Refactoring AEC: AecCore struct made private

* Added aec_core_internal.h for private variables.
* Moved aec_t struct to aec_core_internal.h
* Name change aec_t -> AecCore
* Moved additional declarations to aec_core_internal.h
* Tested with audioproc_unittest and trybots

TEST=none
BUG=none

Review URL: https://webrtc-codereview.appspot.com/1117004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@3553 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
bjornv@webrtc.org 2013-02-20 22:38:47 +00:00
parent 71e91f3b64
commit 56a9ec30e9
6 changed files with 185 additions and 158 deletions

View File

@ -21,6 +21,7 @@
#include <string.h>
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_processing/aec/aec_core_internal.h"
#include "webrtc/modules/audio_processing/aec/aec_rdft.h"
#include "webrtc/modules/audio_processing/utility/delay_estimator_wrapper.h"
#include "webrtc/modules/audio_processing/utility/ring_buffer.h"
@ -115,22 +116,22 @@ extern int webrtc_aec_instance_count;
#endif
// "Private" function prototypes.
static void ProcessBlock(aec_t* aec);
static void ProcessBlock(AecCore* aec);
static void NonLinearProcessing(aec_t *aec, short *output, short *outputH);
static void NonLinearProcessing(AecCore* aec, short *output, short *outputH);
static void GetHighbandGain(const float *lambda, float *nlpGainHband);
// Comfort_noise also computes noise for H band returned in comfortNoiseHband
static void ComfortNoise(aec_t *aec, float efw[2][PART_LEN1],
static void ComfortNoise(AecCore* aec, float efw[2][PART_LEN1],
complex_t *comfortNoiseHband,
const float *noisePow, const float *lambda);
static void InitLevel(PowerLevel* level);
static void InitStats(Stats* stats);
static void InitMetrics(aec_t *aec);
static void InitMetrics(AecCore* aec);
static void UpdateLevel(PowerLevel* level, float in[2][PART_LEN1]);
static void UpdateMetrics(aec_t *aec);
static void UpdateMetrics(AecCore* aec);
// Convert from time domain to frequency domain. Note that |time_data| are
// overwritten.
static void TimeToFrequency(float time_data[PART_LEN2],
@ -155,9 +156,9 @@ static int CmpFloat(const void *a, const void *b)
return (*da > *db) - (*da < *db);
}
int WebRtcAec_CreateAec(aec_t **aecInst)
int WebRtcAec_CreateAec(AecCore** aecInst)
{
aec_t *aec = malloc(sizeof(aec_t));
AecCore* aec = malloc(sizeof(AecCore));
*aecInst = aec;
if (aec == NULL) {
return -1;
@ -246,7 +247,7 @@ int WebRtcAec_CreateAec(aec_t **aecInst)
return 0;
}
int WebRtcAec_FreeAec(aec_t *aec)
int WebRtcAec_FreeAec(AecCore* aec)
{
if (aec == NULL) {
return -1;
@ -274,7 +275,7 @@ int WebRtcAec_FreeAec(aec_t *aec)
return 0;
}
static void FilterFar(aec_t *aec, float yf[2][PART_LEN1])
static void FilterFar(AecCore* aec, float yf[2][PART_LEN1])
{
int i;
for (i = 0; i < NR_PART; i++) {
@ -295,7 +296,7 @@ static void FilterFar(aec_t *aec, float yf[2][PART_LEN1])
}
}
static void ScaleErrorSignal(aec_t *aec, float ef[2][PART_LEN1])
static void ScaleErrorSignal(AecCore* aec, float ef[2][PART_LEN1])
{
int i;
float absEf;
@ -318,7 +319,7 @@ static void ScaleErrorSignal(aec_t *aec, float ef[2][PART_LEN1])
// Time-unconstrined filter adaptation.
// TODO(andrew): consider for a low-complexity mode.
//static void FilterAdaptationUnconstrained(aec_t *aec, float *fft,
//static void FilterAdaptationUnconstrained(AecCore* aec, float *fft,
// float ef[2][PART_LEN1]) {
// int i, j;
// for (i = 0; i < NR_PART; i++) {
@ -342,7 +343,7 @@ static void ScaleErrorSignal(aec_t *aec, float ef[2][PART_LEN1])
// }
//}
static void FilterAdaptation(aec_t *aec, float *fft, float ef[2][PART_LEN1]) {
static void FilterAdaptation(AecCore* aec, float *fft, float ef[2][PART_LEN1]) {
int i, j;
for (i = 0; i < NR_PART; i++) {
int xPos = (i + aec->xfBufBlockPos)*(PART_LEN1);
@ -389,7 +390,7 @@ static void FilterAdaptation(aec_t *aec, float *fft, float ef[2][PART_LEN1]) {
}
}
static void OverdriveAndSuppress(aec_t *aec, float hNl[PART_LEN1],
static void OverdriveAndSuppress(AecCore* aec, float hNl[PART_LEN1],
const float hNlFb,
float efw[2][PART_LEN1]) {
int i;
@ -416,7 +417,7 @@ WebRtcAec_ScaleErrorSignal_t WebRtcAec_ScaleErrorSignal;
