Move some lossless logic out of dsp.
Change-Id: I4cfd60cd5497666a2e1c188ceada2e71b05f1505
This commit is contained in:
parent
78363e9e51
commit
6cc48b1728
@ -116,6 +116,7 @@ enc_srcs := \
|
||||
src/enc/picture_psnr.c \
|
||||
src/enc/picture_rescale.c \
|
||||
src/enc/picture_tools.c \
|
||||
src/enc/predictor.c \
|
||||
src/enc/quant.c \
|
||||
src/enc/syntax.c \
|
||||
src/enc/token.c \
|
||||
|
@ -286,6 +286,7 @@ ENC_OBJS = \
|
||||
$(DIROBJ)\enc\picture_psnr.obj \
|
||||
$(DIROBJ)\enc\picture_rescale.obj \
|
||||
$(DIROBJ)\enc\picture_tools.obj \
|
||||
$(DIROBJ)\enc\predictor.obj \
|
||||
$(DIROBJ)\enc\quant.obj \
|
||||
$(DIROBJ)\enc\syntax.obj \
|
||||
$(DIROBJ)\enc\token.obj \
|
||||
|
@ -195,6 +195,7 @@ model {
|
||||
include "picture_psnr.c"
|
||||
include "picture_rescale.c"
|
||||
include "picture_tools.c"
|
||||
include "predictor.c"
|
||||
include "quant.c"
|
||||
include "syntax.c"
|
||||
include "token.c"
|
||||
|
@ -208,6 +208,7 @@ ENC_OBJS = \
|
||||
src/enc/picture_psnr.o \
|
||||
src/enc/picture_rescale.o \
|
||||
src/enc/picture_tools.o \
|
||||
src/enc/predictor.o \
|
||||
src/enc/quant.o \
|
||||
src/enc/syntax.o \
|
||||
src/enc/token.o \
|
||||
|
@ -136,17 +136,6 @@ void VP8LCollectColorBlueTransforms_C(const uint32_t* argb, int stride,
|
||||
int green_to_blue, int red_to_blue,
|
||||
int histo[]);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Image transforms.
|
||||
|
||||
void VP8LResidualImage(int width, int height, int bits, int low_effort,
|
||||
uint32_t* const argb, uint32_t* const argb_scratch,
|
||||
uint32_t* const image, int near_lossless, int exact,
|
||||
int used_subtract_green);
|
||||
|
||||
void VP8LColorSpaceTransform(int width, int height, int bits, int quality,
|
||||
uint32_t* const argb, uint32_t* image);
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Huffman-cost related functions.
|
||||
|
||||
|
@ -23,11 +23,6 @@
|
||||
#include "./lossless_common.h"
|
||||
#include "./yuv.h"
|
||||
|
||||
#define MAX_DIFF_COST (1e30f)
|
||||
|
||||
static const int kPredLowEffort = 11;
|
||||
static const uint32_t kMaskAlpha = 0xff000000;
|
||||
|
||||
// lookup table for small values of log2(int)
|
||||
const float kLog2Table[LOG_LOOKUP_IDX_MAX] = {
|
||||
0.0000000000000000f, 0.0000000000000000f,
|
||||
@ -381,26 +376,9 @@ static float FastLog2Slow(uint32_t v) {
|
||||
}
|
||||
}
|
||||
|
||||
// Mostly used to reduce code size + readability
|
||||
static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
|
||||
static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Methods to calculate Entropy (Shannon).
|
||||
|
||||
static float PredictionCostSpatial(const int counts[256], int weight_0,
|
||||
double exp_val) {
|
||||
const int significant_symbols = 256 >> 4;
|
||||
const double exp_decay_factor = 0.6;
|
||||
double bits = weight_0 * counts[0];
|
||||
int i;
|
||||
for (i = 1; i < significant_symbols; ++i) {
|
||||
bits += exp_val * (counts[i] + counts[256 - i]);
|
||||
exp_val *= exp_decay_factor;
|
||||
}
|
||||
return (float)(-0.1 * bits);
|
||||
}
|
||||
|
||||
// Compute the combined Shanon's entropy for distribution {X} and {X+Y}
|
||||
static float CombinedShannonEntropy(const int X[256], const int Y[256]) {
|
||||
int i;
|
||||
@ -423,18 +401,6 @@ static float CombinedShannonEntropy(const int X[256], const int Y[256]) {
|
||||
return (float)retval;
|
||||
}
|
||||
|
||||
static float PredictionCostSpatialHistogram(const int accumulated[4][256],
|
||||
const int tile[4][256]) {
|
||||
int i;
|
||||
double retval = 0;
|
||||
for (i = 0; i < 4; ++i) {
|
||||
const double kExpValue = 0.94;
|
||||
retval += PredictionCostSpatial(tile[i], 1, kExpValue);
|
||||
retval += VP8LCombinedShannonEntropy(tile[i], accumulated[i]);
|
||||
}
|
||||
return (float)retval;
|
||||
}
|
||||
|
||||
void VP8LBitEntropyInit(VP8LBitEntropy* const entropy) {
|
||||
entropy->entropy = 0.;
|
||||
entropy->sum = 0;
|
||||
@ -531,395 +497,8 @@ void VP8LGetCombinedEntropyUnrefined(const uint32_t* const X,
|
||||
bit_entropy->entropy += VP8LFastSLog2(bit_entropy->sum);
|
||||
}
|
||||
|
||||
static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) {
|
||||
++histo_argb[0][argb >> 24];
|
||||
++histo_argb[1][(argb >> 16) & 0xff];
|
||||
++histo_argb[2][(argb >> 8) & 0xff];
|
||||
++histo_argb[3][argb & 0xff];
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static WEBP_INLINE uint32_t Predict(VP8LPredictorFunc pred_func,
|
||||
int x, int y,
|
||||
const uint32_t* current_row,
|
||||
const uint32_t* upper_row) {
|
||||
if (y == 0) {
|
||||
return (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left.
|
||||
} else if (x == 0) {
|
||||
return upper_row[x]; // Top.
|
||||
} else {
|
||||
return pred_func(current_row[x - 1], upper_row + x);
|
||||
}
|
||||
}
|
||||
|
||||
static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
|
||||
const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
|
||||
const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
|
||||
const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
|
||||
const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
|
||||
return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
|
||||
}
|
||||
|
||||
static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
|
||||
uint32_t left, uint32_t right) {
|
||||
const int diff_up = MaxDiffBetweenPixels(current, up);
|
||||
const int diff_down = MaxDiffBetweenPixels(current, down);
|
||||
const int diff_left = MaxDiffBetweenPixels(current, left);
|
||||
const int diff_right = MaxDiffBetweenPixels(current, right);
|
||||
return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
|
||||
}
|
||||
|
||||
static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
|
||||
const uint32_t green = (argb >> 8) & 0xff;
|
||||
uint32_t red_blue = argb & 0x00ff00ffu;
|
||||
red_blue += (green << 16) | green;
|
||||
red_blue &= 0x00ff00ffu;
|
||||
return (argb & 0xff00ff00u) | red_blue;
|
||||
}
|
||||
|
||||
static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
|
||||
uint8_t* const max_diffs, int used_subtract_green) {
|
||||
uint32_t current, up, down, left, right;
|
||||
int x;
|
||||
if (width <= 2) return;
|
||||
current = argb[0];
|
||||
right = argb[1];
|
||||
if (used_subtract_green) {
|
||||
current = AddGreenToBlueAndRed(current);
|
||||
right = AddGreenToBlueAndRed(right);
|
||||
}
|
||||
// max_diffs[0] and max_diffs[width - 1] are never used.
|
||||
for (x = 1; x < width - 1; ++x) {
|
||||
up = argb[-stride + x];
|
||||
down = argb[stride + x];
|
||||
left = current;
|
||||
current = right;
|
||||
right = argb[x + 1];
|
||||
if (used_subtract_green) {
|
||||
up = AddGreenToBlueAndRed(up);
|
||||
down = AddGreenToBlueAndRed(down);
|
||||
right = AddGreenToBlueAndRed(right);
|
||||
}
|
||||
max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
|
||||
}
|
||||
}
|
||||
|
||||
// Quantize the difference between the actual component value and its prediction
|
||||
// to a multiple of quantization, working modulo 256, taking care not to cross
|
||||
// a boundary (inclusive upper limit).
|
||||
static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
|
||||
uint8_t boundary, int quantization) {
|
||||
const int residual = (value - predict) & 0xff;
|
||||
const int boundary_residual = (boundary - predict) & 0xff;
|
||||
const int lower = residual & ~(quantization - 1);
|
||||
const int upper = lower + quantization;
|
||||
// Resolve ties towards a value closer to the prediction (i.e. towards lower
|
||||
// if value comes after prediction and towards upper otherwise).
