fps, 820 kbps.
VideoSender sender(25.0f, 820, 0x1234, 0);
EXPECT_EQ(102500u, sender.bytes_per_second());
// 9998ms, 250 frames. 820 kbps = 102500 bytes/s, so total should be 1025000.
// Each frame is 102500/25=4100 bytes, or 5 packets (4 @1000 bytes, 1 @100),
// so packet count should be 5*250=1250 and last packet of each frame has
// 100 bytes of payload.
TestVideoSender(&sender, 9998, 1250, 100, 1025000);
// 9999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
// 19998ms, 250 more frames.
TestVideoSender(&sender, 9999, 1250, 100, 1025000);
// 19999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
// 20038ms, one more frame, as described above (25fps == 40ms/frame).
TestVideoSender(&sender, 39, 5, 100, 4100);
// 20039ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, TestAppendInOrder) {
// 1 fps, 80 kbps, 250ms offset.
VideoSender sender1(1.0f, 80, 0x1234, 0.25f);
EXPECT_EQ(10000u, sender1.bytes_per_second());
Packets packets;
// Generate some packets, verify they are sorted.
sender1.RunFor(999, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
EXPECT_EQ(10u, packets.size());
// Generate some more packets and verify they are appended to end of list.
sender1.RunFor(1000, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
EXPECT_EQ(20u, packets.size());
// Another sender, 2 fps, 160 kpbs, 150ms offset
VideoSender sender2(2.0f, 160, 0x2234, 0.30f);
EXPECT_EQ(20000u, sender2.bytes_per_second());
// Generate some packets, verify that they are merged with the packets already
// on the list.
sender2.RunFor(999, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
EXPECT_EQ(40u, packets.size());
// Generate some more.
sender2.RunFor(1000, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
EXPECT_EQ(60u, packets.size());
}
class BweTestFramework_RateCounterFilterTest : public ::testing::Test {
public:
BweTestFramework_RateCounterFilterTest()
: filter_(),
: filter_(NULL),
now_ms_(0) {
}
virtual ~BweTestFramework_RateCounterFilterTest() {}
@ -340,7 +183,7 @@ class BweTestFramework_RateCounterFilterTest : public ::testing::Test {
RTPHeader header = {0};
// "Send" a packet every 10 ms.
for (int64_t i = 0; i < run_for_ms; i += 10, now_ms_ += 10) {
packets.push_back(BwePacket(now_ms_ * 1000, payload_bits / 8, header));
packets.push_back(Packet(now_ms_ * 1000, payload_bits / 8, header));
}
filter_.RunFor(run_for_ms, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
@ -386,7 +229,7 @@ TEST_F(BweTestFramework_RateCounterFilterTest, Long) {
}
static void TestLossFilter(float loss_percent, bool zero_tolerance) {
LossFilter filter;
LossFilter filter(NULL);
filter.SetLoss(loss_percent);
Packets::size_type sent_packets = 0;
Packets::size_type remaining_packets = 0;
@ -406,7 +249,7 @@ static void TestLossFilter(float loss_percent, bool zero_tolerance) {
// Generate and process 10000 packets in different batch sizes (some empty)
for (int i = 0; i < 2225; ++i) {
Packets packets;
packets.insert(packets.end(), i % 10, BwePacket());
packets.insert(packets.end(), i % 10, Packet());
sent_packets += packets.size();
filter.RunFor(0, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
@ -445,7 +288,7 @@ TEST(BweTestFramework_LossFilterTest, Loss100) {
class BweTestFramework_DelayFilterTest : public ::testing::Test {
public:
BweTestFramework_DelayFilterTest()
: filter_(),
: filter_(NULL),
now_ms_(0),
sequence_number_(0) {
}
@ -456,7 +299,7 @@ class BweTestFramework_DelayFilterTest : public ::testing::Test {
uint32_t out_packets) {
Packets packets;
for (uint32_t i = 0; i < in_packets; ++i) {
packets.push_back(BwePacket(now_ms_ * 1000 + (sequence_number_ >> 4),
packets.push_back(Packet(now_ms_ * 1000 + (sequence_number_ >> 4),
sequence_number_));
sequence_number_++;
}
@ -550,14 +393,14 @@ TEST_F(BweTestFramework_DelayFilterTest, Delay100) {
}
TEST_F(BweTestFramework_DelayFilterTest, JumpToZeroDelay) {
DelayFilter delay;
DelayFilter delay(NULL);
Packets acc;
Packets packets;
// Delay a bunch of packets, accumulate them to the 'acc' list.
