vpx/vp8/decoder/decodemv.c
Paul Wilkins ba30e7746e Explicit MV reference experiment.
Coding and costing of mv reference signal.

Issues in updating MV ref with COMPANDED_MVREF_THRESH
to be resolved. Ideally the MV precision should be defined based
on absolute MV magnitude not as now the MV ref magnitude.

Update to mv counts moved into bitstream.c because otherwise
if the motion reference is changed at the last minute the encoder
and decoder get out of step in terms of the counts used to update
entropy probs.

Code working on a few test clips but no results yet re benefit vs
signaling cost and no tuning of red loop to test lower cost alternatives
based on the available reference values.

Patch 3. Added check to make sure we don't pick a reference
that would give rise to an uncodeable / out of range residual.

Patch 6-7: Attempt to rebase. OK to submit but best to leave flag off for now.

Patch 9. Remove print no longer needed.

Change-Id: I1938c2ffe41afe6d3cf6ccc0cb2c5d404809a712
2012-10-26 13:35:02 +01:00

1181 lines
40 KiB
C

/*
Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "treereader.h"
#include "vp8/common/entropymv.h"
#include "vp8/common/entropymode.h"
#include "onyxd_int.h"
#include "vp8/common/findnearmv.h"
#include "vp8/common/seg_common.h"
#include "vp8/common/pred_common.h"
#include "vp8/common/entropy.h"
#include "vp8/decoder/decodemv.h"
#if CONFIG_DEBUG
#include <assert.h>
#endif
// #define DEBUG_DEC_MV
#ifdef DEBUG_DEC_MV
int dec_mvcount = 0;
#endif
static int vp8_read_bmode(vp8_reader *bc, const vp8_prob *p) {
return vp8_treed_read(bc, vp8_bmode_tree, p);
}
static int vp8_read_ymode(vp8_reader *bc, const vp8_prob *p) {
return vp8_treed_read(bc, vp8_ymode_tree, p);
}
#if CONFIG_SUPERBLOCKS
static int vp8_sb_kfread_ymode(vp8_reader *bc, const vp8_prob *p) {
return vp8_treed_read(bc, vp8_uv_mode_tree, p);
}
#endif
static int vp8_kfread_ymode(vp8_reader *bc, const vp8_prob *p) {
return vp8_treed_read(bc, vp8_kf_ymode_tree, p);
}
static int vp8_read_i8x8_mode(vp8_reader *bc, const vp8_prob *p) {
return vp8_treed_read(bc, vp8_i8x8_mode_tree, p);
}
static int vp8_read_uv_mode(vp8_reader *bc, const vp8_prob *p) {
return vp8_treed_read(bc, vp8_uv_mode_tree, p);
}
// This function reads the current macro block's segnent id from the bitstream
// It should only be called if a segment map update is indicated.
static void vp8_read_mb_segid(vp8_reader *r, MB_MODE_INFO *mi,
MACROBLOCKD *xd) {
/* Is segmentation enabled */
if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
/* If so then read the segment id. */
if (vp8_read(r, xd->mb_segment_tree_probs[0]))
mi->segment_id =
(unsigned char)(2 + vp8_read(r, xd->mb_segment_tree_probs[2]));
else
mi->segment_id =
(unsigned char)(vp8_read(r, xd->mb_segment_tree_probs[1]));
}
}
#if CONFIG_NEW_MVREF
int vp8_read_mv_ref_id(vp8_reader *r,
vp8_prob * ref_id_probs) {
int ref_index = 0;
if (vp8_read(r, ref_id_probs[0])) {
ref_index++;
if (vp8_read(r, ref_id_probs[1])) {
ref_index++;
if (vp8_read(r, ref_id_probs[2]))
ref_index++;
}
}
return ref_index;
}
#endif
extern const int vp8_i8x8_block[4];
static void kfread_modes(VP8D_COMP *pbi,
MODE_INFO *m,
int mb_row,
int mb_col,
BOOL_DECODER* const bc) {
VP8_COMMON *const cm = &pbi->common;
const int mis = pbi->common.mode_info_stride;
int map_index = mb_row * pbi->common.mb_cols + mb_col;
MB_PREDICTION_MODE y_mode;
// Read the Macroblock segmentation map if it is being updated explicitly
// this frame (reset to 0 by default).