|
||||
const int bias = ((boundary - value) & 0xff) < boundary_residual;
|
||||
if (residual - lower < upper - residual + bias) {
|
||||
// lower is closer to residual than upper.
|
||||
if (residual > boundary_residual && lower <= boundary_residual) {
|
||||
// Halve quantization step to avoid crossing boundary. This midpoint is
|
||||
// on the same side of boundary as residual because midpoint >= residual
|
||||
// (since lower is closer than upper) and residual is above the boundary.
|
||||
return lower + (quantization >> 1);
|
||||
}
|
||||
return lower;
|
||||
} else {
|
||||
// upper is closer to residual than lower.
|
||||
if (residual <= boundary_residual && upper > boundary_residual) {
|
||||
// Halve quantization step to avoid crossing boundary. This midpoint is
|
||||
// on the same side of boundary as residual because midpoint <= residual
|
||||
// (since upper is closer than lower) and residual is below the boundary.
|
||||
return lower + (quantization >> 1);
|
||||
}
|
||||
return upper & 0xff;
|
||||
}
|
||||
}
|
||||
|
||||
// Quantize every component of the difference between the actual pixel value and
|
||||
// its prediction to a multiple of a quantization (a power of 2, not larger than
|
||||
// max_quantization which is a power of 2, smaller than max_diff). Take care if
|
||||
// value and predict have undergone subtract green, which means that red and
|
||||
// blue are represented as offsets from green.
|
||||
static uint32_t NearLossless(uint32_t value, uint32_t predict,
|
||||
int max_quantization, int max_diff,
|
||||
int used_subtract_green) {
|
||||
int quantization;
|
||||
uint8_t new_green = 0;
|
||||
uint8_t green_diff = 0;
|
||||
uint8_t a, r, g, b;
|
||||
if (max_diff <= 2) {
|
||||
return VP8LSubPixels(value, predict);
|
||||
}
|
||||
quantization = max_quantization;
|
||||
while (quantization >= max_diff) {
|
||||
quantization >>= 1;
|
||||
}
|
||||
if ((value >> 24) == 0 || (value >> 24) == 0xff) {
|
||||
// Preserve transparency of fully transparent or fully opaque pixels.
|
||||
a = ((value >> 24) - (predict >> 24)) & 0xff;
|
||||
} else {
|
||||
a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
|
||||
}
|
||||
g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
|
||||
quantization);
|
||||
if (used_subtract_green) {
|
||||
// The green offset will be added to red and blue components during decoding
|
||||
// to obtain the actual red and blue values.
|
||||
new_green = ((predict >> 8) + g) & 0xff;
|
||||
// The amount by which green has been adjusted during quantization. It is
|
||||
// subtracted from red and blue for compensation, to avoid accumulating two
|
||||
// quantization errors in them.
|
||||
green_diff = (new_green - (value >> 8)) & 0xff;
|
||||
}
|
||||
r = NearLosslessComponent(((value >> 16) - green_diff) & 0xff,
|
||||
(predict >> 16) & 0xff, 0xff - new_green,
|
||||
quantization);
|
||||
b = NearLosslessComponent((value - green_diff) & 0xff, predict & 0xff,
|
||||
0xff - new_green, quantization);
|
||||
return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
||||
}
|
||||
|
||||
// Returns the difference between the pixel and its prediction. In case of a
|
||||
// lossy encoding, updates the source image to avoid propagating the deviation
|
||||
// further to pixels which depend on the current pixel for their predictions.
|
||||
static WEBP_INLINE uint32_t GetResidual(int width, int height,
|
||||
uint32_t* const upper_row,
|
||||
uint32_t* const current_row,
|
||||
const uint8_t* const max_diffs,
|
||||
int mode, VP8LPredictorFunc pred_func,
|
||||
int x, int y, int max_quantization,
|
||||
int exact, int used_subtract_green) {
|
||||
const uint32_t predict = Predict(pred_func, x, y, current_row, upper_row);
|
||||
uint32_t residual;
|
||||
if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
|
||||
x == 0 || x == width - 1) {
|
||||
residual = VP8LSubPixels(current_row[x], predict);
|
||||
} else {
|
||||
residual = NearLossless(current_row[x], predict, max_quantization,
|
||||
max_diffs[x], used_subtract_green);
|
||||
// Update the source image.
|
||||
current_row[x] = VP8LAddPixels(predict, residual);
|
||||
// x is never 0 here so we do not need to update upper_row like below.
|
||||
}
|
||||
if (!exact && (current_row[x] & kMaskAlpha) == 0) {
|
||||
// If alpha is 0, cleanup RGB. We can choose the RGB values of the residual
|
||||
// for best compression. The prediction of alpha itself can be non-zero and
|
||||
// must be kept though. We choose RGB of the residual to be 0.
|
||||
residual &= kMaskAlpha;
|
||||
// Update the source image.
|
||||
current_row[x] = predict & ~kMaskAlpha;
|
||||
// The prediction for the rightmost pixel in a row uses the leftmost pixel
|
||||
// in that row as its top-right context pixel. Hence if we change the
|
||||
// leftmost pixel of current_row, the corresponding change must be applied
|
||||
// to upper_row as well where top-right context is being read from.
|
||||
if (x == 0 && y != 0) upper_row[width] = current_row[0];
|
||||
}
|
||||
return residual;
|
||||
}
|
||||
|
||||
// Returns best predictor and updates the accumulated histogram.
|
||||
// If max_quantization > 1, assumes that near lossless processing will be
|
||||
// applied, quantizing residuals to multiples of quantization levels up to
|
||||
// max_quantization (the actual quantization level depends on smoothness near
|
||||
// the given pixel).
|
||||
static int GetBestPredictorForTile(int width, int height,
|
||||
int tile_x, int tile_y, int bits,
|
||||
int accumulated[4][256],
|
||||
uint32_t* const argb_scratch,
|
||||
const uint32_t* const argb,
|
||||
int max_quantization,
|
||||
int exact, int used_subtract_green) {
|
||||
const int kNumPredModes = 14;
|
||||
const int start_x = tile_x << bits;
|
||||
const int start_y = tile_y << bits;
|
||||
const int tile_size = 1 << bits;
|
||||
const int max_y = GetMin(tile_size, height - start_y);
|
||||
const int max_x = GetMin(tile_size, width - start_x);
|
||||
// Whether there exist columns just outside the tile.
|
||||
const int have_left = (start_x > 0);
|
||||
const int have_right = (max_x < width - start_x);
|
||||
// Position and size of the strip covering the tile and adjacent columns if
|
||||
// they exist.
|
||||
const int context_start_x = start_x - have_left;
|
||||
const int context_width = max_x + have_left + have_right;
|
||||
// The width of upper_row and current_row is one pixel larger than image width
|
||||
// to allow the top right pixel to point to the leftmost pixel of the next row
|
||||
// when at the right edge.
|
||||
uint32_t* upper_row = argb_scratch;
|
||||
uint32_t* current_row = upper_row + width + 1;
|
||||
uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
|
||||
float best_diff = MAX_DIFF_COST;
|
||||
int best_mode = 0;
|
||||
int mode;
|
||||
int histo_stack_1[4][256];
|
||||
int histo_stack_2[4][256];
|
||||
// Need pointers to be able to swap arrays.
|
||||
int (*histo_argb)[256] = histo_stack_1;
|
||||
int (*best_histo)[256] = histo_stack_2;
|
||||
int i, j;
|
||||
|
||||
for (mode = 0; mode < kNumPredModes; ++mode) {
|
||||
const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
|
||||
float cur_diff;
|
||||
int relative_y;
|
||||
memset(histo_argb, 0, sizeof(histo_stack_1));
|
||||
if (start_y > 0) {
|
||||
// Read the row above the tile which will become the first upper_row.
|
||||
// Include a pixel to the left if it exists; include a pixel to the right
|
||||
// in all cases (wrapping to the leftmost pixel of the next row if it does
|
||||
// not exist).
|
||||
memcpy(current_row + context_start_x,
|
||||
argb + (start_y - 1) * width + context_start_x,
|
||||
sizeof(*argb) * (max_x + have_left + 1));
|
||||
}
|
||||
for (relative_y = 0; relative_y < max_y; ++relative_y) {
|
||||
const int y = start_y + relative_y;
|
||||
int relative_x;
|
||||
uint32_t* tmp = upper_row;
|
||||
upper_row = current_row;
|
||||
current_row = tmp;
|
||||
// Read current_row. Include a pixel to the left if it exists; include a
|
||||
// pixel to the right in all cases except at the bottom right corner of
|
||||
// the image (wrapping to the leftmost pixel of the next row if it does
|
||||
// not exist in the current row).