WebRtcAec_FilterAdaptation_t WebRtcAec_FilterAdaptation;
WebRtcAec_OverdriveAndSuppress_t WebRtcAec_OverdriveAndSuppress;
int WebRtcAec_InitAec(aec_t *aec, int sampFreq)
int WebRtcAec_InitAec(AecCore* aec, int sampFreq)
{
int i;
@ -564,7 +565,7 @@ int WebRtcAec_InitAec(aec_t *aec, int sampFreq)
return 0;
}
void WebRtcAec_BufferFarendPartition(aec_t *aec, const float* farend) {
void WebRtcAec_BufferFarendPartition(AecCore* aec, const float* farend) {
float fft[PART_LEN2];
float xf[2][PART_LEN1];
@ -583,7 +584,7 @@ void WebRtcAec_BufferFarendPartition(aec_t *aec, const float* farend) {
WebRtc_WriteBuffer(aec->far_buf_windowed, &xf[0][0], 1);
}
int WebRtcAec_MoveFarReadPtr(aec_t *aec, int elements) {
int WebRtcAec_MoveFarReadPtr(AecCore* aec, int elements) {
int elements_moved = WebRtc_MoveReadPtr(aec->far_buf_windowed, elements);
WebRtc_MoveReadPtr(aec->far_buf, elements);
#ifdef WEBRTC_AEC_DEBUG_DUMP
@ -593,7 +594,7 @@ int WebRtcAec_MoveFarReadPtr(aec_t *aec, int elements) {
return elements_moved;
}
void WebRtcAec_ProcessFrame(aec_t* aec,
void WebRtcAec_ProcessFrame(AecCore* aec,
const short* nearend,
const short* nearendH,
int knownDelay,
@ -679,7 +680,7 @@ void WebRtcAec_ProcessFrame(aec_t* aec,
}
}
int WebRtcAec_GetDelayMetricsCore(aec_t* self, int* median, int* std) {
int WebRtcAec_GetDelayMetricsCore(AecCore* self, int* median, int* std) {
int i = 0;
int delay_values = 0;
int num_delay_values = 0;
@ -733,12 +734,12 @@ int WebRtcAec_GetDelayMetricsCore(aec_t* self, int* median, int* std) {
return 0;
}
int WebRtcAec_echo_state(aec_t* self) {
int WebRtcAec_echo_state(AecCore* self) {
assert(self != NULL);
return self->echoState;
}
void WebRtcAec_GetEchoStats(aec_t* self, Stats* erl, Stats* erle,
void WebRtcAec_GetEchoStats(AecCore* self, Stats* erl, Stats* erle,
Stats* a_nlp) {
assert(self != NULL);
assert(erl != NULL);
@ -750,13 +751,13 @@ void WebRtcAec_GetEchoStats(aec_t* self, Stats* erl, Stats* erle,
}
#ifdef WEBRTC_AEC_DEBUG_DUMP
void* WebRtcAec_far_time_buf(aec_t* self) {
void* WebRtcAec_far_time_buf(AecCore* self) {
assert(self != NULL);
return self->far_time_buf;
}
#endif
void WebRtcAec_SetConfigCore(aec_t* self, int nlp_mode, int metrics_mode,
void WebRtcAec_SetConfigCore(AecCore* self, int nlp_mode, int metrics_mode,
int delay_logging) {
assert(self != NULL);
assert(nlp_mode >= 0 && nlp_mode < 3);
@ -771,18 +772,18 @@ void WebRtcAec_SetConfigCore(aec_t* self, int nlp_mode, int metrics_mode,
}
}
int WebRtcAec_system_delay(aec_t* self) {
int WebRtcAec_system_delay(AecCore* self) {
assert(self != NULL);
return self->system_delay;
}
void WebRtcAec_SetSystemDelay(aec_t* self, int delay) {
void WebRtcAec_SetSystemDelay(AecCore* self, int delay) {
assert(self != NULL);
assert(delay >= 0);
self->system_delay = delay;
}
static void ProcessBlock(aec_t* aec) {
static void ProcessBlock(AecCore* aec) {
int i;
float d[PART_LEN], y[PART_LEN], e[PART_LEN], dH[PART_LEN];
float scale;
@ -1001,7 +1002,7 @@ static void ProcessBlock(aec_t* aec) {
#endif
}
static void NonLinearProcessing(aec_t *aec, short *output, short *outputH)
static void NonLinearProcessing(AecCore* aec, short *output, short *outputH)
{
float efw[2][PART_LEN1], dfw[2][PART_LEN1], xfw[2][PART_LEN1];
complex_t comfortNoiseHband[PART_LEN1];
@ -1355,7 +1356,7 @@ static void GetHighbandGain(const float *lambda, float *nlpGainHband)
nlpGainHband[0] /= (float)(PART_LEN1 - 1 - freqAvgIc);
}
static void ComfortNoise(aec_t *aec, float efw[2][PART_LEN1],
static void ComfortNoise(AecCore* aec, float efw[2][PART_LEN1],
complex_t *comfortNoiseHband, const float *noisePow, const float *lambda)
{
int i, num;
@ -1464,7 +1465,7 @@ static void InitStats(Stats* stats) {
stats->hicounter = 0;
}
static void InitMetrics(aec_t* self) {
static void InitMetrics(AecCore* self) {
assert(self != NULL);
self->stateCounter = 0;
InitLevel(&self->farlevel);
@ -1537,7 +1538,7 @@ static void UpdateLevel(PowerLevel* level, float in[2][PART_LEN1]) {
}
}
static void UpdateMetrics(aec_t *aec)
static void UpdateMetrics(AecCore* aec)
{
float dtmp, dtmp2;