m->mbmi.segment_id = 0;
if (pbi->mb.update_mb_segmentation_map) {
vp8_read_mb_segid(bc, &m->mbmi, &pbi->mb);
pbi->common.last_frame_seg_map[map_index] = m->mbmi.segment_id;
}
m->mbmi.mb_skip_coeff = 0;
if (pbi->common.mb_no_coeff_skip &&
(!segfeature_active(&pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB) ||
(get_segdata(&pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB) != 0))) {
MACROBLOCKD *const xd = &pbi->mb;
m->mbmi.mb_skip_coeff = vp8_read(bc, get_pred_prob(cm, xd, PRED_MBSKIP));
} else {
if (segfeature_active(&pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB) &&
(get_segdata(&pbi->mb,
m->mbmi.segment_id, SEG_LVL_EOB) == 0)) {
m->mbmi.mb_skip_coeff = 1;
} else
m->mbmi.mb_skip_coeff = 0;
}
#if CONFIG_SUPERBLOCKS
if (m->mbmi.encoded_as_sb) {
y_mode = (MB_PREDICTION_MODE) vp8_sb_kfread_ymode(bc,
pbi->common.sb_kf_ymode_prob[pbi->common.kf_ymode_probs_index]);
} else
#endif
y_mode = (MB_PREDICTION_MODE) vp8_kfread_ymode(bc,
pbi->common.kf_ymode_prob[pbi->common.kf_ymode_probs_index]);
#if CONFIG_COMP_INTRA_PRED
m->mbmi.second_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
m->mbmi.ref_frame = INTRA_FRAME;
if ((m->mbmi.mode = y_mode) == B_PRED) {
int i = 0;
#if CONFIG_COMP_INTRA_PRED
int use_comp_pred = vp8_read(bc, 128);
#endif
do {
const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
const B_PREDICTION_MODE L = left_block_mode(m, i);
m->bmi[i].as_mode.first =
(B_PREDICTION_MODE) vp8_read_bmode(
bc, pbi->common.kf_bmode_prob [A] [L]);
#if CONFIG_COMP_INTRA_PRED
if (use_comp_pred) {
m->bmi[i].as_mode.second =
(B_PREDICTION_MODE) vp8_read_bmode(
bc, pbi->common.kf_bmode_prob [A] [L]);
} else {
m->bmi[i].as_mode.second = (B_PREDICTION_MODE)(B_DC_PRED - 1);
}
#endif
} while (++i < 16);
}
if ((m->mbmi.mode = y_mode) == I8X8_PRED) {
int i;
int mode8x8;
for (i = 0; i < 4; i++) {
int ib = vp8_i8x8_block[i];
mode8x8 = vp8_read_i8x8_mode(bc, pbi->common.fc.i8x8_mode_prob);
m->bmi[ib + 0].as_mode.first = mode8x8;
m->bmi[ib + 1].as_mode.first = mode8x8;
m->bmi[ib + 4].as_mode.first = mode8x8;
m->bmi[ib + 5].as_mode.first = mode8x8;
#if CONFIG_COMP_INTRA_PRED
m->bmi[ib + 0].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
m->bmi[ib + 1].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
m->bmi[ib + 4].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
m->bmi[ib + 5].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
}
} else
m->mbmi.uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(bc,
pbi->common.kf_uv_mode_prob[m->mbmi.mode]);
#if CONFIG_COMP_INTRA_PRED
m->mbmi.second_uv_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
if (cm->txfm_mode == TX_MODE_SELECT && m->mbmi.mb_skip_coeff == 0 &&
m->mbmi.mode <= I8X8_PRED) {
// FIXME(rbultje) code ternary symbol once all experiments are merged
m->mbmi.txfm_size = vp8_read(bc, cm->prob_tx[0]);
if (m->mbmi.txfm_size != TX_4X4 && m->mbmi.mode != I8X8_PRED)
m->mbmi.txfm_size += vp8_read(bc, cm->prob_tx[1]);
} else if (cm->txfm_mode >= ALLOW_16X16 && m->mbmi.mode <= TM_PRED) {
m->mbmi.txfm_size = TX_16X16;
} else if (cm->txfm_mode >= ALLOW_8X8 && m->mbmi.mode != B_PRED) {
m->mbmi.txfm_size = TX_8X8;
} else {
m->mbmi.txfm_size = TX_4X4;
}
}
static int read_nmv_component(vp8_reader *r,
int rv,
const nmv_component *mvcomp) {
int v, s, z, c, o, d;
s = vp8_read(r, mvcomp->sign);
c = vp8_treed_read(r, vp8_mv_class_tree, mvcomp->classes);
if (c == MV_CLASS_0) {
d = vp8_treed_read(r, vp8_mv_class0_tree, mvcomp->class0);
} else {
int i, b;
d = 0;
b = c + CLASS0_BITS - 1; /* number of bits */
for (i = 0; i < b; ++i)
d |= (vp8_read(r, mvcomp->bits[i]) << i);
}
o = d << 3;
z = vp8_get_mv_mag(c, o);
v = (s ? -(z + 8) : (z + 8));
return v;
}
static int read_nmv_component_fp(vp8_reader *r,
int v,
int rv,
const nmv_component *mvcomp,
int usehp) {
int s, z, c, o, d, e, f;
s = v < 0;
z = (s ? -v : v) - 1; /* magnitude - 1 */
z &= ~7;
c = vp8_get_mv_class(z, &o);
d = o >> 3;
if (c == MV_CLASS_0) {
f = vp8_treed_read(r, vp8_mv_fp_tree, mvcomp->class0_fp[d]);
} else {
f = vp8_treed_read(r, vp8_mv_fp_tree, mvcomp->fp);
}
o += (f << 1);
if (usehp) {
if (c == MV_CLASS_0) {