|
||||
memcpy(current_row + context_start_x,
|
||||
argb + y * width + context_start_x,
|
||||
sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
|
||||
if (max_quantization > 1 && y >= 1 && y + 1 < height) {
|
||||
MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
|
||||
max_diffs + context_start_x, used_subtract_green);
|
||||
}
|
||||
|
||||
for (relative_x = 0; relative_x < max_x; ++relative_x) {
|
||||
const int x = start_x + relative_x;
|
||||
UpdateHisto(histo_argb,
|
||||
GetResidual(width, height, upper_row, current_row,
|
||||
max_diffs, mode, pred_func, x, y,
|
||||
max_quantization, exact, used_subtract_green));
|
||||
}
|
||||
}
|
||||
cur_diff = PredictionCostSpatialHistogram(
|
||||
(const int (*)[256])accumulated, (const int (*)[256])histo_argb);
|
||||
if (cur_diff < best_diff) {
|
||||
int (*tmp)[256] = histo_argb;
|
||||
histo_argb = best_histo;
|
||||
best_histo = tmp;
|
||||
best_diff = cur_diff;
|
||||
best_mode = mode;
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < 4; i++) {
|
||||
for (j = 0; j < 256; j++) {
|
||||
accumulated[i][j] += best_histo[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
return best_mode;
|
||||
}
|
||||
|
||||
// Converts pixels of the image to residuals with respect to predictions.
|
||||
// If max_quantization > 1, applies near lossless processing, quantizing
|
||||
// residuals to multiples of quantization levels up to max_quantization
|
||||
// (the actual quantization level depends on smoothness near the given pixel).
|
||||
static void CopyImageWithPrediction(int width, int height,
|
||||
int bits, uint32_t* const modes,
|
||||
uint32_t* const argb_scratch,
|
||||
uint32_t* const argb,
|
||||
int low_effort, int max_quantization,
|
||||
int exact, int used_subtract_green) {
|
||||
const int tiles_per_row = VP8LSubSampleSize(width, bits);
|
||||
const int mask = (1 << bits) - 1;
|
||||
// The width of upper_row and current_row is one pixel larger than image width
|
||||
// to allow the top right pixel to point to the leftmost pixel of the next row
|
||||
// when at the right edge.
|
||||
uint32_t* upper_row = argb_scratch;
|
||||
uint32_t* current_row = upper_row + width + 1;
|
||||
uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
|
||||
uint8_t* lower_max_diffs = current_max_diffs + width;
|
||||
int y;
|
||||
int mode = 0;
|
||||
VP8LPredictorFunc pred_func = NULL;
|
||||
|
||||
for (y = 0; y < height; ++y) {
|
||||
int x;
|
||||
uint32_t* const tmp32 = upper_row;
|
||||
upper_row = current_row;
|
||||
current_row = tmp32;
|
||||
memcpy(current_row, argb + y * width,
|
||||
sizeof(*argb) * (width + (y + 1 < height)));
|
||||
|
||||
if (low_effort) {
|
||||
for (x = 0; x < width; ++x) {
|
||||
const uint32_t predict = Predict(VP8LPredictors[kPredLowEffort], x, y,
|
||||
current_row, upper_row);
|
||||
argb[y * width + x] = VP8LSubPixels(current_row[x], predict);
|
||||
}
|
||||
} else {
|
||||
if (max_quantization > 1) {
|
||||
// Compute max_diffs for the lower row now, because that needs the
|
||||
// contents of argb for the current row, which we will overwrite with
|
||||
// residuals before proceeding with the next row.
|
||||
uint8_t* const tmp8 = current_max_diffs;
|
||||
current_max_diffs = lower_max_diffs;
|
||||
lower_max_diffs = tmp8;
|
||||
if (y + 2 < height) {
|
||||
MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
|
||||
used_subtract_green);
|
||||
}
|
||||
}
|
||||
for (x = 0; x < width; ++x) {
|
||||
if ((x & mask) == 0) {
|
||||
mode = (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
|
||||
pred_func = VP8LPredictors[mode];
|
||||
}
|
||||
argb[y * width + x] = GetResidual(
|
||||
width, height, upper_row, current_row, current_max_diffs, mode,
|
||||
pred_func, x, y, max_quantization, exact, used_subtract_green);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Finds the best predictor for each tile, and converts the image to residuals
|
||||
// with respect to predictions. If near_lossless_quality < 100, applies
|
||||
// near lossless processing, shaving off more bits of residuals for lower
|
||||
// qualities.
|
||||
void VP8LResidualImage(int width, int height, int bits, int low_effort,
|
||||
uint32_t* const argb, uint32_t* const argb_scratch,
|
||||
uint32_t* const image, int near_lossless_quality,
|
||||
int exact, int used_subtract_green) {
|
||||
const int tiles_per_row = VP8LSubSampleSize(width, bits);
|
||||
const int tiles_per_col = VP8LSubSampleSize(height, bits);
|
||||
int tile_y;
|
||||
int histo[4][256];
|
||||
const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
|
||||
if (low_effort) {
|
||||
int i;
|
||||
for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
|
||||
image[i] = ARGB_BLACK | (kPredLowEffort << 8);
|
||||
}
|
||||
} else {
|
||||
memset(histo, 0, sizeof(histo));
|
||||
for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
|
||||
int tile_x;
|
||||
for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
|
||||
const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y,
|
||||
bits, histo, argb_scratch, argb, max_quantization, exact,
|
||||
used_subtract_green);
|
||||
image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb,
|
||||
low_effort, max_quantization, exact,
|
||||
used_subtract_green);
|
||||
}
|
||||
|
||||
void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels) {
|
||||
int i;
|
||||
for (i = 0; i < num_pixels; ++i) {
|
||||
@ -931,31 +510,10 @@ void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels) {
|
||||
}
|
||||
}
|
||||
|
||||
static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) {
|
||||
m->green_to_red_ = 0;
|
||||
m->green_to_blue_ = 0;
|
||||
m->red_to_blue_ = 0;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int ColorTransformDelta(int8_t color_pred, int8_t color) {
|
||||
return ((int)color_pred * color) >> 5;
|
||||
}
|
||||
|
||||
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
|
||||
VP8LMultipliers* const m) {
|
||||
m->green_to_red_ = (color_code >> 0) & 0xff;
|
||||
m->green_to_blue_ = (color_code >> 8) & 0xff;
|
||||
m->red_to_blue_ = (color_code >> 16) & 0xff;
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t MultipliersToColorCode(
|
||||
const VP8LMultipliers* const m) {
|
||||
return 0xff000000u |
|
||||
((uint32_t)(m->red_to_blue_) << 16) |
|
||||
((uint32_t)(m->green_to_blue_) << 8) |
|
||||
m->green_to_red_;
|
||||
}
|
||||
|
||||
void VP8LTransformColor_C(const VP8LMultipliers* const m, uint32_t* data,
|
||||
int num_pixels) {
|
||||
int i;
|
||||
@ -993,15 +551,6 @@ static WEBP_INLINE uint8_t TransformColorBlue(uint8_t green_to_blue,
|
||||
return (new_blue & 0xff);
|
||||
}
|
||||
|
||||
static float PredictionCostCrossColor(const int accumulated[256],
|
||||
const int counts[256]) {
|
||||
// Favor low entropy, locally and globally.
|
||||
// Favor small absolute values for PredictionCostSpatial
|
||||
static const double kExpValue = 2.4;
|
||||
return VP8LCombinedShannonEntropy(counts, accumulated) +
|
||||
PredictionCostSpatial(counts, 3, kExpValue);
|
||||
}
|
||||
|
||||
void VP8LCollectColorRedTransforms_C(const uint32_t* argb, int stride,
|
||||
int tile_width, int tile_height,
|
||||
int green_to_red, int histo[]) {
|
||||
@ -1014,59 +563,6 @@ void VP8LCollectColorRedTransforms_C(const uint32_t* argb, int stride,
|
||||
}
|
||||
}
|
||||
|
||||
static float GetPredictionCostCrossColorRed(
|
||||
const uint32_t* argb, int stride, int tile_width, int tile_height,
|
||||
VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red,
|
||||
const int accumulated_red_histo[256]) {
|
||||
int histo[256] = { 0 };
|
||||
float cur_diff;
|
||||
|
||||
VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height,
|
||||
green_to_red, histo);
|
||||
|
||||
cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo);
|
||||
if ((uint8_t)green_to_red == prev_x.green_to_red_) {
|
||||
cur_diff -= 3; // favor keeping the areas locally similar
|
||||
}
|
||||
if ((uint8_t)green_to_red == prev_y.green_to_red_) {
|
||||
cur_diff -= 3; // favor keeping the areas locally similar
|
||||
}
|
||||
if (green_to_red == 0) {
|
||||
cur_diff -= 3;
|
||||
}
|
||||
return cur_diff;
|
||||
}
|
||||
|
||||
static void GetBestGreenToRed(
|
||||
const uint32_t* argb, int stride, int tile_width, int tile_height,
|
||||
VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
|
||||
const int accumulated_red_histo[256], VP8LMultipliers* const best_tx) {
|
||||
const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6]
|
||||
int green_to_red_best = 0;
|
||||
int iter, offset;
|
||||
float best_diff = GetPredictionCostCrossColorRed(
|
||||
argb, stride, tile_width, tile_height, prev_x, prev_y,
|
||||
green_to_red_best, accumulated_red_histo);
|
||||
for (iter = 0; iter < kMaxIters; ++iter) {
|
||||
// ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to
|
||||
// one in color computation. Having initial delta here as 1 is sufficient
|
||||
// to explore the range of (-2, 2).
