webrtc/talk/base/testclient.cc

156 lines
5.0 KiB
C++
Raw Normal View History

/*
* libjingle
* Copyright 2004--2005, Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "talk/base/testclient.h"
#include "talk/base/thread.h"
#include "talk/base/timeutils.h"
namespace talk_base {
// DESIGN: Each packet received is put it into a list of packets.
// Callers can retrieve received packets from any thread by calling
// NextPacket.
TestClient::TestClient(AsyncPacketSocket* socket)
: socket_(socket), ready_to_send_(false) {
packets_ = new std::vector<Packet*>();
socket_->SignalReadPacket.connect(this, &TestClient::OnPacket);
socket_->SignalReadyToSend.connect(this, &TestClient::OnReadyToSend);
}
TestClient::~TestClient() {
delete socket_;
for (unsigned i = 0; i < packets_->size(); i++)
delete (*packets_)[i];
delete packets_;
}
bool TestClient::CheckConnState(AsyncPacketSocket::State state) {
// Wait for our timeout value until the socket reaches the desired state.
uint32 end = TimeAfter(kTimeout);
while (socket_->GetState() != state && TimeUntil(end) > 0)
Thread::Current()->ProcessMessages(1);
return (socket_->GetState() == state);
}
int TestClient::Send(const char* buf, size_t size) {
return socket_->Send(buf, size);
}
int TestClient::SendTo(const char* buf, size_t size,
const SocketAddress& dest) {
return socket_->SendTo(buf, size, dest);
}
TestClient::Packet* TestClient::NextPacket() {
// If no packets are currently available, we go into a get/dispatch loop for
// at most 1 second. If, during the loop, a packet arrives, then we can stop
// early and return it.
// Note that the case where no packet arrives is important. We often want to
// test that a packet does not arrive.
// Note also that we only try to pump our current thread's message queue.
// Pumping another thread's queue could lead to messages being dispatched from
// the wrong thread to non-thread-safe objects.
uint32 end = TimeAfter(kTimeout);
while (packets_->size() == 0 && TimeUntil(end) > 0)
Thread::Current()->ProcessMessages(1);
// Return the first packet placed in the queue.
Packet* packet = NULL;
if (packets_->size() > 0) {
CritScope cs(&crit_);
packet = packets_->front();
packets_->erase(packets_->begin());
}
return packet;
}
bool TestClient::CheckNextPacket(const char* buf, size_t size,
SocketAddress* addr) {
bool res = false;
Packet* packet = NextPacket();
if (packet) {
res = (packet->size == size && std::memcmp(packet->buf, buf, size) == 0);
if (addr)
*addr = packet->addr;
delete packet;
}
return res;
}
bool TestClient::CheckNoPacket() {
bool res;
Packet* packet = NextPacket();
res = (packet == NULL);
delete packet;
return res;
}
int TestClient::GetError() {
return socket_->GetError();
}
int TestClient::SetOption(Socket::Option opt, int value) {
return socket_->SetOption(opt, value);
}
bool TestClient::ready_to_send() const {
return ready_to_send_;
}
void TestClient::OnPacket(AsyncPacketSocket* socket, const char* buf,
size_t size, const SocketAddress& remote_addr) {
CritScope cs(&crit_);
packets_->push_back(new Packet(remote_addr, buf, size));
}
void TestClient::OnReadyToSend(AsyncPacketSocket* socket) {
ready_to_send_ = true;
}
TestClient::Packet::Packet(const SocketAddress& a, const char* b, size_t s)
: addr(a), buf(0), size(s) {
buf = new char[size];
memcpy(buf, b, size);
}
TestClient::Packet::Packet(const Packet& p)
: addr(p.addr), buf(0), size(p.size) {
buf = new char[size];
memcpy(buf, p.buf, size);
}
TestClient::Packet::~Packet() {
delete[] buf;
}
} // namespace talk_base