e = vp8_read(r, mvcomp->class0_hp);
} else {
e = vp8_read(r, mvcomp->hp);
}
o += e;
} else {
++o; /* Note if hp is not used, the default value of the hp bit is 1 */
}
z = vp8_get_mv_mag(c, o);
v = (s ? -(z + 1) : (z + 1));
return v;
}
static void read_nmv(vp8_reader *r, MV *mv, const MV *ref,
const nmv_context *mvctx) {
MV_JOINT_TYPE j = vp8_treed_read(r, vp8_mv_joint_tree, mvctx->joints);
mv->row = mv-> col = 0;
if (j == MV_JOINT_HZVNZ || j == MV_JOINT_HNZVNZ) {
mv->row = read_nmv_component(r, ref->row, &mvctx->comps[0]);
}
if (j == MV_JOINT_HNZVZ || j == MV_JOINT_HNZVNZ) {
mv->col = read_nmv_component(r, ref->col, &mvctx->comps[1]);
}
}
static void read_nmv_fp(vp8_reader *r, MV *mv, const MV *ref,
const nmv_context *mvctx, int usehp) {
MV_JOINT_TYPE j = vp8_get_mv_joint(*mv);
usehp = usehp && vp8_use_nmv_hp(ref);
if (j == MV_JOINT_HZVNZ || j == MV_JOINT_HNZVNZ) {
mv->row = read_nmv_component_fp(r, mv->row, ref->row, &mvctx->comps[0],
usehp);
}
if (j == MV_JOINT_HNZVZ || j == MV_JOINT_HNZVNZ) {
mv->col = read_nmv_component_fp(r, mv->col, ref->col, &mvctx->comps[1],
usehp);
}
//printf(" %d: %d %d ref: %d %d\n", usehp, mv->row, mv-> col, ref->row, ref->col);
}
static void update_nmv(vp8_reader *bc, vp8_prob *const p,
const vp8_prob upd_p) {
if (vp8_read(bc, upd_p)) {
#ifdef LOW_PRECISION_MV_UPDATE
*p = (vp8_read_literal(bc, 7) << 1) | 1;
#else
*p = (vp8_read_literal(bc, 8));
#endif
}
}
static void read_nmvprobs(vp8_reader *bc, nmv_context *mvctx,
int usehp) {
int i, j, k;
#ifdef MV_GROUP_UPDATE
if (!vp8_read_bit(bc)) return;
#endif
for (j = 0; j < MV_JOINTS - 1; ++j) {
update_nmv(bc, &mvctx->joints[j],
VP8_NMV_UPDATE_PROB);
}
for (i = 0; i < 2; ++i) {
update_nmv(bc, &mvctx->comps[i].sign,
VP8_NMV_UPDATE_PROB);
for (j = 0; j < MV_CLASSES - 1; ++j) {
update_nmv(bc, &mvctx->comps[i].classes[j],
VP8_NMV_UPDATE_PROB);
}
for (j = 0; j < CLASS0_SIZE - 1; ++j) {
update_nmv(bc, &mvctx->comps[i].class0[j],
VP8_NMV_UPDATE_PROB);
}
for (j = 0; j < MV_OFFSET_BITS; ++j) {
update_nmv(bc, &mvctx->comps[i].bits[j],
VP8_NMV_UPDATE_PROB);
}
}
for (i = 0; i < 2; ++i) {
for (j = 0; j < CLASS0_SIZE; ++j) {
for (k = 0; k < 3; ++k)
update_nmv(bc, &mvctx->comps[i].class0_fp[j][k],
VP8_NMV_UPDATE_PROB);
}
for (j = 0; j < 3; ++j) {
update_nmv(bc, &mvctx->comps[i].fp[j],
VP8_NMV_UPDATE_PROB);
}
}
if (usehp) {
for (i = 0; i < 2; ++i) {
update_nmv(bc, &mvctx->comps[i].class0_hp,
VP8_NMV_UPDATE_PROB);
update_nmv(bc, &mvctx->comps[i].hp,
VP8_NMV_UPDATE_PROB);
}
}
}
// Read the referncence frame
static MV_REFERENCE_FRAME read_ref_frame(VP8D_COMP *pbi,
vp8_reader *const bc,
unsigned char segment_id) {
MV_REFERENCE_FRAME ref_frame;
int seg_ref_active;
int seg_ref_count = 0;
VP8_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
seg_ref_active = segfeature_active(xd,
segment_id,
SEG_LVL_REF_FRAME);
// If segment coding enabled does the segment allow for more than one
// possible reference frame
if (seg_ref_active) {
seg_ref_count = check_segref(xd, segment_id, INTRA_FRAME) +
check_segref(xd, segment_id, LAST_FRAME) +
check_segref(xd, segment_id, GOLDEN_FRAME) +
check_segref(xd, segment_id, ALTREF_FRAME);
}
// Segment reference frame features not available or allows for
// multiple reference frame options
if (!seg_ref_active || (seg_ref_count > 1)) {
// Values used in prediction model coding
unsigned char prediction_flag;
vp8_prob pred_prob;
MV_REFERENCE_FRAME pred_ref;
// Get the context probability the prediction flag
pred_prob = get_pred_prob(cm, xd, PRED_REF);
// Read the prediction status flag
prediction_flag = (unsigned char)vp8_read(bc, pred_prob);
// Store the prediction flag.
set_pred_flag(xd, PRED_REF, prediction_flag);
// Get the predicted reference frame.
pred_ref = get_pred_ref(cm, xd);
// If correctly predicted then use the predicted value
if (prediction_flag) {
ref_frame = pred_ref;
}
// else decode the explicitly coded value
else {
vp8_prob mod_refprobs[PREDICTION_PROBS];
vpx_memcpy(mod_refprobs,
cm->mod_refprobs[pred_ref], sizeof(mod_refprobs));
// If segment coding enabled blank out options that cant occur by
// setting the branch probability to 0.