|
||||
const int delta = 32 >> iter;
|
||||
// Try a negative and a positive delta from the best known value.
|
||||
for (offset = -delta; offset <= delta; offset += 2 * delta) {
|
||||
const int green_to_red_cur = offset + green_to_red_best;
|
||||
const float cur_diff = GetPredictionCostCrossColorRed(
|
||||
argb, stride, tile_width, tile_height, prev_x, prev_y,
|
||||
green_to_red_cur, accumulated_red_histo);
|
||||
if (cur_diff < best_diff) {
|
||||
best_diff = cur_diff;
|
||||
green_to_red_best = green_to_red_cur;
|
||||
}
|
||||
}
|
||||
}
|
||||
best_tx->green_to_red_ = green_to_red_best;
|
||||
}
|
||||
|
||||
void VP8LCollectColorBlueTransforms_C(const uint32_t* argb, int stride,
|
||||
int tile_width, int tile_height,
|
||||
int green_to_blue, int red_to_blue,
|
||||
@ -1080,187 +576,6 @@ void VP8LCollectColorBlueTransforms_C(const uint32_t* argb, int stride,
|
||||
}
|
||||
}
|
||||
|
||||
static float GetPredictionCostCrossColorBlue(
|
||||
const uint32_t* argb, int stride, int tile_width, int tile_height,
|
||||
VP8LMultipliers prev_x, VP8LMultipliers prev_y,
|
||||
int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256]) {
|
||||
int histo[256] = { 0 };
|
||||
float cur_diff;
|
||||
|
||||
VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height,
|
||||
green_to_blue, red_to_blue, histo);
|
||||
|
||||
cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo);
|
||||
if ((uint8_t)green_to_blue == prev_x.green_to_blue_) {
|
||||
cur_diff -= 3; // favor keeping the areas locally similar
|
||||
}
|
||||
if ((uint8_t)green_to_blue == prev_y.green_to_blue_) {
|
||||
cur_diff -= 3; // favor keeping the areas locally similar
|
||||
}
|
||||
if ((uint8_t)red_to_blue == prev_x.red_to_blue_) {
|
||||
cur_diff -= 3; // favor keeping the areas locally similar
|
||||
}
|
||||
if ((uint8_t)red_to_blue == prev_y.red_to_blue_) {
|
||||
cur_diff -= 3; // favor keeping the areas locally similar
|
||||
}
|
||||
if (green_to_blue == 0) {
|
||||
cur_diff -= 3;
|
||||
}
|
||||
if (red_to_blue == 0) {
|
||||
cur_diff -= 3;
|
||||
}
|
||||
return cur_diff;
|
||||
}
|
||||
|
||||
#define kGreenRedToBlueNumAxis 8
|
||||
#define kGreenRedToBlueMaxIters 7
|
||||
static void GetBestGreenRedToBlue(
|
||||
const uint32_t* argb, int stride, int tile_width, int tile_height,
|
||||
VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
|
||||
const int accumulated_blue_histo[256],
|
||||
VP8LMultipliers* const best_tx) {
|
||||
const int8_t offset[kGreenRedToBlueNumAxis][2] =
|
||||
{{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
|
||||
const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 };
|
||||
const int iters =
|
||||
(quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4;
|
||||
int green_to_blue_best = 0;
|
||||
int red_to_blue_best = 0;
|
||||
int iter;
|
||||
// Initial value at origin:
|
||||
float best_diff = GetPredictionCostCrossColorBlue(
|
||||
argb, stride, tile_width, tile_height, prev_x, prev_y,
|
||||
green_to_blue_best, red_to_blue_best, accumulated_blue_histo);
|
||||
for (iter = 0; iter < iters; ++iter) {
|
||||
const int delta = delta_lut[iter];
|
||||
int axis;
|
||||
for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) {
|
||||
const int green_to_blue_cur =
|
||||
offset[axis][0] * delta + green_to_blue_best;
|
||||
const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best;
|
||||
const float cur_diff = GetPredictionCostCrossColorBlue(
|
||||
argb, stride, tile_width, tile_height, prev_x, prev_y,
|
||||
green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo);
|
||||
if (cur_diff < best_diff) {
|
||||
best_diff = cur_diff;
|
||||
green_to_blue_best = green_to_blue_cur;
|
||||
red_to_blue_best = red_to_blue_cur;
|
||||
}
|
||||
if (quality < 25 && iter == 4) {
|
||||
// Only axis aligned diffs for lower quality.
|
||||
break; // next iter.
|
||||
}
|
||||
}
|
||||
if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) {
|
||||
// Further iterations would not help.
|
||||
break; // out of iter-loop.
|
||||
}
|
||||
}
|
||||
best_tx->green_to_blue_ = green_to_blue_best;
|
||||
best_tx->red_to_blue_ = red_to_blue_best;
|
||||
}
|
||||
#undef kGreenRedToBlueMaxIters
|
||||
#undef kGreenRedToBlueNumAxis
|
||||
|
||||
static VP8LMultipliers GetBestColorTransformForTile(
|
||||
int tile_x, int tile_y, int bits,
|
||||
VP8LMultipliers prev_x,
|
||||
VP8LMultipliers prev_y,
|
||||
int quality, int xsize, int ysize,
|
||||
const int accumulated_red_histo[256],
|
||||
const int accumulated_blue_histo[256],
|
||||
const uint32_t* const argb) {
|
||||
const int max_tile_size = 1 << bits;
|
||||
const int tile_y_offset = tile_y * max_tile_size;
|
||||
const int tile_x_offset = tile_x * max_tile_size;
|
||||
const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize);
|
||||
const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize);
|
||||
const int tile_width = all_x_max - tile_x_offset;
|
||||
const int tile_height = all_y_max - tile_y_offset;
|
||||
const uint32_t* const tile_argb = argb + tile_y_offset * xsize
|
||||
+ tile_x_offset;
|
||||
VP8LMultipliers best_tx;
|
||||
MultipliersClear(&best_tx);
|
||||
|
||||
GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height,
|
||||
prev_x, prev_y, quality, accumulated_red_histo, &best_tx);
|
||||
GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height,
|
||||
prev_x, prev_y, quality, accumulated_blue_histo,
|
||||
&best_tx);
|
||||
return best_tx;
|
||||
}
|
||||
|
||||
static void CopyTileWithColorTransform(int xsize, int ysize,
|
||||
int tile_x, int tile_y,
|
||||
int max_tile_size,
|
||||
VP8LMultipliers color_transform,
|
||||
uint32_t* argb) {
|
||||
const int xscan = GetMin(max_tile_size, xsize - tile_x);
|
||||
int yscan = GetMin(max_tile_size, ysize - tile_y);
|
||||
argb += tile_y * xsize + tile_x;
|
||||
while (yscan-- > 0) {
|
||||
VP8LTransformColor(&color_transform, argb, xscan);
|
||||
argb += xsize;
|
||||
}
|
||||
}
|
||||
|
||||
void VP8LColorSpaceTransform(int width, int height, int bits, int quality,
|
||||
uint32_t* const argb, uint32_t* image) {
|
||||
const int max_tile_size = 1 << bits;
|
||||
const int tile_xsize = VP8LSubSampleSize(width, bits);
|
||||
const int tile_ysize = VP8LSubSampleSize(height, bits);
|
||||
int accumulated_red_histo[256] = { 0 };
|
||||
int accumulated_blue_histo[256] = { 0 };
|
||||
int tile_x, tile_y;
|
||||
VP8LMultipliers prev_x, prev_y;
|
||||
MultipliersClear(&prev_y);
|
||||
MultipliersClear(&prev_x);
|
||||
for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
|
||||
for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
|
||||
int y;
|
||||
const int tile_x_offset = tile_x * max_tile_size;
|
||||
const int tile_y_offset = tile_y * max_tile_size;
|
||||
const int all_x_max = GetMin(tile_x_offset + max_tile_size, width);
|
||||
const int all_y_max = GetMin(tile_y_offset + max_tile_size, height);
|
||||
const int offset = tile_y * tile_xsize + tile_x;
|
||||
if (tile_y != 0) {
|
||||
ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y);
|
||||
}
|
||||
prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits,
|
||||
prev_x, prev_y,
|
||||
quality, width, height,
|
||||
accumulated_red_histo,
|
||||
accumulated_blue_histo,
|
||||
argb);
|
||||
image[offset] = MultipliersToColorCode(&prev_x);
|
||||
CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset,
|
||||
max_tile_size, prev_x, argb);
|
||||
|
||||
// Gather accumulated histogram data.