delay.SetDelay(100.0f);
for (uint32_t i = 0; i < 10; ++i) {
packets.push_back(BwePacket(i * 100, i));
packets.push_back(Packet(i * 100, i));
}
delay.RunFor(1000, &packets);
acc.splice(acc.end(), packets);
@ -568,7 +411,7 @@ TEST_F(BweTestFramework_DelayFilterTest, JumpToZeroDelay) {
// to the 'acc' list and verify that it is all sorted.
delay.SetDelay(0.0f);
for (uint32_t i = 10; i < 50; ++i) {
packets.push_back(BwePacket(i * 100, i));
packets.push_back(Packet(i * 100, i));
}
delay.RunFor(1000, &packets);
acc.splice(acc.end(), packets);
@ -595,7 +438,7 @@ TEST_F(BweTestFramework_DelayFilterTest, IncreasingDelay) {
}
static void TestJitterFilter(int64_t stddev_jitter_ms) {
JitterFilter filter;
JitterFilter filter(NULL);
filter.SetJitter(stddev_jitter_ms);
int64_t now_ms = 0;
@ -607,7 +450,7 @@ static void TestJitterFilter(int64_t stddev_jitter_ms) {
for (uint32_t i = 0; i < 1000; ++i) {
Packets packets;
for (uint32_t j = 0; j < i % 100; ++j) {
packets.push_back(BwePacket(now_ms * 1000, sequence_number++));
packets.push_back(Packet(now_ms * 1000, sequence_number++));
now_ms += 5 * stddev_jitter_ms;
}
original.insert(original.end(), packets.begin(), packets.end());
@ -664,13 +507,13 @@ static void TestReorderFilter(uint32_t reorder_percent, uint32_t near) {
int64_t now_ms = 0;
uint32_t sequence_number = 1;
for (uint32_t i = 0; i < kPacketCount; ++i, now_ms += 10) {
packets.push_back(BwePacket(now_ms * 1000, sequence_number++));
packets.push_back(Packet(now_ms * 1000, sequence_number++));
}
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
// Reorder packets, verify that send times are still in order.
ReorderFilter filter;
ReorderFilter filter(NULL);
filter.SetReorder(reorder_percent);
filter.RunFor(now_ms, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
@ -724,7 +567,7 @@ TEST(BweTestFramework_ReorderFilterTest, Reorder100) {
class BweTestFramework_ChokeFilterTest : public ::testing::Test {
public:
BweTestFramework_ChokeFilterTest()
: filter_(),
: filter_(NULL),
now_ms_(0),
sequence_number_(0),
output_packets_(),
@ -744,7 +587,7 @@ class BweTestFramework_ChokeFilterTest : public ::testing::Test {
int64_t send_time_ms = now_ms_ + (i * run_for_ms) / packets_to_generate;
header.sequenceNumber = sequence_number_++;
// Payload is 1000 bits.
packets.push_back(BwePacket(send_time_ms * 1000, 125, header));
packets.push_back(Packet(send_time_ms * 1000, 125, header));
send_times_us_.push_back(send_time_ms * 1000);
}
ASSERT_TRUE(IsTimeSorted(packets));
@ -757,7 +600,7 @@ class BweTestFramework_ChokeFilterTest : public ::testing::Test {
// Sum up the transmitted bytes up until the current time.