if (seg_ref_active) {
mod_refprobs[INTRA_FRAME] *=
check_segref(xd, segment_id, INTRA_FRAME);
mod_refprobs[LAST_FRAME] *=
check_segref(xd, segment_id, LAST_FRAME);
mod_refprobs[GOLDEN_FRAME] *=
(check_segref(xd, segment_id, GOLDEN_FRAME) *
check_segref(xd, segment_id, ALTREF_FRAME));
}
// Default to INTRA_FRAME (value 0)
ref_frame = INTRA_FRAME;
// Do we need to decode the Intra/Inter branch
if (mod_refprobs[0])
ref_frame = (MV_REFERENCE_FRAME) vp8_read(bc, mod_refprobs[0]);
else
ref_frame++;
if (ref_frame) {
// Do we need to decode the Last/Gf_Arf branch
if (mod_refprobs[1])
ref_frame += vp8_read(bc, mod_refprobs[1]);
else
ref_frame++;
if (ref_frame > 1) {
// Do we need to decode the GF/Arf branch
if (mod_refprobs[2])
ref_frame += vp8_read(bc, mod_refprobs[2]);
else {
if (seg_ref_active) {
if ((pred_ref == GOLDEN_FRAME) ||
!check_segref(xd, segment_id, GOLDEN_FRAME)) {
ref_frame = ALTREF_FRAME;
} else
ref_frame = GOLDEN_FRAME;
} else
ref_frame = (pred_ref == GOLDEN_FRAME)
? ALTREF_FRAME : GOLDEN_FRAME;
}
}
}
}
}
// Segment reference frame features are enabled
else {
// The reference frame for the mb is considered as correclty predicted
// if it is signaled at the segment level for the purposes of the
// common prediction model
set_pred_flag(xd, PRED_REF, 1);
ref_frame = get_pred_ref(cm, xd);
}
return (MV_REFERENCE_FRAME)ref_frame;
}
#if CONFIG_SUPERBLOCKS
static MB_PREDICTION_MODE read_sb_mv_ref(vp8_reader *bc, const vp8_prob *p) {
return (MB_PREDICTION_MODE) vp8_treed_read(bc, vp8_sb_mv_ref_tree, p);
}
#endif
static MB_PREDICTION_MODE read_mv_ref(vp8_reader *bc, const vp8_prob *p) {
return (MB_PREDICTION_MODE) vp8_treed_read(bc, vp8_mv_ref_tree, p);
}
static B_PREDICTION_MODE sub_mv_ref(vp8_reader *bc, const vp8_prob *p) {
return (B_PREDICTION_MODE) vp8_treed_read(bc, vp8_sub_mv_ref_tree, p);
}
#ifdef VPX_MODE_COUNT
unsigned int vp8_mv_cont_count[5][4] = {
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 }
};
#endif
static const unsigned char mbsplit_fill_count[4] = {8, 8, 4, 1};
static const unsigned char mbsplit_fill_offset[4][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{ 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15},
{ 0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15},
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
};
static void read_switchable_interp_probs(VP8D_COMP* const pbi,
BOOL_DECODER* const bc) {
VP8_COMMON *const cm = &pbi->common;
int i, j;
for (j = 0; j <= VP8_SWITCHABLE_FILTERS; ++j) {
for (i = 0; i < VP8_SWITCHABLE_FILTERS - 1; ++i) {
cm->fc.switchable_interp_prob[j][i] = vp8_read_literal(bc, 8);
}
}
//printf("DECODER: %d %d\n", cm->fc.switchable_interp_prob[0],
//cm->fc.switchable_interp_prob[1]);
}
static void mb_mode_mv_init(VP8D_COMP *pbi, vp8_reader *bc) {
VP8_COMMON *const cm = &pbi->common;
nmv_context *const nmvc = &pbi->common.fc.nmvc;
MACROBLOCKD *const xd = &pbi->mb;
if (cm->frame_type == KEY_FRAME) {
if (!cm->kf_ymode_probs_update)
cm->kf_ymode_probs_index = vp8_read_literal(bc, 3);
} else {
#if CONFIG_PRED_FILTER
cm->pred_filter_mode = (vp8_prob)vp8_read_literal(bc, 2);
if (cm->pred_filter_mode == 2)
cm->prob_pred_filter_off = (vp8_prob)vp8_read_literal(bc, 8);
#endif
if (cm->mcomp_filter_type == SWITCHABLE)
read_switchable_interp_probs(pbi, bc);
// Decode the baseline probabilities for decoding reference frame
cm->prob_intra_coded = (vp8_prob)vp8_read_literal(bc, 8);
cm->prob_last_coded = (vp8_prob)vp8_read_literal(bc, 8);
cm->prob_gf_coded = (vp8_prob)vp8_read_literal(bc, 8);
// Computes a modified set of probabilities for use when reference
// frame prediction fails.
compute_mod_refprobs(cm);
pbi->common.comp_pred_mode = vp8_read(bc, 128);
if (cm->comp_pred_mode)
cm->comp_pred_mode += vp8_read(bc, 128);
if (cm->comp_pred_mode == HYBRID_PREDICTION) {
int i;
for (i = 0; i < COMP_PRED_CONTEXTS; i++)
cm->prob_comppred[i] = (vp8_prob)vp8_read_literal(bc, 8);
}
if (vp8_read_bit(bc)) {
int i = 0;
do {
cm->fc.ymode_prob[i] = (vp8_prob) vp8_read_literal(bc, 8);
} while (++i < VP8_YMODES - 1);
}
#if CONFIG_NEW_MVREF
// Temp defaults probabilities for ecnoding the MV ref id signal
vpx_memset(xd->mb_mv_ref_id_probs, 192, sizeof(xd->mb_mv_ref_id_probs));
#endif
read_nmvprobs(bc, nmvc, xd->allow_high_precision_mv);
}
}
// This function either reads the segment id for the current macroblock from
// the bitstream or if the value is temporally predicted asserts the predicted
// value
static void read_mb_segment_id(VP8D_COMP *pbi,
int mb_row, int mb_col,
BOOL_DECODER* const bc) {
VP8_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *mbmi = &mi->mbmi;
int index = mb_row * pbi->common.mb_cols + mb_col;
if (xd->segmentation_enabled) {
if (xd->update_mb_segmentation_map) {
// Is temporal coding of the segment id for this mb enabled.
if (cm->temporal_update) {
// Get the context based probability for reading the
// prediction status flag
vp8_prob pred_prob =
get_pred_prob(cm, xd, PRED_SEG_ID);
// Read the prediction status flag
unsigned char seg_pred_flag =
(unsigned char)vp8_read(bc, pred_prob);
// Store the prediction flag.