|
||||
for (y = tile_y_offset; y < all_y_max; ++y) {
|
||||
int ix = y * width + tile_x_offset;
|
||||
const int ix_end = ix + all_x_max - tile_x_offset;
|
||||
for (; ix < ix_end; ++ix) {
|
||||
const uint32_t pix = argb[ix];
|
||||
if (ix >= 2 &&
|
||||
pix == argb[ix - 2] &&
|
||||
pix == argb[ix - 1]) {
|
||||
continue; // repeated pixels are handled by backward references
|
||||
}
|
||||
if (ix >= width + 2 &&
|
||||
argb[ix - 2] == argb[ix - width - 2] &&
|
||||
argb[ix - 1] == argb[ix - width - 1] &&
|
||||
pix == argb[ix - width]) {
|
||||
continue; // repeated pixels are handled by backward references
|
||||
}
|
||||
++accumulated_red_histo[(pix >> 16) & 0xff];
|
||||
++accumulated_blue_histo[(pix >> 0) & 0xff];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
static int VectorMismatch(const uint32_t* const array1,
|
||||
|
@ -21,6 +21,7 @@ libwebpencode_la_SOURCES += picture_csp.c
|
||||
libwebpencode_la_SOURCES += picture_psnr.c
|
||||
libwebpencode_la_SOURCES += picture_rescale.c
|
||||
libwebpencode_la_SOURCES += picture_tools.c
|
||||
libwebpencode_la_SOURCES += predictor.c
|
||||
libwebpencode_la_SOURCES += quant.c
|
||||
libwebpencode_la_SOURCES += syntax.c
|
||||
libwebpencode_la_SOURCES += token.c
|
||||
|
713
src/enc/predictor.c
Normal file
713
src/enc/predictor.c
Normal file
@ -0,0 +1,713 @@
|
||||
// Copyright 2016 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// Use of this source code is governed by a BSD-style license
|
||||
// that can be found in the COPYING file in the root of the source
|
||||
// tree. An additional intellectual property rights grant can be found
|
||||
// in the file PATENTS. All contributing project authors may
|
||||
// be found in the AUTHORS file in the root of the source tree.
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Image transform methods for lossless encoder.
|
||||
//
|
||||
// Authors: Vikas Arora (vikaas.arora@gmail.com)
|
||||
// Jyrki Alakuijala (jyrki@google.com)
|
||||
// Urvang Joshi (urvang@google.com)
|
||||
// Vincent Rabaud (vrabaud@google.com)
|
||||
|
||||
#include "../dsp/lossless.h"
|
||||
#include "../dsp/lossless_common.h"
|
||||
#include "./vp8li.h"
|
||||
|
||||
#define MAX_DIFF_COST (1e30f)
|
||||
|
||||
static const int kPredLowEffort = 11;
|
||||
static const uint32_t kMaskAlpha = 0xff000000;
|
||||
|
||||
// Mostly used to reduce code size + readability
|
||||
static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
|
||||
static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Methods to calculate Entropy (Shannon).
|
||||
|
||||
static float PredictionCostSpatial(const int counts[256], int weight_0,
|
||||
double exp_val) {
|
||||
const int significant_symbols = 256 >> 4;
|
||||
const double exp_decay_factor = 0.6;
|
||||
double bits = weight_0 * counts[0];
|
||||
int i;
|
||||
for (i = 1; i < significant_symbols; ++i) {
|
||||
bits += exp_val * (counts[i] + counts[256 - i]);
|
||||
exp_val *= exp_decay_factor;
|
||||
}
|
||||
return (float)(-0.1 * bits);
|
||||
}
|
||||
|
||||
static float PredictionCostSpatialHistogram(const int accumulated[4][256],
|
||||
const int tile[4][256]) {
|
||||
int i;
|
||||
double retval = 0;
|
||||
for (i = 0; i < 4; ++i) {
|
||||
const double kExpValue = 0.94;
|
||||
retval += PredictionCostSpatial(tile[i], 1, kExpValue);
|
||||
retval += VP8LCombinedShannonEntropy(tile[i], accumulated[i]);
|
||||
}
|
||||
return (float)retval;
|
||||
}
|
||||
|
||||
static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) {
|
||||
++histo_argb[0][argb >> 24];
|
||||
++histo_argb[1][(argb >> 16) & 0xff];
|
||||
++histo_argb[2][(argb >> 8) & 0xff];
|
||||
++histo_argb[3][argb & 0xff];
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Spatial transform functions.
|
||||
|
||||
static WEBP_INLINE uint32_t Predict(VP8LPredictorFunc pred_func,
|
||||
int x, int y,
|
||||
const uint32_t* current_row,
|
||||
const uint32_t* upper_row) {
|
||||
if (y == 0) {
|
||||
return (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left.
|
||||
} else if (x == 0) {
|
||||
return upper_row[x]; // Top.
|
||||
} else {
|
||||
return pred_func(current_row[x - 1], upper_row + x);
|
||||
}
|
||||
}
|
||||
|
||||
static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
|
||||
const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
|
||||
const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
|
||||
const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
|
||||
const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
|
||||
return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
|
||||
}
|
||||
|
||||
static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
|
||||
uint32_t left, uint32_t right) {
|
||||
const int diff_up = MaxDiffBetweenPixels(current, up);
|
||||
const int diff_down = MaxDiffBetweenPixels(current, down);
|
||||
const int diff_left = MaxDiffBetweenPixels(current, left);
|
||||
const int diff_right = MaxDiffBetweenPixels(current, right);
|
||||
return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
|
||||
}
|
||||
|
||||
static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
|
||||
const uint32_t green = (argb >> 8) & 0xff;
|
||||
uint32_t red_blue = argb & 0x00ff00ffu;
|
||||
red_blue += (green << 16) | green;
|
||||
red_blue &= 0x00ff00ffu;
|
||||
return (argb & 0xff00ff00u) | red_blue;
|
||||
}
|
||||
|
||||
static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
|
||||
uint8_t* const max_diffs, int used_subtract_green) {
|
||||
uint32_t current, up, down, left, right;
|
||||
int x;
|
||||
if (width <= 2) return;
|
||||
current = argb[0];
|
||||
right = argb[1];
|
||||
if (used_subtract_green) {
|
||||
current = AddGreenToBlueAndRed(current);
|
||||
right = AddGreenToBlueAndRed(right);
|
||||
}
|
||||
// max_diffs[0] and max_diffs[width - 1] are never used.
|
||||
for (x = 1; x < width - 1; ++x) {
|
||||
up = argb[-stride + x];
|
||||
down = argb[stride + x];
|
||||
left = current;
|
||||
current = right;
|
||||
right = argb[x + 1];
|
||||
if (used_subtract_green) {
|
||||
up = AddGreenToBlueAndRed(up);
|
||||
down = AddGreenToBlueAndRed(down);
|
||||
right = AddGreenToBlueAndRed(right);
|
||||
}
|
||||
max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
|
||||
}
|
||||
}
|
||||
|
||||
// Quantize the difference between the actual component value and its prediction
|
||||
// to a multiple of quantization, working modulo 256, taking care not to cross
|
||||
// a boundary (inclusive upper limit).
|
||||
static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
|
||||
uint8_t boundary, int quantization) {
|
||||
const int residual = (value - predict) & 0xff;
|
||||
const int boundary_residual = (boundary - predict) & 0xff;
|
||||
const int lower = residual & ~(quantization - 1);
|
||||
const int upper = lower + quantization;
|
||||
// Resolve ties towards a value closer to the prediction (i.e. towards lower
|
||||
// if value comes after prediction and towards upper otherwise).
|
||||
const int bias = ((boundary - value) & 0xff) < boundary_residual;
|
||||
if (residual - lower < upper - residual + bias) {
|
||||
// lower is closer to residual than upper.
|
||||
if (residual > boundary_residual && lower <= boundary_residual) {
|
||||
// Halve quantization step to avoid crossing boundary. This midpoint is
|
||||
// on the same side of boundary as residual because midpoint >= residual
|
||||
// (since lower is closer than upper) and residual is above the boundary.
|
||||
return lower + (quantization >> 1);
|
||||
}
|
||||
return lower;
|
||||
} else {
|
||||
// upper is closer to residual than lower.
