add dsp/lossless.[hc] from experimental
Pulled from the current HEAD (218c32e). The history of this and related files is a bit entangled so rather trying to split the changes and introduce some noise in master's history we'll start with a fresh snapshot. The file progression is still available in the experimental branch. Change-Id: I40538799dbf999abb9408ac83f55b897d8e22498
This commit is contained in:
parent
9c67291d67
commit
514d008921
453
src/dsp/lossless.c
Normal file
453
src/dsp/lossless.c
Normal file
@ -0,0 +1,453 @@
|
||||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Image transforms and color space conversion methods for lossless decoder.
|
||||
//
|
||||
// Authors: Vikas Arora (vikaas.arora@gmail.com)
|
||||
// jyrki@google.com (Jyrki Alakuijala)
|
||||
// Urvang Joshi (urvang@google.com)
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <stdlib.h>
|
||||
#include "./lossless.h"
|
||||
#include "../dec/vp8li.h"
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Inverse image transforms.
|
||||
|
||||
// In-place sum of each component with mod 256.
|
||||
static WEBP_INLINE void AddPixelsEq(uint32_t* a, uint32_t b) {
|
||||
const uint32_t alpha_and_green = (*a & 0xff00ff00u) + (b & 0xff00ff00u);
|
||||
const uint32_t red_and_blue = (*a & 0x00ff00ffu) + (b & 0x00ff00ffu);
|
||||
*a = (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
|
||||
return (((a0 ^ a1) & 0xfefefefeL) >> 1) + (a0 & a1);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
|
||||
return Average2(Average2(a0, a2), a1);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
|
||||
uint32_t a2, uint32_t a3) {
|
||||
return Average2(Average2(a0, a1), Average2(a2, a3));
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t Clip255(uint32_t a) {
|
||||
if (a < NUM_LITERAL_CODES) {
|
||||
return a;
|
||||
}
|
||||
// return 0, when a is a negative integer.
|
||||
// return 255, when a is positive.
|
||||
return ~a >> 24;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
|
||||
return Clip255(a + b - c);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
|
||||
uint32_t c2) {
|
||||
const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
|
||||
const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
|
||||
(c1 >> 16) & 0xff,
|
||||
(c2 >> 16) & 0xff);
|
||||
const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
|
||||
(c1 >> 8) & 0xff,
|
||||
(c2 >> 8) & 0xff);
|
||||
const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
|
||||
return (a << 24) | (r << 16) | (g << 8) | b;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
|
||||
return Clip255(a + (a - b) / 2);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
|
||||
uint32_t c2) {
|
||||
const uint32_t ave = Average2(c0, c1);
|
||||
const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
|
||||
const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
|
||||
const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
|
||||
const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
|
||||
return (a << 24) | (r << 16) | (g << 8) | b;
|
||||
}
|
||||
|
||||
static WEBP_INLINE int Sub3(int a, int b, int c) {
|
||||
const int pa = b - c;
|
||||
const int pb = a - c;
|
||||
return abs(pa) - abs(pb);
|
||||
}
|
||||
|
||||
static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
|
||||
const int pa_minus_pb =
|
||||
Sub3((a >> 24) , (b >> 24) , (c >> 24) ) +
|
||||
Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
|
||||
Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) +
|
||||
Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff);
|
||||
|
||||
return (pa_minus_pb <= 0) ? a : b;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Predictors
|
||||
|
||||
static void Predictor0(uint32_t* src, const uint32_t* top) {
|
||||
(void)top;
|
||||
AddPixelsEq(src, ARGB_BLACK);
|
||||
}
|