set_pred_flag(xd, PRED_SEG_ID, seg_pred_flag);
// If the value is flagged as correctly predicted
// then use the predicted value
if (seg_pred_flag) {
mbmi->segment_id = get_pred_mb_segid(cm, index);
}
// Else .... decode it explicitly
else {
vp8_read_mb_segid(bc, mbmi, xd);
}
}
// Normal unpredicted coding mode
else {
vp8_read_mb_segid(bc, mbmi, xd);
}
#if CONFIG_SUPERBLOCKS
if (mbmi->encoded_as_sb) {
cm->last_frame_seg_map[index] =
cm->last_frame_seg_map[index + 1] =
cm->last_frame_seg_map[index + cm->mb_cols] =
cm->last_frame_seg_map[index + cm->mb_cols + 1] = mbmi->segment_id;
} else
#endif
{
cm->last_frame_seg_map[index] = mbmi->segment_id;
}
} else {
#if CONFIG_SUPERBLOCKS
if (mbmi->encoded_as_sb) {
mbmi->segment_id =
cm->last_frame_seg_map[index] &&
cm->last_frame_seg_map[index + 1] &&
cm->last_frame_seg_map[index + cm->mb_cols] &&
cm->last_frame_seg_map[index + cm->mb_cols + 1];
} else
#endif
{
mbmi->segment_id = cm->last_frame_seg_map[index];
}
}
} else {
// The encoder explicitly sets the segment_id to 0
// when segmentation is disabled
mbmi->segment_id = 0;
}
}
static void read_mb_modes_mv(VP8D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi,
MODE_INFO *prev_mi,
int mb_row, int mb_col,
BOOL_DECODER* const bc) {
VP8_COMMON *const cm = &pbi->common;
nmv_context *const nmvc = &pbi->common.fc.nmvc;
const int mis = pbi->common.mode_info_stride;
MACROBLOCKD *const xd = &pbi->mb;
int_mv *const mv = &mbmi->mv;
int mb_to_left_edge;
int mb_to_right_edge;
int mb_to_top_edge;
int mb_to_bottom_edge;
mb_to_top_edge = xd->mb_to_top_edge;
mb_to_bottom_edge = xd->mb_to_bottom_edge;
mb_to_top_edge -= LEFT_TOP_MARGIN;
mb_to_bottom_edge += RIGHT_BOTTOM_MARGIN;
mbmi->need_to_clamp_mvs = 0;
mbmi->need_to_clamp_secondmv = 0;
mbmi->second_ref_frame = 0;
/* Distance of Mb to the various image edges.
* These specified to 8th pel as they are always compared to MV values that are in 1/8th pel units
*/
xd->mb_to_left_edge =
mb_to_left_edge = -((mb_col * 16) << 3);
mb_to_left_edge -= LEFT_TOP_MARGIN;
xd->mb_to_right_edge =
mb_to_right_edge = ((pbi->common.mb_cols - 1 - mb_col) * 16) << 3;
mb_to_right_edge += RIGHT_BOTTOM_MARGIN;
// Make sure the MACROBLOCKD mode info pointer is pointed at the
// correct entry for the current macroblock.
xd->mode_info_context = mi;
xd->prev_mode_info_context = prev_mi;
// Read the macroblock segment id.
read_mb_segment_id(pbi, mb_row, mb_col, bc);
if (pbi->common.mb_no_coeff_skip &&
(!segfeature_active(xd,
mbmi->segment_id, SEG_LVL_EOB) ||
(get_segdata(xd, mbmi->segment_id, SEG_LVL_EOB) != 0))) {
// Read the macroblock coeff skip flag if this feature is in use,
// else default to 0
mbmi->mb_skip_coeff = vp8_read(bc, get_pred_prob(cm, xd, PRED_MBSKIP));
} else {
if (segfeature_active(xd,
mbmi->segment_id, SEG_LVL_EOB) &&
(get_segdata(xd, mbmi->segment_id, SEG_LVL_EOB) == 0)) {
mbmi->mb_skip_coeff = 1;
} else
mbmi->mb_skip_coeff = 0;
}
// Read the reference frame
mbmi->ref_frame = read_ref_frame(pbi, bc, mbmi->segment_id);
// If reference frame is an Inter frame
if (mbmi->ref_frame) {
int rct[4];
int_mv nearest, nearby, best_mv;
int_mv nearest_second, nearby_second, best_mv_second;
vp8_prob mv_ref_p [VP8_MVREFS - 1];
#if CONFIG_NEWBESTREFMV
int recon_y_stride, recon_yoffset;
int recon_uv_stride, recon_uvoffset;
#endif
vp8_find_near_mvs(xd, mi,
prev_mi,
&nearest, &nearby, &best_mv, rct,
mbmi->ref_frame, cm->ref_frame_sign_bias);
#if CONFIG_NEWBESTREFMV
{
int ref_fb_idx;
MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame;
/* Select the appropriate reference frame for this MB */
if (ref_frame == LAST_FRAME)
ref_fb_idx = cm->lst_fb_idx;
else if (ref_frame == GOLDEN_FRAME)
ref_fb_idx = cm->gld_fb_idx;
else
ref_fb_idx = cm->alt_fb_idx;
recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride ;
recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride;
recon_yoffset = (mb_row * recon_y_stride * 16) + (mb_col * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8) + (mb_col * 8);
xd->pre.y_buffer = cm->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = cm->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = cm->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
find_mv_refs(xd, mi, prev_mi,
ref_frame, mbmi->ref_mvs[ref_frame],
cm->ref_frame_sign_bias);
vp8_find_best_ref_mvs(xd,
xd->pre.y_buffer,
recon_y_stride,
mbmi->ref_mvs[ref_frame],
&best_mv, &nearest, &nearby);
}
#endif
vp8_mv_ref_probs(&pbi->common, mv_ref_p, rct);
// Is the segment level mode feature enabled for this segment
if (segfeature_active(xd, mbmi->segment_id, SEG_LVL_MODE)) {
mbmi->mode =
get_segdata(xd, mbmi->segment_id, SEG_LVL_MODE);
} else {
#if CONFIG_SUPERBLOCKS
if (mbmi->encoded_as_sb) {
mbmi->mode = read_sb_mv_ref(bc, mv_ref_p);
} else
#endif
mbmi->mode = read_mv_ref(bc, mv_ref_p);
vp8_accum_mv_refs(&pbi->common, mbmi->mode, rct);
}
#if CONFIG_PRED_FILTER
if (mbmi->mode >= NEARESTMV && mbmi->mode < SPLITMV) {