|
||||
if (residual <= boundary_residual && upper > boundary_residual) {
|
||||
// Halve quantization step to avoid crossing boundary. This midpoint is
|
||||
// on the same side of boundary as residual because midpoint <= residual
|
||||
// (since upper is closer than lower) and residual is below the boundary.
|
||||
return lower + (quantization >> 1);
|
||||
}
|
||||
return upper & 0xff;
|
||||
}
|
||||
}
|
||||
|
||||
// Quantize every component of the difference between the actual pixel value and
|
||||
// its prediction to a multiple of a quantization (a power of 2, not larger than
|
||||
// max_quantization which is a power of 2, smaller than max_diff). Take care if
|
||||
// value and predict have undergone subtract green, which means that red and
|
||||
// blue are represented as offsets from green.
|
||||
static uint32_t NearLossless(uint32_t value, uint32_t predict,
|
||||
int max_quantization, int max_diff,
|
||||
int used_subtract_green) {
|
||||
int quantization;
|
||||
uint8_t new_green = 0;
|
||||
uint8_t green_diff = 0;
|
||||
uint8_t a, r, g, b;
|
||||
if (max_diff <= 2) {
|
||||
return VP8LSubPixels(value, predict);
|
||||
}
|
||||
quantization = max_quantization;
|
||||
while (quantization >= max_diff) {
|
||||
quantization >>= 1;
|
||||
}
|
||||
if ((value >> 24) == 0 || (value >> 24) == 0xff) {
|
||||
// Preserve transparency of fully transparent or fully opaque pixels.
|
||||
a = ((value >> 24) - (predict >> 24)) & 0xff;
|
||||
} else {
|
||||
a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
|
||||
}
|
||||
g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
|
||||
quantization);
|
||||
if (used_subtract_green) {
|
||||
// The green offset will be added to red and blue components during decoding
|
||||
// to obtain the actual red and blue values.
|
||||
new_green = ((predict >> 8) + g) & 0xff;
|
||||
// The amount by which green has been adjusted during quantization. It is
|
||||
// subtracted from red and blue for compensation, to avoid accumulating two
|
||||
// quantization errors in them.
|
||||
green_diff = (new_green - (value >> 8)) & 0xff;
|
||||
}
|
||||
r = NearLosslessComponent(((value >> 16) - green_diff) & 0xff,
|
||||
(predict >> 16) & 0xff, 0xff - new_green,
|
||||
quantization);
|
||||
b = NearLosslessComponent((value - green_diff) & 0xff, predict & 0xff,
|
||||
0xff - new_green, quantization);
|
||||
return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
||||
}
|
||||
|
||||
// Returns the difference between the pixel and its prediction. In case of a
|
||||
// lossy encoding, updates the source image to avoid propagating the deviation
|
||||
// further to pixels which depend on the current pixel for their predictions.
|
||||
static WEBP_INLINE uint32_t GetResidual(int width, int height,
|
||||
uint32_t* const upper_row,
|
||||
uint32_t* const current_row,
|
||||
const uint8_t* const max_diffs,
|
||||
int mode, VP8LPredictorFunc pred_func,
|
||||
int x, int y, int max_quantization,
|
||||
int exact, int used_subtract_green) {
|
||||
const uint32_t predict = Predict(pred_func, x, y, current_row, upper_row);
|
||||
uint32_t residual;
|
||||
if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
|
||||
x == 0 || x == width - 1) {
|
||||
residual = VP8LSubPixels(current_row[x], predict);
|
||||
} else {
|
||||
residual = NearLossless(current_row[x], predict, max_quantization,
|
||||
max_diffs[x], used_subtract_green);
|
||||
// Update the source image.
|
||||
current_row[x] = VP8LAddPixels(predict, residual);
|
||||
// x is never 0 here so we do not need to update upper_row like below.
|
||||
}
|
||||
if (!exact && (current_row[x] & kMaskAlpha) == 0) {
|
||||
// If alpha is 0, cleanup RGB. We can choose the RGB values of the residual
|
||||
// for best compression. The prediction of alpha itself can be non-zero and
|
||||
// must be kept though. We choose RGB of the residual to be 0.
|
||||
residual &= kMaskAlpha;
|
||||
// Update the source image.
|
||||
current_row[x] = predict & ~kMaskAlpha;
|
||||
// The prediction for the rightmost pixel in a row uses the leftmost pixel
|
||||
// in that row as its top-right context pixel. Hence if we change the
|
||||
// leftmost pixel of current_row, the corresponding change must be applied
|
||||
// to upper_row as well where top-right context is being read from.
|
||||
if (x == 0 && y != 0) upper_row[width] = current_row[0];
|
||||
}
|
||||
return residual;
|
||||
}
|
||||
|
||||
// Returns best predictor and updates the accumulated histogram.
|
||||
// If max_quantization > 1, assumes that near lossless processing will be
|
||||
// applied, quantizing residuals to multiples of quantization levels up to
|
||||
// max_quantization (the actual quantization level depends on smoothness near
|
||||
// the given pixel).
|
||||
static int GetBestPredictorForTile(int width, int height,
|
||||
int tile_x, int tile_y, int bits,
|
||||
int accumulated[4][256],
|
||||
uint32_t* const argb_scratch,
|
||||
const uint32_t* const argb,
|
||||
int max_quantization,
|
||||
int exact, int used_subtract_green) {
|
||||
const int kNumPredModes = 14;
|
||||
const int start_x = tile_x << bits;
|
||||
const int start_y = tile_y << bits;
|
||||
const int tile_size = 1 << bits;
|
||||
const int max_y = GetMin(tile_size, height - start_y);
|
||||
const int max_x = GetMin(tile_size, width - start_x);
|
||||
// Whether there exist columns just outside the tile.
|
||||
const int have_left = (start_x > 0);
|
||||
const int have_right = (max_x < width - start_x);
|
||||
// Position and size of the strip covering the tile and adjacent columns if
|
||||
// they exist.
|
||||
const int context_start_x = start_x - have_left;
|
||||
const int context_width = max_x + have_left + have_right;
|
||||
// The width of upper_row and current_row is one pixel larger than image width
|
||||
// to allow the top right pixel to point to the leftmost pixel of the next row
|
||||
// when at the right edge.
|
||||
uint32_t* upper_row = argb_scratch;
|
||||
uint32_t* current_row = upper_row + width + 1;
|
||||
uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
|
||||
float best_diff = MAX_DIFF_COST;
|
||||
int best_mode = 0;
|
||||
int mode;
|
||||
int histo_stack_1[4][256];
|
||||
int histo_stack_2[4][256];
|
||||
// Need pointers to be able to swap arrays.
|
||||
int (*histo_argb)[256] = histo_stack_1;
|
||||
int (*best_histo)[256] = histo_stack_2;
|
||||
int i, j;
|
||||
|
||||
for (mode = 0; mode < kNumPredModes; ++mode) {
|
||||
const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
|
||||
float cur_diff;
|
||||
int relative_y;
|
||||
memset(histo_argb, 0, sizeof(histo_stack_1));
|
||||
if (start_y > 0) {
|
||||
// Read the row above the tile which will become the first upper_row.
|
||||
// Include a pixel to the left if it exists; include a pixel to the right
|
||||
// in all cases (wrapping to the leftmost pixel of the next row if it does
|
||||
// not exist).
|
||||
memcpy(current_row + context_start_x,
|
||||
argb + (start_y - 1) * width + context_start_x,
|
||||
sizeof(*argb) * (max_x + have_left + 1));
|
||||
}
|
||||
for (relative_y = 0; relative_y < max_y; ++relative_y) {
|
||||
const int y = start_y + relative_y;
|
||||
int relative_x;
|
||||
uint32_t* tmp = upper_row;
|
||||
upper_row = current_row;
|
||||
current_row = tmp;
|
||||
// Read current_row. Include a pixel to the left if it exists; include a
|
||||
// pixel to the right in all cases except at the bottom right corner of
|
||||
// the image (wrapping to the leftmost pixel of the next row if it does
|
||||
// not exist in the current row).
|
||||
memcpy(current_row + context_start_x,
|
||||
argb + y * width + context_start_x,
|
||||
sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
|
||||
if (max_quantization > 1 && y >= 1 && y + 1 < height) {
|
||||
MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
|
||||
max_diffs + context_start_x, used_subtract_green);
|
||||
}
|
||||
|
||||
for (relative_x = 0; relative_x < max_x; ++relative_x) {
|
||||
const int x = start_x + relative_x;
|
||||
UpdateHisto(histo_argb,
|
||||
GetResidual(width, height, upper_row, current_row,
|
||||
max_diffs, mode, pred_func, x, y,
|
||||
max_quantization, exact, used_subtract_green));
|
||||
}
|
||||
}
|
||||
cur_diff = PredictionCostSpatialHistogram(
|
||||
(const int (*)[256])accumulated, (const int (*)[256])histo_argb);
|
||||
if (cur_diff < best_diff) {
|
||||
int (*tmp)[256] = histo_argb;
|
||||
histo_argb = best_histo;
|
||||
best_histo = tmp;
|
||||
best_diff = cur_diff;
|
||||
best_mode = mode;
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < 4; i++) {
|
||||
for (j = 0; j < 256; j++) {
|
||||
accumulated[i][j] += best_histo[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
return best_mode;
|
||||
}
|
||||
|
||||
// Converts pixels of the image to residuals with respect to predictions.