||||
static void Predictor1(uint32_t* src, const uint32_t* top) {
|
||||
(void)top;
|
||||
AddPixelsEq(src, src[-1]); // left
|
||||
}
|
||||
static void Predictor2(uint32_t* src, const uint32_t* top) {
|
||||
AddPixelsEq(src, top[0]);
|
||||
}
|
||||
static void Predictor3(uint32_t* src, const uint32_t* top) {
|
||||
AddPixelsEq(src, top[1]);
|
||||
}
|
||||
static void Predictor4(uint32_t* src, const uint32_t* top) {
|
||||
AddPixelsEq(src, top[-1]);
|
||||
}
|
||||
static void Predictor5(uint32_t* src, const uint32_t* top) {
|
||||
const uint32_t pred = Average3(src[-1], top[0], top[1]);
|
||||
AddPixelsEq(src, pred);
|
||||
}
|
||||
static void Predictor6(uint32_t* src, const uint32_t* top) {
|
||||
const uint32_t pred = Average2(src[-1], top[-1]);
|
||||
AddPixelsEq(src, pred);
|
||||
}
|
||||
static void Predictor7(uint32_t* src, const uint32_t* top) {
|
||||
const uint32_t pred = Average2(src[-1], top[0]);
|
||||
AddPixelsEq(src, pred);
|
||||
}
|
||||
static void Predictor8(uint32_t* src, const uint32_t* top) {
|
||||
const uint32_t pred = Average2(top[-1], top[0]);
|
||||
AddPixelsEq(src, pred);
|
||||
}
|
||||
static void Predictor9(uint32_t* src, const uint32_t* top) {
|
||||
const uint32_t pred = Average2(top[0], top[1]);
|
||||
AddPixelsEq(src, pred);
|
||||
}
|
||||
static void Predictor10(uint32_t* src, const uint32_t* top) {
|
||||
const uint32_t pred = Average4(src[-1], top[-1], top[0], top[1]);
|
||||
AddPixelsEq(src, pred);
|
||||
}
|
||||
static void Predictor11(uint32_t* src, const uint32_t* top) {
|
||||
const uint32_t pred = Select(top[0], src[-1], top[-1]);
|
||||
AddPixelsEq(src, pred);
|
||||
}
|
||||
static void Predictor12(uint32_t* src, const uint32_t* top) {
|
||||
const uint32_t pred = ClampedAddSubtractFull(src[-1], top[0], top[-1]);
|
||||
AddPixelsEq(src, pred);
|
||||
}
|
||||
static void Predictor13(uint32_t* src, const uint32_t* top) {
|
||||
const uint32_t pred = ClampedAddSubtractHalf(src[-1], top[0], top[-1]);
|
||||
AddPixelsEq(src, pred);
|
||||
}
|
||||
|
||||
typedef void (*PredictorFunc)(uint32_t* src, const uint32_t* top);
|
||||
static const PredictorFunc kPredictors[16] = {
|
||||
Predictor0, Predictor1, Predictor2, Predictor3,
|
||||
Predictor4, Predictor5, Predictor6, Predictor7,
|
||||
Predictor8, Predictor9, Predictor10, Predictor11,
|
||||
Predictor12, Predictor13,
|
||||
Predictor0, Predictor0 // <- padding security sentinels
|
||||
};
|
||||
|
||||
// Inverse prediction.
|
||||
static void PredictorInverseTransform(const VP8LTransform* const transform,
|
||||
int y_start, int y_end, uint32_t* data) {
|
||||
const int width = transform->xsize_;
|
||||
if (y_start == 0) { // First Row follows the L (mode=1) mode.
|
||||
int x;
|
||||
Predictor0(data, NULL);
|
||||
for (x = 1; x < width; ++x) {
|
||||
Predictor1(data + x, NULL);
|
||||
}
|
||||
data += width;
|
||||
++y_start;
|
||||
}
|
||||
|
||||
{
|
||||
int y = y_start;
|
||||
const int mask = (1 << transform->bits_) - 1;
|
||||
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
|
||||
const uint32_t* pred_mode_base =
|
||||
transform->data_ + (y >> transform->bits_) * tiles_per_row;
|
||||
|
||||
while (y < y_end) {
|
||||
const uint32_t* pred_mode_src = pred_mode_base;
|
||||
PredictorFunc pred_func;
|
||||
int x;
|
||||
|
||||
// First pixel follows the T (mode=2) mode.
|
||||
Predictor2(data, data - width);
|
||||
|
||||
// .. the rest:
|
||||
pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf];
|
||||
for (x = 1; x < width; ++x) {
|
||||
if ((x & mask) == 0) { // start of tile. Read predictor function.
|
||||
pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf];
|
||||
}
|
||||
pred_func(data + x, data + x - width);
|
||||
}
|
||||
data += width;
|
||||
++y;
|
||||
if ((y & mask) == 0) { // Use the same mask, since tiles are squares.