// Is the prediction filter enabled
if (cm->pred_filter_mode == 2)
mbmi->pred_filter_enabled =
vp8_read(bc, cm->prob_pred_filter_off);
else
mbmi->pred_filter_enabled = cm->pred_filter_mode;
}
#endif
if (mbmi->mode >= NEARESTMV && mbmi->mode <= SPLITMV)
{
if (cm->mcomp_filter_type == SWITCHABLE) {
mbmi->interp_filter = vp8_switchable_interp[
vp8_treed_read(bc, vp8_switchable_interp_tree,
get_pred_probs(cm, xd, PRED_SWITCHABLE_INTERP))];
} else {
mbmi->interp_filter = cm->mcomp_filter_type;
}
}
if (cm->comp_pred_mode == COMP_PREDICTION_ONLY ||
(cm->comp_pred_mode == HYBRID_PREDICTION &&
vp8_read(bc, get_pred_prob(cm, xd, PRED_COMP)))) {
/* Since we have 3 reference frames, we can only have 3 unique
* combinations of combinations of 2 different reference frames
* (A-G, G-L or A-L). In the bitstream, we use this to simply
* derive the second reference frame from the first reference
* frame, by saying it's the next one in the enumerator, and
* if that's > n_refs, then the second reference frame is the
* first one in the enumerator. */
mbmi->second_ref_frame = mbmi->ref_frame + 1;
if (mbmi->second_ref_frame == 4)
mbmi->second_ref_frame = 1;
#if CONFIG_NEWBESTREFMV
if (mbmi->second_ref_frame) {
int second_ref_fb_idx;
/* Select the appropriate reference frame for this MB */
if (mbmi->second_ref_frame == LAST_FRAME)
second_ref_fb_idx = cm->lst_fb_idx;
else if (mbmi->second_ref_frame ==
GOLDEN_FRAME)
second_ref_fb_idx = cm->gld_fb_idx;
else
second_ref_fb_idx = cm->alt_fb_idx;
xd->second_pre.y_buffer =
cm->yv12_fb[second_ref_fb_idx].y_buffer + recon_yoffset;
xd->second_pre.u_buffer =
cm->yv12_fb[second_ref_fb_idx].u_buffer + recon_uvoffset;
xd->second_pre.v_buffer =
cm->yv12_fb[second_ref_fb_idx].v_buffer + recon_uvoffset;
vp8_find_near_mvs(xd, mi, prev_mi,
&nearest_second, &nearby_second, &best_mv_second,
rct,
mbmi->second_ref_frame,
cm->ref_frame_sign_bias);
find_mv_refs(xd, mi, prev_mi,
mbmi->second_ref_frame,
mbmi->ref_mvs[mbmi->second_ref_frame],
cm->ref_frame_sign_bias);
vp8_find_best_ref_mvs(xd,
xd->second_pre.y_buffer,
recon_y_stride,
mbmi->ref_mvs[mbmi->second_ref_frame],
&best_mv_second,
&nearest_second,
&nearby_second);
}
#else
vp8_find_near_mvs(xd, mi, prev_mi,
&nearest_second, &nearby_second, &best_mv_second,
rct,
mbmi->second_ref_frame,
pbi->common.ref_frame_sign_bias);
#endif
} else {
mbmi->second_ref_frame = 0;
}
mbmi->uv_mode = DC_PRED;
switch (mbmi->mode) {
case SPLITMV: {
const int s = mbmi->partitioning =
vp8_treed_read(bc, vp8_mbsplit_tree, cm->fc.mbsplit_prob);
const int num_p = vp8_mbsplit_count [s];
int j = 0;
cm->fc.mbsplit_counts[s]++;
mbmi->need_to_clamp_mvs = 0;
do { /* for each subset j */
int_mv leftmv, abovemv, second_leftmv, second_abovemv;
int_mv blockmv, secondmv;
int k; /* first block in subset j */
int mv_contz;
int blockmode;
k = vp8_mbsplit_offset[s][j];
leftmv.as_int = left_block_mv(mi, k);
abovemv.as_int = above_block_mv(mi, k, mis);
if (mbmi->second_ref_frame) {
second_leftmv.as_int = left_block_second_mv(mi, k);
second_abovemv.as_int = above_block_second_mv(mi, k, mis);
}
mv_contz = vp8_mv_cont(&leftmv, &abovemv);
blockmode = sub_mv_ref(bc, cm->fc.sub_mv_ref_prob [mv_contz]);
cm->fc.sub_mv_ref_counts[mv_contz][blockmode - LEFT4X4]++;
switch (blockmode) {
case NEW4X4:
read_nmv(bc, &blockmv.as_mv, &best_mv.as_mv, nmvc);
read_nmv_fp(bc, &blockmv.as_mv, &best_mv.as_mv, nmvc,
xd->allow_high_precision_mv);
vp8_increment_nmv(&blockmv.as_mv, &best_mv.as_mv,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
blockmv.as_mv.row += best_mv.as_mv.row;
blockmv.as_mv.col += best_mv.as_mv.col;
if (mbmi->second_ref_frame) {
read_nmv(bc, &secondmv.as_mv, &best_mv_second.as_mv, nmvc);
read_nmv_fp(bc, &secondmv.as_mv, &best_mv_second.as_mv, nmvc,
xd->allow_high_precision_mv);
vp8_increment_nmv(&secondmv.as_mv, &best_mv_second.as_mv,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
secondmv.as_mv.row += best_mv_second.as_mv.row;
secondmv.as_mv.col += best_mv_second.as_mv.col;
}
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][3]++;
#endif
break;
case LEFT4X4:
blockmv.as_int = leftmv.as_int;
if (mbmi->second_ref_frame)
secondmv.as_int = second_leftmv.as_int;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][0]++;
#endif
break;
case ABOVE4X4:
blockmv.as_int = abovemv.as_int;
if (mbmi->second_ref_frame)
secondmv.as_int = second_abovemv.as_int;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][1]++;
#endif
break;
case ZERO4X4:
blockmv.as_int = 0;
if (mbmi->second_ref_frame)
secondmv.as_int = 0;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][2]++;
#endif
break;
default:
break;
}
mbmi->need_to_clamp_mvs |= vp8_check_mv_bounds(&blockmv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame) {
mbmi->need_to_clamp_mvs |= vp8_check_mv_bounds(&secondmv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
}
{
/* Fill (uniform) modes, mvs of jth subset.