uint32_t bytes_transmitted = 0;
while (!output_packets_.empty()) {
const BwePacket& packet = output_packets_.front();
const Packet& packet = output_packets_.front();
if (packet.send_time_us() > now_ms_ * 1000) {
break;
}
@ -770,7 +613,7 @@ class BweTestFramework_ChokeFilterTest : public ::testing::Test {
void CheckMaxDelay(int64_t max_delay_ms) {
for (PacketsIt it = output_packets_.begin(); it != output_packets_.end();
++it) {
const BwePacket& packet = *it;
const Packet& packet = *it;
int64_t delay_us = packet.send_time_us() -
send_times_us_[packet.header().sequenceNumber];
EXPECT_GE(max_delay_ms * 1000, delay_us);
@ -853,6 +696,163 @@ TEST_F(BweTestFramework_ChokeFilterTest, MaxDelay) {
TestChoke(100, 100, 2);
TestChoke(9900, 0, 98);
}
void TestVideoSender(VideoSender* sender, int64_t run_for_ms,
uint32_t expected_packets,
uint32_t expected_payload_size,
uint32_t expected_total_payload_size) {
assert(sender);
Packets packets;
sender->RunFor(run_for_ms, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
EXPECT_EQ(expected_packets, packets.size());
int64_t send_time_us = -1;
uint32_t total_payload_size = 0;
uint32_t absolute_send_time = 0;
uint32_t absolute_send_time_wraps = 0;
uint32_t rtp_timestamp = 0;
uint32_t rtp_timestamp_wraps = 0;
for (PacketsIt it = packets.begin(); it != packets.end(); ++it) {
EXPECT_LE(send_time_us, it->send_time_us());
send_time_us = it->send_time_us();
if (sender->max_payload_size_bytes() != it->payload_size()) {
EXPECT_EQ(expected_payload_size, it->payload_size());
}
total_payload_size += it->payload_size();
if (absolute_send_time > it->header().extension.absoluteSendTime) {
absolute_send_time_wraps++;
}
absolute_send_time = it->header().extension.absoluteSendTime;
if (rtp_timestamp > it->header().timestamp) {
rtp_timestamp_wraps++;
}
rtp_timestamp = it->header().timestamp;
}
EXPECT_EQ(expected_total_payload_size, total_payload_size);
EXPECT_GE(1u, absolute_send_time_wraps);
EXPECT_GE(1u, rtp_timestamp_wraps);
}
TEST(BweTestFramework_VideoSenderTest, Fps1Kpbs80_1s) {
// 1 fps, 80 kbps
VideoSender sender(NULL, 1.0f, 80, 0x1234, 0);
EXPECT_EQ(10000u, sender.bytes_per_second());
// We're at 1 fps, so all packets should be generated on first call, giving 10
// packets of each 1000 bytes, total 10000 bytes.
TestVideoSender(&sender, 1, 10, 1000, 10000);
// 999ms, should see no output here.
TestVideoSender(&sender, 998, 0, 0, 0);
// 1999ms, should get data for one more frame.
TestVideoSender(&sender, 1000, 10, 1000, 10000);
// 2000ms, one more frame.
TestVideoSender(&sender, 1, 10, 1000, 10000);
// 2999ms, should see nothing.
TestVideoSender(&sender, 999, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps1Kpbs80_1s_Offset) {
// 1 fps, 80 kbps, offset 0.5 of a frame period, ==0.5s in this case.
VideoSender sender(NULL, 1.0f, 80, 0x1234, 0.5f);
EXPECT_EQ(10000u, sender.bytes_per_second());
// 499ms, no output.
TestVideoSender(&sender, 499, 0, 0, 0);
// 500ms, first frame (this is the offset we set), 10 packets of 1000 bytes.
TestVideoSender(&sender, 1, 10, 1000, 10000);
// 1499ms, nothing.
TestVideoSender(&sender, 999, 0, 0, 0);
// 1999ms, second frame.
TestVideoSender(&sender, 500, 10, 1000, 10000);
// 2499ms, nothing.
TestVideoSender(&sender, 500, 0, 0, 0);
// 2500ms, third frame.