|
||||
// If max_quantization > 1, applies near lossless processing, quantizing
|
||||
// residuals to multiples of quantization levels up to max_quantization
|
||||
// (the actual quantization level depends on smoothness near the given pixel).
|
||||
static void CopyImageWithPrediction(int width, int height,
|
||||
int bits, uint32_t* const modes,
|
||||
uint32_t* const argb_scratch,
|
||||
uint32_t* const argb,
|
||||
int low_effort, int max_quantization,
|
||||
int exact, int used_subtract_green) {
|
||||
const int tiles_per_row = VP8LSubSampleSize(width, bits);
|
||||
const int mask = (1 << bits) - 1;
|
||||
// The width of upper_row and current_row is one pixel larger than image width
|
||||
// to allow the top right pixel to point to the leftmost pixel of the next row
|
||||
// when at the right edge.
|
||||
uint32_t* upper_row = argb_scratch;
|
||||
uint32_t* current_row = upper_row + width + 1;
|
||||
uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
|
||||
uint8_t* lower_max_diffs = current_max_diffs + width;
|
||||
int y;
|
||||
int mode = 0;
|
||||
VP8LPredictorFunc pred_func = NULL;
|
||||
|
||||
for (y = 0; y < height; ++y) {
|
||||
int x;
|
||||
uint32_t* const tmp32 = upper_row;
|
||||
upper_row = current_row;
|
||||
current_row = tmp32;
|
||||
memcpy(current_row, argb + y * width,
|
||||
sizeof(*argb) * (width + (y + 1 < height)));
|
||||
|
||||
if (low_effort) {
|
||||
for (x = 0; x < width; ++x) {
|
||||
const uint32_t predict = Predict(VP8LPredictors[kPredLowEffort], x, y,
|
||||
current_row, upper_row);
|
||||
argb[y * width + x] = VP8LSubPixels(current_row[x], predict);
|
||||
}
|
||||
} else {
|
||||
if (max_quantization > 1) {
|
||||
// Compute max_diffs for the lower row now, because that needs the
|
||||
// contents of argb for the current row, which we will overwrite with
|
||||
// residuals before proceeding with the next row.
|
||||
uint8_t* const tmp8 = current_max_diffs;
|
||||
current_max_diffs = lower_max_diffs;
|
||||
lower_max_diffs = tmp8;
|
||||
if (y + 2 < height) {
|
||||
MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
|
||||
used_subtract_green);
|
||||
}
|
||||
}
|
||||
for (x = 0; x < width; ++x) {
|
||||
if ((x & mask) == 0) {
|
||||
mode = (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
|
||||
pred_func = VP8LPredictors[mode];
|
||||
}
|
||||
argb[y * width + x] = GetResidual(
|
||||
width, height, upper_row, current_row, current_max_diffs, mode,
|
||||
pred_func, x, y, max_quantization, exact, used_subtract_green);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Finds the best predictor for each tile, and converts the image to residuals
|
||||
// with respect to predictions. If near_lossless_quality < 100, applies
|
||||
// near lossless processing, shaving off more bits of residuals for lower
|
||||
// qualities.
|
||||
void VP8LResidualImage(int width, int height, int bits, int low_effort,
|
||||
uint32_t* const argb, uint32_t* const argb_scratch,
|
||||
uint32_t* const image, int near_lossless_quality,
|
||||
int exact, int used_subtract_green) {
|
||||
const int tiles_per_row = VP8LSubSampleSize(width, bits);
|
||||
const int tiles_per_col = VP8LSubSampleSize(height, bits);
|
||||
int tile_y;
|
||||
int histo[4][256];
|
||||
const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
|
||||
if (low_effort) {
|
||||
int i;
|
||||
for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
|
||||
image[i] = ARGB_BLACK | (kPredLowEffort << 8);
|
||||
}
|
||||
} else {
|
||||
memset(histo, 0, sizeof(histo));
|
||||
for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
|
||||
int tile_x;
|
||||
for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
|
||||
const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y,
|
||||
bits, histo, argb_scratch, argb, max_quantization, exact,
|
||||
used_subtract_green);
|
||||
image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb,
|
||||
low_effort, max_quantization, exact,
|
||||
used_subtract_green);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Color transform functions.
|
||||
|
||||
static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) {
|
||||
m->green_to_red_ = 0;
|
||||
m->green_to_blue_ = 0;
|
||||
m->red_to_blue_ = 0;
|
||||
}
|
||||
|
||||
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
|
||||
VP8LMultipliers* const m) {
|
||||
m->green_to_red_ = (color_code >> 0) & 0xff;
|
||||
m->green_to_blue_ = (color_code >> 8) & 0xff;
|
||||
m->red_to_blue_ = (color_code >> 16) & 0xff;
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t MultipliersToColorCode(
|
||||
const VP8LMultipliers* const m) {
|
||||
return 0xff000000u |
|
||||
((uint32_t)(m->red_to_blue_) << 16) |
|
||||
((uint32_t)(m->green_to_blue_) << 8) |
|
||||
m->green_to_red_;
|
||||
}
|
||||
|
||||
static float PredictionCostCrossColor(const int accumulated[256],
|
||||
const int counts[256]) {
|
||||
// Favor low entropy, locally and globally.
|
||||
// Favor small absolute values for PredictionCostSpatial
|
||||
static const double kExpValue = 2.4;
|
||||
return VP8LCombinedShannonEntropy(counts, accumulated) +
|
||||
PredictionCostSpatial(counts, 3, kExpValue);
|
||||
}
|
||||
|
||||
static float GetPredictionCostCrossColorRed(
|
||||
const uint32_t* argb, int stride, int tile_width, int tile_height,
|
||||
VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red,
|
||||
const int accumulated_red_histo[256]) {
|
||||
int histo[256] = { 0 };
|
||||
float cur_diff;
|
||||
|
||||
VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height,
|
||||
green_to_red, histo);
|
||||
|
||||
cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo);
|
||||
if ((uint8_t)green_to_red == prev_x.green_to_red_) {
|
||||
cur_diff -= 3; // favor keeping the areas locally similar
|
||||
}
|
||||
if ((uint8_t)green_to_red == prev_y.green_to_red_) {
|
||||
cur_diff -= 3; // favor keeping the areas locally similar
|
||||
}
|
||||
if (green_to_red == 0) {
|
||||
cur_diff -= 3;
|
||||
}
|
||||
return cur_diff;
|
||||
}
|
||||
|
||||
static void GetBestGreenToRed(
|
||||
const uint32_t* argb, int stride, int tile_width, int tile_height,
|
||||
VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
|
||||
const int accumulated_red_histo[256], VP8LMultipliers* const best_tx) {
|
||||
const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6]
|
||||
int green_to_red_best = 0;
|
||||
int iter, offset;
|
||||
float best_diff = GetPredictionCostCrossColorRed(
|
||||
argb, stride, tile_width, tile_height, prev_x, prev_y,
|
||||
green_to_red_best, accumulated_red_histo);
|
||||
for (iter = 0; iter < kMaxIters; ++iter) {
|
||||
// ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to
|
||||
// one in color computation. Having initial delta here as 1 is sufficient
|
||||
// to explore the range of (-2, 2).
|
||||
const int delta = 32 >> iter;
|
||||
// Try a negative and a positive delta from the best known value.