Must do it here because ensuing subsets can
refer back to us via "left" or "above". */
const unsigned char *fill_offset;
unsigned int fill_count = mbsplit_fill_count[s];
fill_offset = &mbsplit_fill_offset[s][(unsigned char)j * mbsplit_fill_count[s]];
do {
mi->bmi[ *fill_offset].as_mv.first.as_int = blockmv.as_int;
if (mbmi->second_ref_frame)
mi->bmi[ *fill_offset].as_mv.second.as_int = secondmv.as_int;
fill_offset++;
} while (--fill_count);
}
} while (++j < num_p);
}
mv->as_int = mi->bmi[15].as_mv.first.as_int;
mbmi->mv[1].as_int = mi->bmi[15].as_mv.second.as_int;
break; /* done with SPLITMV */
case NEARMV:
mv->as_int = nearby.as_int;
/* Clip "next_nearest" so that it does not extend to far out of image */
vp8_clamp_mv(mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
if (mbmi->second_ref_frame) {
mbmi->mv[1].as_int = nearby_second.as_int;
vp8_clamp_mv(&mbmi->mv[1], mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
}
break;
case NEARESTMV:
mv->as_int = nearest.as_int;
/* Clip "next_nearest" so that it does not extend to far out of image */
vp8_clamp_mv(mv, mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
if (mbmi->second_ref_frame) {
mbmi->mv[1].as_int = nearest_second.as_int;
vp8_clamp_mv(&mbmi->mv[1], mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
}
break;
case ZEROMV:
mv->as_int = 0;
if (mbmi->second_ref_frame)
mbmi->mv[1].as_int = 0;
break;
case NEWMV:
#if CONFIG_NEW_MVREF
{
int best_index;
MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame;
// Encode the index of the choice.
best_index =
vp8_read_mv_ref_id(bc, xd->mb_mv_ref_id_probs[ref_frame]);
best_mv.as_int = mbmi->ref_mvs[ref_frame][best_index].as_int;
}
#endif
read_nmv(bc, &mv->as_mv, &best_mv.as_mv, nmvc);
read_nmv_fp(bc, &mv->as_mv, &best_mv.as_mv, nmvc,
xd->allow_high_precision_mv);
vp8_increment_nmv(&mv->as_mv, &best_mv.as_mv, &cm->fc.NMVcount,
xd->allow_high_precision_mv);
mv->as_mv.row += best_mv.as_mv.row;
mv->as_mv.col += best_mv.as_mv.col;
/* Don't need to check this on NEARMV and NEARESTMV modes
* since those modes clamp the MV. The NEWMV mode does not,
* so signal to the prediction stage whether special
* handling may be required.
*/
mbmi->need_to_clamp_mvs = vp8_check_mv_bounds(mv,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->second_ref_frame) {
#if CONFIG_NEW_MVREF
{
int best_index;
MV_REFERENCE_FRAME ref_frame = mbmi->second_ref_frame;
// Encode the index of the choice.