View File

@ -15,10 +15,6 @@
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AEC_AEC_CORE_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AEC_AEC_CORE_H_
#ifdef WEBRTC_AEC_DEBUG_DUMP
#include <stdio.h>
#endif
#include "webrtc/typedefs.h"
#define FRAME_LEN 80
@ -45,16 +41,6 @@ typedef float complex_t[2];
// Metrics
enum { kOffsetLevel = -100 };
typedef struct PowerLevel {
float sfrsum;
int sfrcounter;
float framelevel;
float frsum;
int frcounter;
float minlevel;
float averagelevel;
} PowerLevel;
typedef struct Stats {
float instant;
float average;
@ -67,112 +53,24 @@ typedef struct Stats {
int hicounter;
} Stats;
typedef struct {
int farBufWritePos, farBufReadPos;
typedef struct AecCore AecCore;
int knownDelay;
int inSamples, outSamples;
int delayEstCtr;
void *nearFrBuf, *outFrBuf;
void *nearFrBufH;
void *outFrBufH;
float dBuf[PART_LEN2]; // nearend
float eBuf[PART_LEN2]; // error
float dBufH[PART_LEN2]; // nearend
float xPow[PART_LEN1];
float dPow[PART_LEN1];
float dMinPow[PART_LEN1];
float dInitMinPow[PART_LEN1];
float *noisePow;
float xfBuf[2][NR_PART * PART_LEN1]; // farend fft buffer
float wfBuf[2][NR_PART * PART_LEN1]; // filter fft
complex_t sde[PART_LEN1]; // cross-psd of nearend and error
complex_t sxd[PART_LEN1]; // cross-psd of farend and nearend
complex_t xfwBuf[NR_PART * PART_LEN1]; // farend windowed fft buffer
float sx[PART_LEN1], sd[PART_LEN1], se[PART_LEN1]; // far, near, error psd
float hNs[PART_LEN1];
float hNlFbMin, hNlFbLocalMin;
float hNlXdAvgMin;
int hNlNewMin, hNlMinCtr;
float overDrive, overDriveSm;
int nlp_mode;
float outBuf[PART_LEN];
int delayIdx;
short stNearState, echoState;
short divergeState;
int xfBufBlockPos;
void* far_buf;
void* far_buf_windowed;
int system_delay; // Current system delay buffered in AEC.
int mult; // sampling frequency multiple
int sampFreq;
WebRtc_UWord32 seed;
float mu; // stepsize
float errThresh; // error threshold
int noiseEstCtr;
PowerLevel farlevel;
PowerLevel nearlevel;
PowerLevel linoutlevel;
PowerLevel nlpoutlevel;
int metricsMode;
int stateCounter;
Stats erl;
Stats erle;
Stats aNlp;
Stats rerl;
// Quantities to control H band scaling for SWB input
int freq_avg_ic; // initial bin for averaging nlp gain
int flag_Hband_cn; // for comfort noise
float cn_scale_Hband; // scale for comfort noise in H band
int delay_histogram[kHistorySizeBlocks];
int delay_logging_enabled;
void* delay_estimator_farend;
void* delay_estimator;
#ifdef WEBRTC_AEC_DEBUG_DUMP
void* far_time_buf;
FILE *farFile;
FILE *nearFile;
FILE *outFile;
FILE *outLinearFile;
#endif
} aec_t;
typedef void (*WebRtcAec_FilterFar_t)(aec_t *aec, float yf[2][PART_LEN1]);
extern WebRtcAec_FilterFar_t WebRtcAec_FilterFar;
typedef void (*WebRtcAec_ScaleErrorSignal_t)(aec_t *aec, float ef[2][PART_LEN1]);
extern WebRtcAec_ScaleErrorSignal_t WebRtcAec_ScaleErrorSignal;
typedef void (*WebRtcAec_FilterFar_t)(AecCore* aec, float yf[2][PART_LEN1]);
typedef void (*WebRtcAec_ScaleErrorSignal_t)
