Jingning Han
7428cebe4f
Rework forward txfm/quantization skip system in RTC coding mode
This commit allows more aggressive decision to skip forward transform and quantization for luma component in RTC coding mode. The chroma components remains going through the normal coding routine, since they are not included in the non-RD mode search process. It reduces the runtime cost by 2% - 10%. In speed -6, vidyo1 1000 kbps 16576 b/f, 40.281 dB, 8402 ms -> 16576 b/f, 40.323 dB, 7764 ms nik720p 1000 kbps 33337 b/f, 38.622 dB, 7473 ms -> 33299 b/f, 38.660 dB, 7314 ms dark720p 1000 kbps 33330 b/f, 39.785 dB, 13505 ms -> 33325 b/f, 39.714 dB, 13105 ms The compression performance of speed -6 is improved by 0.44% in PSNR and 1.31% in SSIM. Change-Id: Iae9e3738de6255babea734e5897f29118bebc6d7
README - 30 May 2014 Welcome to the WebM VP8/VP9 Codec SDK! COMPILING THE APPLICATIONS/LIBRARIES: The build system used is similar to autotools. Building generally consists of "configuring" with your desired build options, then using GNU make to build the application. 1. Prerequisites * All x86 targets require the Yasm[1] assembler be installed. * All Windows builds require that Cygwin[2] be installed. * Building the documentation requires Doxygen[3]. If you do not have this package, the install-docs option will be disabled. * Downloading the data for the unit tests requires curl[4] and sha1sum. sha1sum is provided via the GNU coreutils, installed by default on many *nix platforms, as well as MinGW and Cygwin. If coreutils is not available, a compatible version of sha1sum can be built from source[5]. These requirements are optional if not running the unit tests. [1]: http://www.tortall.net/projects/yasm [2]: http://www.cygwin.com [3]: http://www.doxygen.org [4]: http://curl.haxx.se [5]: http://www.microbrew.org/tools/md5sha1sum/ 2. Out-of-tree builds Out of tree builds are a supported method of building the application. For an out of tree build, the source tree is kept separate from the object files produced during compilation. For instance: $ mkdir build $ cd build $ ../libvpx/configure <options> $ make 3. Configuration options The 'configure' script supports a number of options. The --help option can be used to get a list of supported options: $ ../libvpx/configure --help 4. Cross development For cross development, the most notable option is the --target option. The most up-to-date list of supported targets can be found at the bottom of the --help output of the configure script. As of this writing, the list of available targets is: armv5te-android-gcc armv5te-linux-rvct armv5te-linux-gcc armv5te-none-rvct armv6-darwin-gcc armv6-linux-rvct armv6-linux-gcc armv6-none-rvct arm64-darwin-gcc armv7-android-gcc armv7-darwin-gcc armv7-linux-rvct armv7-linux-gcc armv7-none-rvct armv7-win32-vs11 armv7-win32-vs12 armv7s-darwin-gcc mips32-linux-gcc mips64-linux-gcc ppc32-darwin8-gcc ppc32-darwin9-gcc ppc32-linux-gcc ppc64-darwin8-gcc ppc64-darwin9-gcc ppc64-linux-gcc sparc-solaris-gcc x86-android-gcc x86-darwin8-gcc x86-darwin8-icc x86-darwin9-gcc x86-darwin9-icc x86-darwin10-gcc x86-darwin11-gcc x86-darwin12-gcc x86-darwin13-gcc x86-iphonesimulator-gcc x86-linux-gcc x86-linux-icc x86-os2-gcc x86-solaris-gcc x86-win32-gcc x86-win32-vs7 x86-win32-vs8 x86-win32-vs9 x86-win32-vs10 x86-win32-vs11 x86-win32-vs12 x86_64-darwin9-gcc x86_64-darwin10-gcc x86_64-darwin11-gcc x86_64-darwin12-gcc x86_64-darwin13-gcc x86_64-iphonesimulator-gcc x86_64-linux-gcc x86_64-linux-icc x86_64-solaris-gcc x86_64-win64-gcc x86_64-win64-vs8 x86_64-win64-vs9 x86_64-win64-vs10 x86_64-win64-vs11 x86_64-win64-vs12 universal-darwin8-gcc universal-darwin9-gcc universal-darwin10-gcc universal-darwin11-gcc universal-darwin12-gcc universal-darwin13-gcc generic-gnu The generic-gnu target, in conjunction with the CROSS environment variable, can be used to cross compile architectures that aren't explicitly listed, if the toolchain is a cross GNU (gcc/binutils) toolchain. Other POSIX toolchains will likely work as well. For instance, to build using the mipsel-linux-uclibc toolchain, the following command could be used (note, POSIX SH syntax, adapt to your shell as necessary): $ CROSS=mipsel-linux-uclibc- ../libvpx/configure In addition, the executables to be invoked can be overridden by specifying the environment variables: CC, AR, LD, AS, STRIP, NM. Additional flags can be passed to these executables with CFLAGS, LDFLAGS, and ASFLAGS. 5. Configuration errors If the configuration step fails, the first step is to look in the error log. This defaults to config.log. This should give a good indication of what went wrong. If not, contact us for support. VP8/VP9 TEST VECTORS: The test vectors can be downloaded and verified using the build system after running configure. To specify an alternate directory the LIBVPX_TEST_DATA_PATH environment variable can be used. $ ./configure --enable-unit-tests $ LIBVPX_TEST_DATA_PATH=../libvpx-test-data make testdata SUPPORT This library is an open source project supported by its community. Please please email webm-discuss@webmproject.org for help.
Description
Languages
C
80%
C++
9%
Assembly
6.7%
Makefile
1.5%
Shell
1.3%
Other
1.5%