TestVideoSender(&sender, 1, 10, 1000, 10000);
// 3499ms, nothing.
TestVideoSender(&sender, 999, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps50Kpbs80_11s) {
// 50 fps, 80 kbps.
VideoSender sender(NULL, 50.0f, 80, 0x1234, 0);
EXPECT_EQ(10000u, sender.bytes_per_second());
// 9998ms, should see 500 frames, 200 byte payloads, total 100000 bytes.
TestVideoSender(&sender, 9998, 500, 200, 100000);
// 9999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
// 10000ms, 501st frame as a single packet.
TestVideoSender(&sender, 1, 1, 200, 200);
// 10998ms, 49 more frames.
TestVideoSender(&sender, 998, 49, 200, 9800);
// 10999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps10Kpbs120_1s) {
// 20 fps, 120 kbps.
VideoSender sender(NULL, 20.0f, 120, 0x1234, 0);
EXPECT_EQ(15000u, sender.bytes_per_second());
// 498ms, 10 frames with 750 byte payloads, total 7500 bytes.
TestVideoSender(&sender, 498, 10, 750, 7500);
// 499ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
// 500ms, one more frame.
TestVideoSender(&sender, 1, 1, 750, 750);
// 998ms, 9 more frames.
TestVideoSender(&sender, 498, 9, 750, 6750);
// 999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, Fps30Kpbs800_20s) {
// 20 fps, 820 kbps.
VideoSender sender(NULL, 25.0f, 820, 0x1234, 0);
EXPECT_EQ(102500u, sender.bytes_per_second());
// 9998ms, 250 frames. 820 kbps = 102500 bytes/s, so total should be 1025000.
// Each frame is 102500/25=4100 bytes, or 5 packets (4 @1000 bytes, 1 @100),
// so packet count should be 5*250=1250 and last packet of each frame has
// 100 bytes of payload.
TestVideoSender(&sender, 9998, 1250, 100, 1025000);
// 9999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
// 19998ms, 250 more frames.
TestVideoSender(&sender, 9999, 1250, 100, 1025000);
// 19999ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
// 20038ms, one more frame, as described above (25fps == 40ms/frame).
TestVideoSender(&sender, 39, 5, 100, 4100);
// 20039ms, nothing.
TestVideoSender(&sender, 1, 0, 0, 0);
}
TEST(BweTestFramework_VideoSenderTest, TestAppendInOrder) {
// 1 fps, 80 kbps, 250ms offset.
VideoSender sender1(NULL, 1.0f, 80, 0x1234, 0.25f);
EXPECT_EQ(10000u, sender1.bytes_per_second());
Packets packets;
// Generate some packets, verify they are sorted.
sender1.RunFor(999, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
EXPECT_EQ(10u, packets.size());
// Generate some more packets and verify they are appended to end of list.
sender1.RunFor(1000, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
ASSERT_TRUE(IsSequenceNumberSorted(packets));
EXPECT_EQ(20u, packets.size());
// Another sender, 2 fps, 160 kpbs, 150ms offset
VideoSender sender2(NULL, 2.0f, 160, 0x2234, 0.30f);
EXPECT_EQ(20000u, sender2.bytes_per_second());
// Generate some packets, verify that they are merged with the packets already
// on the list.
sender2.RunFor(999, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
EXPECT_EQ(40u, packets.size());
// Generate some more.