(AecCore* aec, float ef[2][PART_LEN1]);
typedef void (*WebRtcAec_FilterAdaptation_t)
(aec_t *aec, float *fft, float ef[2][PART_LEN1]);
extern WebRtcAec_FilterAdaptation_t WebRtcAec_FilterAdaptation;
(AecCore* aec, float *fft, float ef[2][PART_LEN1]);
typedef void (*WebRtcAec_OverdriveAndSuppress_t)
(aec_t *aec, float hNl[PART_LEN1], const float hNlFb, float efw[2][PART_LEN1]);
extern WebRtcAec_OverdriveAndSuppress_t WebRtcAec_OverdriveAndSuppress;
(AecCore* aec, float hNl[PART_LEN1], const float hNlFb,
float efw[2][PART_LEN1]);
int WebRtcAec_CreateAec(aec_t **aec);
int WebRtcAec_FreeAec(aec_t *aec);
int WebRtcAec_InitAec(aec_t *aec, int sampFreq);
int WebRtcAec_CreateAec(AecCore** aec);
int WebRtcAec_FreeAec(AecCore* aec);
int WebRtcAec_InitAec(AecCore* aec, int sampFreq);
void WebRtcAec_InitAec_SSE2(void);
void WebRtcAec_BufferFarendPartition(aec_t *aec, const float* farend);
void WebRtcAec_ProcessFrame(aec_t* aec,
void WebRtcAec_BufferFarendPartition(AecCore* aec, const float* farend);
void WebRtcAec_ProcessFrame(AecCore* aec,
const short* nearend,
const short* nearendH,
int knownDelay,
@ -182,26 +80,27 @@ void WebRtcAec_ProcessFrame(aec_t* aec,
// A helper function to call WebRtc_MoveReadPtr() for all far-end buffers.
// Returns the number of elements moved, and adjusts |system_delay| by the
// corresponding amount in ms.
int WebRtcAec_MoveFarReadPtr(aec_t* aec, int elements);
int WebRtcAec_MoveFarReadPtr(AecCore* aec, int elements);
// Calculates the median and standard deviation among the delay estimates
// collected since the last call to this function.
int WebRtcAec_GetDelayMetricsCore(aec_t* self, int* median, int* std);
int WebRtcAec_GetDelayMetricsCore(AecCore* self, int* median, int* std);
// Returns the echo state (1: echo, 0: no echo).
int WebRtcAec_echo_state(aec_t* self);
int WebRtcAec_echo_state(AecCore* self);
// Gets statistics of the echo metrics ERL, ERLE, A_NLP.
void WebRtcAec_GetEchoStats(aec_t* self, Stats* erl, Stats* erle, Stats* a_nlp);
void WebRtcAec_GetEchoStats(AecCore* self, Stats* erl, Stats* erle,
Stats* a_nlp);
#ifdef WEBRTC_AEC_DEBUG_DUMP
void* WebRtcAec_far_time_buf(aec_t* self);
void* WebRtcAec_far_time_buf(AecCore* self);
#endif
// Sets local configuration modes.
void WebRtcAec_SetConfigCore(aec_t* self, int nlp_mode, int metrics_mode,
void WebRtcAec_SetConfigCore(AecCore* self, int nlp_mode, int metrics_mode,
int delay_logging);
// Returns the current |system_delay|, i.e., the buffered difference between
// far-end and near-end.
int WebRtcAec_system_delay(aec_t* self);
int WebRtcAec_system_delay(AecCore* self);
// Sets the |system_delay| to |value|. Note that if the value is changed
// improperly, there can be a performance regression. So it should be used with
// care.
void WebRtcAec_SetSystemDelay(aec_t* self, int delay);
void WebRtcAec_SetSystemDelay(AecCore* self, int delay);
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_AEC_AEC_CORE_H_