|
||||
pred_mode_base += tiles_per_row;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Add Green to Blue and Red channels (i.e. perform the inverse transform of
|
||||
// 'Subtract Green').
|
||||
static void AddGreenToBlueAndRed(const VP8LTransform* const transform,
|
||||
int y_start, int y_end, uint32_t* data) {
|
||||
const int width = transform->xsize_;
|
||||
const uint32_t* const data_end = data + (y_end - y_start) * width;
|
||||
while (data < data_end) {
|
||||
const uint32_t argb = *data;
|
||||
// "* 0001001u" is equivalent to "(green << 16) + green)"
|
||||
const uint32_t green = ((argb >> 8) & 0xff);
|
||||
uint32_t red_blue = (argb & 0x00ff00ffu);
|
||||
red_blue += (green << 16) | green;
|
||||
red_blue &= 0x00ff00ffu;
|
||||
*data++ = (argb & 0xff00ff00u) | red_blue;
|
||||
}
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
int green_to_red_;
|
||||
int green_to_blue_;
|
||||
int red_to_blue_;
|
||||
} Multipliers;
|
||||
|
||||
static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred,
|
||||
int8_t color) {
|
||||
return (uint32_t)((int)(color_pred) * color) >> 5;
|
||||
}
|
||||
|
||||
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
|
||||
Multipliers* const m) {
|
||||
m->green_to_red_ = (color_code >> 0) & 0xff;
|
||||
m->green_to_blue_ = (color_code >> 8) & 0xff;
|
||||
m->red_to_blue_ = (color_code >> 16) & 0xff;
|
||||
}
|
||||
|
||||
static WEBP_INLINE void TransformColor(const Multipliers* const m,
|
||||
uint32_t* const argb) {
|
||||
const uint32_t green = *argb >> 8;
|
||||
const uint32_t red = *argb >> 16;
|
||||
uint32_t new_red = red;
|
||||
uint32_t new_blue = *argb;
|
||||
|
||||
new_red += ColorTransformDelta(m->green_to_red_, green);
|
||||
new_red &= 0xff;
|
||||
new_blue += ColorTransformDelta(m->green_to_blue_, green);
|
||||
new_blue += ColorTransformDelta(m->red_to_blue_, new_red);
|
||||
new_blue &= 0xff;
|
||||
*argb = (*argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
|
||||
}
|
||||
|
||||
// Color space inverse transform.
|
||||
static void ColorSpaceInverseTransform(const VP8LTransform* const transform,
|
||||
int y_start, int y_end, uint32_t* data) {
|
||||
const int width = transform->xsize_;
|
||||
const int mask = (1 << transform->bits_) - 1;
|
||||
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
|
||||
int y = y_start;
|
||||
const uint32_t* pred_row =
|
||||
transform->data_ + (y >> transform->bits_) * tiles_per_row;
|
||||
|
||||
while (y < y_end) {
|
||||
const uint32_t* pred = pred_row;
|
||||
Multipliers m;
|
||||
int x;
|
||||
|
||||
for (x = 0; x < width; ++x) {
|
||||
if ((x & mask) == 0) ColorCodeToMultipliers(*pred++, &m);
|
||||
TransformColor(&m, data + x);
|
||||
}
|
||||
data += width;
|
||||
++y;
|
||||
if ((y & mask) == 0) pred_row += tiles_per_row;;
|
||||
}
|
||||
}
|
||||
|
||||
// Separate out pixels packed together using pixel-bundling.
|
||||
static void ColorIndexInverseTransform(
|
||||
const VP8LTransform* const transform,
|
||||
int y_start, int y_end,
|
||||
uint32_t* const data_in, uint32_t* const data_out) {
|
||||
int y;
|
||||
const int bits_per_pixel = 8 >> transform->bits_;
|
||||
const int width = transform->xsize_;
|
||||
const uint32_t* const color_map = transform->data_;
|
||||
uint32_t* dst = data_out;
|
||||
const uint32_t* src = data_in;
|
||||
if (bits_per_pixel < 8) {
|
||||
const int pixels_per_byte = 1 << transform->bits_;
|
||||
const int count_mask = pixels_per_byte - 1;
|
||||
const uint32_t bit_mask = (1 << bits_per_pixel) - 1;
|
||||
for (y = y_start; y < y_end; ++y) {
|
||||
uint32_t packed_pixels;
|
||||
int x;
|
||||
for (x = 0; x < width; ++x) {
|
||||
// We need to load fresh 'packed_pixels' once every 'bytes_per_pixels'
|
||||
// increments of x. Fortunately, pixels_per_byte is a power of 2, so
|
||||
// can just use a mask for that, instead of decrementing a counter.