sender2.RunFor(1000, &packets);
ASSERT_TRUE(IsTimeSorted(packets));
EXPECT_EQ(60u, packets.size());
}
} // namespace bwe
} // namespace testing
} // namespace webrtc

View File

@ -25,20 +25,24 @@ namespace bwe {
Logging Logging::g_Logging;
Logging::Context::Context(uint32_t name, int64_t timestamp_ms, bool enabled) {
static std::string ToString(uint32_t v) {
const size_t kBufferSize = 16;
char string_buffer[kBufferSize] = {0};
#if defined(_MSC_VER) && defined(_WIN32)
_snprintf(string_buffer, kBufferSize - 1, "%08x", name);
_snprintf(string_buffer, kBufferSize - 1, "%08x", v);
#else
snprintf(string_buffer, kBufferSize, "%08x", name);
snprintf(string_buffer, kBufferSize, "%08x", v);
#endif
Logging::GetInstance()->PushState(string_buffer, timestamp_ms, enabled);
return string_buffer;
}
Logging::Context::Context(uint32_t name, int64_t timestamp_ms, bool enabled) {
Logging::GetInstance()->PushState(ToString(name), timestamp_ms, enabled);
}
Logging::Context::Context(const std::string& name, int64_t timestamp_ms,
bool enabled) {
Logging::GetInstance()->PushState(name.c_str(), timestamp_ms, enabled);
Logging::GetInstance()->PushState(name, timestamp_ms, enabled);
}
Logging::Context::Context(const char* name, int64_t timestamp_ms,
@ -54,11 +58,31 @@ Logging* Logging::GetInstance() {
return &g_Logging;
}
void Logging::SetGlobalContext(uint32_t name) {
CriticalSectionScoped cs(crit_sect_.get());
thread_map_[ThreadWrapper::GetThreadId()].global_state.tag = ToString(name);
}
void Logging::SetGlobalContext(const std::string& name) {
CriticalSectionScoped cs(crit_sect_.get());
thread_map_[ThreadWrapper::GetThreadId()].global_state.tag = name;
}
void Logging::SetGlobalContext(const char* name) {
CriticalSectionScoped cs(crit_sect_.get());
thread_map_[ThreadWrapper::GetThreadId()].global_state.tag = name;
}
void Logging::SetGlobalEnable(bool enabled) {
CriticalSectionScoped cs(crit_sect_.get());
thread_map_[ThreadWrapper::GetThreadId()].global_state.enabled = enabled;
}
void Logging::Log(const char format[], ...) {
CriticalSectionScoped cs(crit_sect_.get());
ThreadMap::iterator it = thread_map_.find(ThreadWrapper::GetThreadId());
assert(it != thread_map_.end());
const State& state = it->second.top();
const State& state = it->second.stack.top();
if (state.enabled) {
printf("%s\t", state.tag.c_str());
va_list args;
@ -73,7 +97,7 @@ void Logging::Plot(double value) {
CriticalSectionScoped cs(crit_sect_.get());
ThreadMap::iterator it = thread_map_.find(ThreadWrapper::GetThreadId());
assert(it != thread_map_.end());
const State& state = it->second.top();
const State& state = it->second.stack.top();
if (state.enabled) {
printf("PLOT\t%s\t%f\t%f\n", state.tag.c_str(), state.timestamp_ms * 0.001,
value);
@ -85,37 +109,48 @@ Logging::Logging()
thread_map_() {
}
void Logging::PushState(const char append_to_tag[], int64_t timestamp_ms,
bool enabled) {
assert(append_to_tag);
CriticalSectionScoped cs(crit_sect_.get());
std::stack<State>* stack = &thread_map_[ThreadWrapper::GetThreadId()];
if (stack->empty()) {
State new_state(append_to_tag, std::max(static_cast<int64_t>(0),
timestamp_ms), enabled);
stack->push(new_state);
} else {
stack->push(stack->top());
State* state = &stack->top();
if (state->tag != "" && std::string(append_to_tag) != "") {
state->tag.append("_");
}
state->tag.append(append_to_tag);
state->timestamp_ms = std::max(timestamp_ms, state->timestamp_ms);
state->enabled = enabled && state->enabled;
Logging::State::State() : tag(""), timestamp_ms(0), enabled(true) {}
Logging::State::State(const std::string& tag, int64_t timestamp_ms,
bool enabled)
: tag(tag),