View File

@ -0,0 +1,125 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_AEC_AEC_CORE_INTERNAL_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_AEC_AEC_CORE_INTERNAL_H_
#include "webrtc/modules/audio_processing/aec/aec_core.h"
#ifdef WEBRTC_AEC_DEBUG_DUMP
#include <stdio.h>
#endif
#include "webrtc/typedefs.h"
typedef struct PowerLevel {
float sfrsum;
int sfrcounter;
float framelevel;
float frsum;
int frcounter;
float minlevel;
float averagelevel;
} PowerLevel;
struct AecCore {
int farBufWritePos, farBufReadPos;
int knownDelay;
int inSamples, outSamples;
int delayEstCtr;
void *nearFrBuf, *outFrBuf;
void *nearFrBufH;
void *outFrBufH;
float dBuf[PART_LEN2]; // nearend
float eBuf[PART_LEN2]; // error
float dBufH[PART_LEN2]; // nearend
float xPow[PART_LEN1];
float dPow[PART_LEN1];
float dMinPow[PART_LEN1];
float dInitMinPow[PART_LEN1];
float *noisePow;
float xfBuf[2][NR_PART * PART_LEN1]; // farend fft buffer
float wfBuf[2][NR_PART * PART_LEN1]; // filter fft
complex_t sde[PART_LEN1]; // cross-psd of nearend and error
complex_t sxd[PART_LEN1]; // cross-psd of farend and nearend
complex_t xfwBuf[NR_PART * PART_LEN1]; // farend windowed fft buffer
float sx[PART_LEN1], sd[PART_LEN1], se[PART_LEN1]; // far, near, error psd
float hNs[PART_LEN1];
float hNlFbMin, hNlFbLocalMin;
float hNlXdAvgMin;
int hNlNewMin, hNlMinCtr;
float overDrive, overDriveSm;
int nlp_mode;
float outBuf[PART_LEN];
int delayIdx;
short stNearState, echoState;
short divergeState;
int xfBufBlockPos;
void* far_buf;
void* far_buf_windowed;
int system_delay; // Current system delay buffered in AEC.
int mult; // sampling frequency multiple
int sampFreq;
WebRtc_UWord32 seed;
float mu; // stepsize
float errThresh; // error threshold
int noiseEstCtr;
PowerLevel farlevel;
PowerLevel nearlevel;
PowerLevel linoutlevel;
PowerLevel nlpoutlevel;
int metricsMode;
int stateCounter;
Stats erl;
Stats erle;
Stats aNlp;
Stats rerl;
// Quantities to control H band scaling for SWB input
int freq_avg_ic; // initial bin for averaging nlp gain
int flag_Hband_cn; // for comfort noise
float cn_scale_Hband; // scale for comfort noise in H band
int delay_histogram[kHistorySizeBlocks];
int delay_logging_enabled;
void* delay_estimator_farend;
void* delay_estimator;
#ifdef WEBRTC_AEC_DEBUG_DUMP
void* far_time_buf;
FILE *farFile;
FILE *nearFile;
FILE *outFile;
FILE *outLinearFile;
#endif
};
extern WebRtcAec_FilterFar_t WebRtcAec_FilterFar;
extern WebRtcAec_ScaleErrorSignal_t WebRtcAec_ScaleErrorSignal;
extern WebRtcAec_FilterAdaptation_t WebRtcAec_FilterAdaptation;
extern WebRtcAec_OverdriveAndSuppress_t WebRtcAec_OverdriveAndSuppress;
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_AEC_AEC_CORE_INTERNAL_H_