|
||||
if ((x & count_mask) == 0) packed_pixels = ((*src++) >> 8) & 0xff;
|
||||
*dst++ = color_map[packed_pixels & bit_mask];
|
||||
packed_pixels >>= bits_per_pixel;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (y = y_start; y < y_end; ++y) {
|
||||
int x;
|
||||
for (x = 0; x < width; ++x) {
|
||||
*dst++ = color_map[((*src++) >> 8) & 0xff];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void VP8LInverseTransform(const VP8LTransform* const transform,
|
||||
size_t row_start, size_t row_end,
|
||||
uint32_t* const data_in, uint32_t* const data_out) {
|
||||
assert(row_start < row_end);
|
||||
assert(row_end <= transform->ysize_);
|
||||
switch (transform->type_) {
|
||||
case SUBTRACT_GREEN:
|
||||
AddGreenToBlueAndRed(transform, row_start, row_end, data_out);
|
||||
break;
|
||||
case PREDICTOR_TRANSFORM:
|
||||
PredictorInverseTransform(transform, row_start, row_end, data_out);
|
||||
if (row_end != transform->ysize_) {
|
||||
// The last predicted row in this iteration will be the top-pred row
|
||||
// for the first row in next iteration.
|
||||
const int width = transform->xsize_;
|
||||
memcpy(data_out - width, data_out + (row_end - row_start - 1) * width,
|
||||
width * sizeof(*data_out));
|
||||
}
|
||||
break;
|
||||
case CROSS_COLOR_TRANSFORM:
|
||||
ColorSpaceInverseTransform(transform, row_start, row_end, data_out);
|
||||
break;
|
||||
case COLOR_INDEXING_TRANSFORM:
|
||||
ColorIndexInverseTransform(transform, row_start, row_end,
|
||||
data_in, data_out);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Color space conversion.
|
||||
|
||||
static int is_big_endian(void) {
|
||||
static const union {
|
||||
uint16_t w;
|
||||
uint8_t b[2];
|
||||
} tmp = { 1 };
|
||||
return (tmp.b[0] != 1);
|
||||
}
|
||||
|
||||
static void ConvertBGRAToRGB(const uint32_t* src,
|
||||
int num_pixels, uint8_t* dst) {
|
||||
const uint32_t* src_end = src + num_pixels;
|
||||
while (src < src_end) {
|
||||
const uint32_t argb = *src++;
|
||||
*dst++ = (argb >> 16) & 0xff;
|
||||
*dst++ = (argb >> 8) & 0xff;
|
||||
*dst++ = (argb >> 0) & 0xff;
|
||||
}
|
||||
}
|
||||
|
||||
static void ConvertBGRAToRGBA(const uint32_t* src,
|
||||
int num_pixels, uint8_t* dst) {
|
||||
const uint32_t* src_end = src + num_pixels;
|
||||
while (src < src_end) {
|
||||
const uint32_t argb = *src++;
|
||||
*dst++ = (argb >> 16) & 0xff;
|
||||
*dst++ = (argb >> 8) & 0xff;
|
||||
*dst++ = (argb >> 0) & 0xff;
|
||||
*dst++ = (argb >> 24) & 0xff;
|
||||
}
|
||||
}
|
||||
|
||||
static void ConvertBGRAToBGR(const uint32_t* src,
|
||||
int num_pixels, uint8_t* dst) {
|
||||
const uint32_t* src_end = src + num_pixels;
|
||||
while (src < src_end) {
|
||||
const uint32_t argb = *src++;
|
||||
*dst++ = (argb >> 0) & 0xff;
|
||||
*dst++ = (argb >> 8) & 0xff;
|
||||
*dst++ = (argb >> 16) & 0xff;
|
||||
}
|
||||
}
|
||||
|
||||
static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst,
|
||||
int swap_on_big_endian) {
|
||||
if (is_big_endian() == swap_on_big_endian) {
|
||||
const uint32_t* src_end = src + num_pixels;
|
||||
while (src < src_end) {
|
||||
uint32_t argb = *src++;
|
||||
#if !defined(__BIG_ENDIAN__) && (defined(__i386__) || defined(__x86_64__))
|
||||
__asm__ volatile("bswap %0" : "=r"(argb) : "0"(argb));
|
||||
*(uint32_t*)dst = argb;
|
||||
dst += sizeof(argb);
|
||||
#elif !defined(__BIG_ENDIAN__) && defined(_MSC_VER)