timestamp_ms(timestamp_ms),
enabled(enabled) {
}
void Logging::State::MergePrevious(const State& previous) {
if (tag == "") {
tag = previous.tag;
} else if (previous.tag != "") {
tag = previous.tag + "_" + tag;
}
timestamp_ms = std::max(previous.timestamp_ms, timestamp_ms);
enabled = previous.enabled && enabled;
}
void Logging::PushState(const std::string& append_to_tag, int64_t timestamp_ms,
bool enabled) {
CriticalSectionScoped cs(crit_sect_.get());
State new_state(append_to_tag, timestamp_ms, enabled);
ThreadState* thread_state = &thread_map_[ThreadWrapper::GetThreadId()];
std::stack<State>* stack = &thread_state->stack;
if (stack->empty()) {
new_state.MergePrevious(thread_state->global_state);
} else {
new_state.MergePrevious(stack->top());
}
stack->push(new_state);
}
void Logging::PopState() {
CriticalSectionScoped cs(crit_sect_.get());
ThreadMap::iterator it = thread_map_.find(ThreadWrapper::GetThreadId());
assert(it != thread_map_.end());
int64_t newest_timestamp_ms = it->second.top().timestamp_ms;
it->second.pop();
if (it->second.empty()) {
thread_map_.erase(it);
} else {
State* state = &it->second.top();
std::stack<State>* stack = &it->second.stack;
int64_t newest_timestamp_ms = stack->top().timestamp_ms;
stack->pop();
if (!stack->empty()) {
State* state = &stack->top();
// Update time so that next log/plot will use the latest time seen so far
// in this call tree.
state->timestamp_ms = std::max(state->timestamp_ms, newest_timestamp_ms);

View File

@ -51,6 +51,15 @@
#if !(BWE_TEST_LOGGING_COMPILE_TIME_ENABLE)
// Set a thread-global base logging context. This name will be prepended to all
// hierarchical contexts.
// |name| is a char*, std::string or uint32_t to name the context.
#define BWE_TEST_LOGGING_GLOBAL_CONTEXT(name)
// Thread-globally allow/disallow logging.
// |enable| is expected to be a bool.
#define BWE_TEST_LOGGING_GLOBAL_ENABLE(enabled)
// Insert a (hierarchical) logging context.
// |name| is a char*, std::string or uint32_t to name the context.
#define BWE_TEST_LOGGING_CONTEXT(name)
@ -93,6 +102,16 @@
#include "webrtc/system_wrappers/interface/constructor_magic.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
#define BWE_TEST_LOGGING_GLOBAL_CONTEXT(name) \
do { \
webrtc::testing::bwe::Logging::GetInstance()->SetGlobalContext(name); \
} while (0);
#define BWE_TEST_LOGGING_GLOBAL_ENABLE(enabled) \
do { \
webrtc::testing::bwe::Logging::GetInstance()->SetGlobalEnable(enabled); \
} while (0);
#define __BWE_TEST_LOGGING_CONTEXT_NAME(ctx, line) ctx ## line
#define __BWE_TEST_LOGGING_CONTEXT_DECLARE(ctx, line, name, time, enabled) \
webrtc::testing::bwe::Logging::Context \
@ -162,24 +181,33 @@ class Logging {
};
static Logging* GetInstance();
void SetGlobalContext(uint32_t name);
void SetGlobalContext(const std::string& name);
void SetGlobalContext(const char* name);
void SetGlobalEnable(bool enabled);
void Log(const char format[], ...);
void Plot(double value);
private:
struct State {
State(const char new_tag[], int64_t timestamp_ms, bool enabled)
: tag(new_tag),
timestamp_ms(timestamp_ms),
enabled(enabled) {
}
State();
State(const std::string& new_tag, int64_t timestamp_ms, bool enabled);
void MergePrevious(const State& previous);
std::string tag;
int64_t timestamp_ms;
bool enabled;
};
typedef std::map<uint32_t, std::stack<State> > ThreadMap;
struct ThreadState {
State global_state;
std::stack<State> stack;
};
typedef std::map<uint32_t, ThreadState> ThreadMap;
Logging();
void PushState(const char append_to_tag[], int64_t timestamp_ms,
void PushState(const std::string& append_to_tag, int64_t timestamp_ms,
bool enabled);
void PopState();