View File

@ -12,13 +12,14 @@
* The core AEC algorithm, SSE2 version of speed-critical functions.
*/
#include "aec_core.h"
#include "webrtc/modules/audio_processing/aec/aec_core.h"
#include <emmintrin.h>
#include <math.h>
#include <string.h> // memset
#include "aec_rdft.h"
#include "webrtc/modules/audio_processing/aec/aec_core_internal.h"
#include "webrtc/modules/audio_processing/aec/aec_rdft.h"
__inline static float MulRe(float aRe, float aIm, float bRe, float bIm)
{
@ -30,7 +31,7 @@ __inline static float MulIm(float aRe, float aIm, float bRe, float bIm)
return aRe * bIm + aIm * bRe;
}
static void FilterFarSSE2(aec_t *aec, float yf[2][PART_LEN1])
static void FilterFarSSE2(AecCore* aec, float yf[2][PART_LEN1])
{
int i;
for (i = 0; i < NR_PART; i++) {
@ -71,7 +72,7 @@ static void FilterFarSSE2(aec_t *aec, float yf[2][PART_LEN1])
}
}
static void ScaleErrorSignalSSE2(aec_t *aec, float ef[2][PART_LEN1])
static void ScaleErrorSignalSSE2(AecCore* aec, float ef[2][PART_LEN1])
{
const __m128 k1e_10f = _mm_set1_ps(1e-10f);
const __m128 kThresh = _mm_set1_ps(aec->errThresh);
@ -127,7 +128,7 @@ static void ScaleErrorSignalSSE2(aec_t *aec, float ef[2][PART_LEN1])
}
}
static void FilterAdaptationSSE2(aec_t *aec, float *fft, float ef[2][PART_LEN1]) {
static void FilterAdaptationSSE2(AecCore* aec, float *fft, float ef[2][PART_LEN1]) {
int i, j;
for (i = 0; i < NR_PART; i++) {
int xPos = (i + aec->xfBufBlockPos)*(PART_LEN1);
@ -340,7 +341,7 @@ static __m128 mm_pow_ps(__m128 a, __m128 b)
extern const float WebRtcAec_weightCurve[65];
extern const float WebRtcAec_overDriveCurve[65];
static void OverdriveAndSuppressSSE2(aec_t *aec, float hNl[PART_LEN1],
static void OverdriveAndSuppressSSE2(AecCore* aec, float hNl[PART_LEN1],
const float hNlFb,
float efw[2][PART_LEN1]) {
int i;

View File

@ -61,7 +61,7 @@ typedef struct {
int lastError;
aec_t* aec;
AecCore* aec;
} aecpc_t;
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_AEC_ECHO_CANCELLATION_INTERNAL_H_

View File

@ -41,6 +41,7 @@
'aec/echo_cancellation_internal.h',
'aec/aec_core.h',
'aec/aec_core.c',
'aec/aec_core_internal.h',
'aec/aec_rdft.h',
'aec/aec_rdft.c',
'aec/aec_resampler.h',