|
||||
argb = _byteswap_ulong(argb);
|
||||
*(uint32_t*)dst = argb;
|
||||
dst += sizeof(argb);
|
||||
#else
|
||||
*dst++ = (argb >> 24) & 0xff;
|
||||
*dst++ = (argb >> 16) & 0xff;
|
||||
*dst++ = (argb >> 8) & 0xff;
|
||||
*dst++ = (argb >> 0) & 0xff;
|
||||
#endif
|
||||
}
|
||||
} else {
|
||||
memcpy(dst, src, num_pixels * sizeof(*src));
|
||||
}
|
||||
}
|
||||
|
||||
void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
|
||||
WEBP_CSP_MODE out_colorspace,
|
||||
uint8_t* const rgba) {
|
||||
switch (out_colorspace) {
|
||||
case MODE_RGB:
|
||||
ConvertBGRAToRGB(in_data, num_pixels, rgba);
|
||||
break;
|
||||
case MODE_RGBA:
|
||||
ConvertBGRAToRGBA(in_data, num_pixels, rgba);
|
||||
break;
|
||||
case MODE_BGR:
|
||||
ConvertBGRAToBGR(in_data, num_pixels, rgba);
|
||||
break;
|
||||
case MODE_BGRA:
|
||||
CopyOrSwap(in_data, num_pixels, rgba, 1);
|
||||
break;
|
||||
case MODE_ARGB:
|
||||
CopyOrSwap(in_data, num_pixels, rgba, 0);
|
||||
break;
|
||||
default:
|
||||
assert(0); // Code flow should not reach here.
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
59
src/dsp/lossless.h
Normal file
59
src/dsp/lossless.h
Normal file
@ -0,0 +1,59 @@
|
||||
// Copyright 2012 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// This code is licensed under the same terms as WebM:
|
||||
// Software License Agreement: http://www.webmproject.org/license/software/
|
||||
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
||||
// -----------------------------------------------------------------------------
|
||||
//
|
||||
// Image transforms and color space conversion methods for lossless decoder.
|
||||
//
|
||||
// Author: Vikas Arora (vikaas.arora@gmail.com)
|
||||
// jyrki@google.com (Jyrki Alakuijala)
|
||||
|
||||
#ifndef WEBP_DSP_LOSSLESS_H_
|
||||
#define WEBP_DSP_LOSSLESS_H_
|
||||
|
||||
#include "../webp/types.h"
|
||||
#include "../webp/decode.h"
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Inverse image transforms.
|
||||
|
||||
struct VP8LTransform; // Defined in dec/vp8li.h.
|
||||
|
||||
// Performs inverse transform of data given transform information, start and end
|
||||
// rows. Transform will be applied to rows [row_start, row_end[.
|
||||
// The data_in & data_out are source and destination data pointers respectively
|
||||
// corresponding to the intermediate row (row_start).
|
||||
void VP8LInverseTransform(const struct VP8LTransform* const transform,
|
||||
size_t row_start, size_t row_end,
|
||||
uint32_t* const data_in, uint32_t* const data_out);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Color space conversion.
|
||||
|
||||
// Converts from BGRA to other color spaces.
|
||||
void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
|
||||
WEBP_CSP_MODE out_colorspace,
|
||||
uint8_t* const rgba);
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// Misc methods.
|
||||
|
||||
// Computes sampled size of 'size' when sampling using 'sampling bits'.
|
||||
static WEBP_INLINE uint32_t VP8LSubSampleSize(uint32_t size,
|
||||
uint32_t sampling_bits) {
|
||||
return (size + (1 << sampling_bits) - 1) >> sampling_bits;
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#if defined(__cplusplus) || defined(c_plusplus)
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
#endif // WEBP_DSP_LOSSLESS_H_
|
Loading…
x
Reference in New Issue
Block a user