|
||||
for (offset = -delta; offset <= delta; offset += 2 * delta) {
|
||||
const int green_to_red_cur = offset + green_to_red_best;
|
||||
const float cur_diff = GetPredictionCostCrossColorRed(
|
||||
argb, stride, tile_width, tile_height, prev_x, prev_y,
|
||||
green_to_red_cur, accumulated_red_histo);
|
||||
if (cur_diff < best_diff) {
|
||||
best_diff = cur_diff;
|
||||
green_to_red_best = green_to_red_cur;
|
||||
}
|
||||
}
|
||||
}
|
||||
best_tx->green_to_red_ = green_to_red_best;
|
||||
}
|
||||
|
||||
static float GetPredictionCostCrossColorBlue(
|
||||
const uint32_t* argb, int stride, int tile_width, int tile_height,
|
||||
VP8LMultipliers prev_x, VP8LMultipliers prev_y,
|
||||
int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256]) {
|
||||
int histo[256] = { 0 };
|
||||
float cur_diff;
|
||||
|
||||
VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height,
|
||||
green_to_blue, red_to_blue, histo);
|
||||
|
||||
cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo);
|
||||
if ((uint8_t)green_to_blue == prev_x.green_to_blue_) {
|
||||
cur_diff -= 3; // favor keeping the areas locally similar
|
||||
}
|
||||
if ((uint8_t)green_to_blue == prev_y.green_to_blue_) {
|
||||
cur_diff -= 3; // favor keeping the areas locally similar
|
||||
}
|
||||
if ((uint8_t)red_to_blue == prev_x.red_to_blue_) {
|
||||
cur_diff -= 3; // favor keeping the areas locally similar
|
||||
}
|
||||
if ((uint8_t)red_to_blue == prev_y.red_to_blue_) {
|
||||
cur_diff -= 3; // favor keeping the areas locally similar
|
||||
}
|
||||
if (green_to_blue == 0) {
|
||||
cur_diff -= 3;
|
||||
}
|
||||
if (red_to_blue == 0) {
|
||||
cur_diff -= 3;
|
||||
}
|
||||
return cur_diff;
|
||||
}
|
||||
|
||||
#define kGreenRedToBlueNumAxis 8
|
||||
#define kGreenRedToBlueMaxIters 7
|
||||
static void GetBestGreenRedToBlue(
|
||||
const uint32_t* argb, int stride, int tile_width, int tile_height,
|
||||
VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
|
||||
const int accumulated_blue_histo[256],
|
||||
VP8LMultipliers* const best_tx) {
|
||||
const int8_t offset[kGreenRedToBlueNumAxis][2] =
|
||||
{{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
|
||||
const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 };
|
||||
const int iters =
|
||||
(quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4;
|
||||
int green_to_blue_best = 0;
|
||||
int red_to_blue_best = 0;
|
||||
int iter;
|
||||
// Initial value at origin:
|
||||
float best_diff = GetPredictionCostCrossColorBlue(
|
||||
argb, stride, tile_width, tile_height, prev_x, prev_y,
|
||||
green_to_blue_best, red_to_blue_best, accumulated_blue_histo);
|
||||
for (iter = 0; iter < iters; ++iter) {
|
||||
const int delta = delta_lut[iter];
|
||||
int axis;
|
||||
for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) {
|
||||
const int green_to_blue_cur =
|
||||
offset[axis][0] * delta + green_to_blue_best;
|
||||
const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best;
|
||||
const float cur_diff = GetPredictionCostCrossColorBlue(
|
||||
argb, stride, tile_width, tile_height, prev_x, prev_y,
|
||||
green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo);
|
||||
if (cur_diff < best_diff) {
|
||||
best_diff = cur_diff;
|
||||
green_to_blue_best = green_to_blue_cur;
|
||||
red_to_blue_best = red_to_blue_cur;
|
||||
}
|
||||
if (quality < 25 && iter == 4) {
|
||||
// Only axis aligned diffs for lower quality.
|
||||
break; // next iter.
|
||||
}
|
||||
}
|
||||
if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) {
|
||||
// Further iterations would not help.
|
||||
break; // out of iter-loop.
|
||||
}
|
||||
}
|
||||
best_tx->green_to_blue_ = green_to_blue_best;
|
||||
best_tx->red_to_blue_ = red_to_blue_best;
|
||||
}
|
||||
#undef kGreenRedToBlueMaxIters
|
||||
#undef kGreenRedToBlueNumAxis
|
||||
|
||||
static VP8LMultipliers GetBestColorTransformForTile(
|
||||
int tile_x, int tile_y, int bits,
|
||||
VP8LMultipliers prev_x,
|
||||
VP8LMultipliers prev_y,
|
||||
int quality, int xsize, int ysize,
|
||||
const int accumulated_red_histo[256],
|
||||
const int accumulated_blue_histo[256],
|
||||
const uint32_t* const argb) {
|
||||
const int max_tile_size = 1 << bits;
|
||||
const int tile_y_offset = tile_y * max_tile_size;
|
||||
const int tile_x_offset = tile_x * max_tile_size;
|
||||
const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize);
|
||||
const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize);
|
||||
const int tile_width = all_x_max - tile_x_offset;
|
||||
const int tile_height = all_y_max - tile_y_offset;
|
||||
const uint32_t* const tile_argb = argb + tile_y_offset * xsize
|
||||
+ tile_x_offset;
|
||||
VP8LMultipliers best_tx;
|
||||
MultipliersClear(&best_tx);
|
||||
|
||||
GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height,
|
||||
prev_x, prev_y, quality, accumulated_red_histo, &best_tx);
|
||||
GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height,
|
||||
prev_x, prev_y, quality, accumulated_blue_histo,
|
||||
&best_tx);
|
||||
return best_tx;
|
||||
}
|
||||
|
||||
static void CopyTileWithColorTransform(int xsize, int ysize,
|
||||
int tile_x, int tile_y,
|
||||
int max_tile_size,
|
||||
VP8LMultipliers color_transform,
|
||||
uint32_t* argb) {
|
||||
const int xscan = GetMin(max_tile_size, xsize - tile_x);
|
||||
int yscan = GetMin(max_tile_size, ysize - tile_y);
|
||||
argb += tile_y * xsize + tile_x;
|
||||
while (yscan-- > 0) {
|
||||
VP8LTransformColor(&color_transform, argb, xscan);
|
||||
argb += xsize;
|
||||
}
|
||||
}
|
||||
|
||||
void VP8LColorSpaceTransform(int width, int height, int bits, int quality,
|
||||
uint32_t* const argb, uint32_t* image) {
|
||||
const int max_tile_size = 1 << bits;
|
||||
const int tile_xsize = VP8LSubSampleSize(width, bits);
|
||||
const int tile_ysize = VP8LSubSampleSize(height, bits);
|
||||
int accumulated_red_histo[256] = { 0 };
|
||||
int accumulated_blue_histo[256] = { 0 };
|
||||
int tile_x, tile_y;
|
||||
VP8LMultipliers prev_x, prev_y;
|
||||
MultipliersClear(&prev_y);
|
||||
MultipliersClear(&prev_x);
|
||||
for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
|
||||
for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
|
||||
int y;
|
||||
const int tile_x_offset = tile_x * max_tile_size;
|
||||
const int tile_y_offset = tile_y * max_tile_size;
|
||||
const int all_x_max = GetMin(tile_x_offset + max_tile_size, width);
|
||||
const int all_y_max = GetMin(tile_y_offset + max_tile_size, height);
|
||||
const int offset = tile_y * tile_xsize + tile_x;
|
||||
if (tile_y != 0) {
|
||||
ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y);
|
||||
}
|
||||
prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits,
|
||||
prev_x, prev_y,
|
||||
quality, width, height,
|
||||
accumulated_red_histo,
|
||||
accumulated_blue_histo,
|
||||
argb);
|
||||
image[offset] = MultipliersToColorCode(&prev_x);
|
||||
CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset,
|
||||
max_tile_size, prev_x, argb);
|
||||
|
||||
// Gather accumulated histogram data.
|
||||
for (y = tile_y_offset; y < all_y_max; ++y) {
|
||||
int ix = y * width + tile_x_offset;
|
||||
const int ix_end = ix + all_x_max - tile_x_offset;
|
||||
for (; ix < ix_end; ++ix) {
|
||||
const uint32_t pix = argb[ix];
|
||||
if (ix >= 2 &&
|
||||
pix == argb[ix - 2] &&
|
||||
pix == argb[ix - 1]) {
|
||||
continue; // repeated pixels are handled by backward references
|
||||
}
|
||||
if (ix >= width + 2 &&
|
||||
argb[ix - 2] == argb[ix - width - 2] &&
|
||||
argb[ix - 1] == argb[ix - width - 1] &&
|
||||
pix == argb[ix - width]) {
|
||||
continue; // repeated pixels are handled by backward references
|
||||
}
|
||||
++accumulated_red_histo[(pix >> 16) & 0xff];
|
||||
++accumulated_blue_histo[(pix >> 0) & 0xff];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -72,6 +72,17 @@ WebPEncodingError VP8LEncodeStream(const WebPConfig* const config,
|
||||
const WebPPicture* const picture,
|
||||
VP8LBitWriter* const bw, int use_cache);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Image transforms in predictor.c.
|
||||
|
||||
void VP8LResidualImage(int width, int height, int bits, int low_effort,
|
||||
uint32_t* const argb, uint32_t* const argb_scratch,
|
||||
uint32_t* const image, int near_lossless, int exact,
|
||||
int used_subtract_green);
|
||||
|
||||
void VP8LColorSpaceTransform(int width, int height, int bits, int quality,
|
||||
uint32_t* const argb, uint32_t* image);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
Loading…
Reference in New Issue
Block a user