best_index =
vp8_read_mv_ref_id(bc, xd->mb_mv_ref_id_probs[ref_frame]);
best_mv_second.as_int = mbmi->ref_mvs[ref_frame][best_index].as_int;
}
#endif
read_nmv(bc, &mbmi->mv[1].as_mv, &best_mv_second.as_mv, nmvc);
read_nmv_fp(bc, &mbmi->mv[1].as_mv, &best_mv_second.as_mv, nmvc,
xd->allow_high_precision_mv);
vp8_increment_nmv(&mbmi->mv[1].as_mv, &best_mv_second.as_mv,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
mbmi->mv[1].as_mv.row += best_mv_second.as_mv.row;
mbmi->mv[1].as_mv.col += best_mv_second.as_mv.col;
mbmi->need_to_clamp_secondmv |=
vp8_check_mv_bounds(&mbmi->mv[1],
mb_to_left_edge, mb_to_right_edge,
mb_to_top_edge, mb_to_bottom_edge);
}
break;
default:
;
#if CONFIG_DEBUG
assert(0);
#endif
}
} else {
/* required for left and above block mv */
mbmi->mv[0].as_int = 0;
if (segfeature_active(xd, mbmi->segment_id, SEG_LVL_MODE))
mbmi->mode = (MB_PREDICTION_MODE)
get_segdata(xd, mbmi->segment_id, SEG_LVL_MODE);
else {
// FIXME write using SB mode tree
mbmi->mode = (MB_PREDICTION_MODE)
vp8_read_ymode(bc, pbi->common.fc.ymode_prob);
pbi->common.fc.ymode_counts[mbmi->mode]++;
}
#if CONFIG_COMP_INTRA_PRED
mbmi->second_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
// If MB mode is BPRED read the block modes
if (mbmi->mode == B_PRED) {
int j = 0;
#if CONFIG_COMP_INTRA_PRED
int use_comp_pred = vp8_read(bc, 128);
#endif
do {
mi->bmi[j].as_mode.first = (B_PREDICTION_MODE)vp8_read_bmode(bc, pbi->common.fc.bmode_prob);
/*
{
int p;
for (p = 0; p < VP8_BINTRAMODES - 1; ++p)
printf(" %d", pbi->common.fc.bmode_prob[p]);
printf("\nbmode[%d][%d]: %d\n", pbi->common.current_video_frame, j, mi->bmi[j].as_mode.first);
}
*/
pbi->common.fc.bmode_counts[mi->bmi[j].as_mode.first]++;
#if CONFIG_COMP_INTRA_PRED
if (use_comp_pred) {
mi->bmi[j].as_mode.second = (B_PREDICTION_MODE)vp8_read_bmode(bc, pbi->common.fc.bmode_prob);
} else {
mi->bmi[j].as_mode.second = (B_PREDICTION_MODE)(B_DC_PRED - 1);
}
#endif
} while (++j < 16);
}
if (mbmi->mode == I8X8_PRED) {
int i;
int mode8x8;
for (i = 0; i < 4; i++) {
int ib = vp8_i8x8_block[i];
mode8x8 = vp8_read_i8x8_mode(bc, pbi->common.fc.i8x8_mode_prob);
mi->bmi[ib + 0].as_mode.first = mode8x8;
mi->bmi[ib + 1].as_mode.first = mode8x8;
mi->bmi[ib + 4].as_mode.first = mode8x8;
mi->bmi[ib + 5].as_mode.first = mode8x8;
pbi->common.fc.i8x8_mode_counts[mode8x8]++;
#if CONFIG_COMP_INTRA_PRED
mi->bmi[ib + 0].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
mi->bmi[ib + 1].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
mi->bmi[ib + 4].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
mi->bmi[ib + 5].as_mode.second = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
}
} else {
mbmi->uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(
bc, pbi->common.fc.uv_mode_prob[mbmi->mode]);
pbi->common.fc.uv_mode_counts[mbmi->mode][mbmi->uv_mode]++;
}
#if CONFIG_COMP_INTRA_PRED
mbmi->second_uv_mode = (MB_PREDICTION_MODE)(DC_PRED - 1);
#endif
}
if (cm->txfm_mode == TX_MODE_SELECT && mbmi->mb_skip_coeff == 0 &&
((mbmi->ref_frame == INTRA_FRAME && mbmi->mode <= I8X8_PRED) ||
(mbmi->ref_frame != INTRA_FRAME && !(mbmi->mode == SPLITMV &&
mbmi->partitioning == PARTITIONING_4X4)))) {
// FIXME(rbultje) code ternary symbol once all experiments are merged
mbmi->txfm_size = vp8_read(bc, cm->prob_tx[0]);
if (mbmi->txfm_size != TX_4X4 && mbmi->mode != I8X8_PRED &&
mbmi->mode != SPLITMV)
mbmi->txfm_size += vp8_read(bc, cm->prob_tx[1]);
} else if (cm->txfm_mode >= ALLOW_16X16 &&
((mbmi->ref_frame == INTRA_FRAME && mbmi->mode <= TM_PRED) ||
(mbmi->ref_frame != INTRA_FRAME && mbmi->mode != SPLITMV))) {
mbmi->txfm_size = TX_16X16;
} else if (cm->txfm_mode >= ALLOW_8X8 &&
(!(mbmi->ref_frame == INTRA_FRAME && mbmi->mode == B_PRED) &&
!(mbmi->ref_frame != INTRA_FRAME && mbmi->mode == SPLITMV &&
mbmi->partitioning == PARTITIONING_4X4))) {
mbmi->txfm_size = TX_8X8;
} else {
mbmi->txfm_size = TX_4X4;
}
}
void vpx_decode_mode_mvs_init(VP8D_COMP *pbi, BOOL_DECODER* const bc) {
VP8_COMMON *cm = &pbi->common;
vpx_memset(cm->mbskip_pred_probs, 0, sizeof(cm->mbskip_pred_probs));
if (pbi->common.mb_no_coeff_skip) {
int k;
for (k = 0; k < MBSKIP_CONTEXTS; ++k)
cm->mbskip_pred_probs[k] = (vp8_prob)vp8_read_literal(bc, 8);
}
mb_mode_mv_init(pbi, bc);
}
void vpx_decode_mb_mode_mv(VP8D_COMP *pbi,
MACROBLOCKD *xd,
int mb_row,
int mb_col,
BOOL_DECODER* const bc) {
MODE_INFO *mi = xd->mode_info_context;
MODE_INFO *prev_mi = xd->prev_mode_info_context;
if (pbi->common.frame_type == KEY_FRAME)
kfread_modes(pbi, mi, mb_row, mb_col, bc);
else
read_mb_modes_mv(pbi, mi, &mi->mbmi, prev_mi, mb_row, mb_col, bc);
}