vpx/vp9/common/vp9_pred_common.c
Deb Mukherjee 17da2cab78 TX_SIZE contexts simplification.
Reduces TX_SIZE contexts to 2 for each kind. The code is
cleaner and there is hardly any performance difference with
more than two contexts.

Results: almost neutral

Change-Id: I17656bd6db76224ae2856adf882504560e7dbaa4
2013-06-08 12:32:26 -07:00

525 lines
20 KiB
C

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <limits.h>
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_treecoder.h"
// TBD prediction functions for various bitstream signals
// Returns a context number for the given MB prediction signal
unsigned char vp9_get_pred_context(const VP9_COMMON *const cm,
const MACROBLOCKD *const xd,
PRED_ID pred_id) {
int pred_context;
const MODE_INFO *const mi = xd->mode_info_context;
const MODE_INFO *const above_mi = mi - cm->mode_info_stride;
const MODE_INFO *const left_mi = mi - 1;
const int left_in_image = xd->left_available && left_mi->mbmi.mb_in_image;
const int above_in_image = xd->up_available && above_mi->mbmi.mb_in_image;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
switch (pred_id) {
case PRED_SEG_ID:
pred_context = above_mi->mbmi.seg_id_predicted;
if (xd->left_available)
pred_context += left_mi->mbmi.seg_id_predicted;
break;
case PRED_MBSKIP:
pred_context = above_mi->mbmi.mb_skip_coeff;
if (xd->left_available)
pred_context += left_mi->mbmi.mb_skip_coeff;
break;
case PRED_SWITCHABLE_INTERP: {
// left
const int left_mv_pred = is_inter_mode(left_mi->mbmi.mode);
const int left_interp = left_in_image && left_mv_pred ?
vp9_switchable_interp_map[left_mi->mbmi.interp_filter] :
VP9_SWITCHABLE_FILTERS;
// above
const int above_mv_pred = is_inter_mode(above_mi->mbmi.mode);
const int above_interp = above_in_image && above_mv_pred ?
vp9_switchable_interp_map[above_mi->mbmi.interp_filter] :
VP9_SWITCHABLE_FILTERS;
assert(left_interp != -1);
assert(above_interp != -1);
if (left_interp == above_interp)
pred_context = left_interp;
else if (left_interp == VP9_SWITCHABLE_FILTERS &&
above_interp != VP9_SWITCHABLE_FILTERS)
pred_context = above_interp;
else if (left_interp != VP9_SWITCHABLE_FILTERS &&
above_interp == VP9_SWITCHABLE_FILTERS)
pred_context = left_interp;
else
pred_context = VP9_SWITCHABLE_FILTERS;
break;
}
case PRED_INTRA_INTER: {
if (above_in_image && left_in_image) { // both edges available
if (left_mi->mbmi.ref_frame[0] == INTRA_FRAME &&
above_mi->mbmi.ref_frame[0] == INTRA_FRAME) { // intra/intra (3)
pred_context = 3;
} else { // intra/inter (1) or inter/inter (0)
pred_context = left_mi->mbmi.ref_frame[0] == INTRA_FRAME ||
above_mi->mbmi.ref_frame[0] == INTRA_FRAME;
}
} else if (above_in_image || left_in_image) { // one edge available
const MODE_INFO *edge = above_in_image ? above_mi : left_mi;
// inter: 0, intra: 2
pred_context = 2 * (edge->mbmi.ref_frame[0] == INTRA_FRAME);
} else {
pred_context = 0;
}
assert(pred_context >= 0 && pred_context < INTRA_INTER_CONTEXTS);
break;
}
case PRED_COMP_INTER_INTER: {
if (above_in_image && left_in_image) { // both edges available
if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME &&
left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) {
// neither edge uses comp pred (0/1)
pred_context = ((above_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref) ^
(left_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref));
} else if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME) {
// one of two edges uses comp pred (2/3)
pred_context = 2 +
(above_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref ||
above_mi->mbmi.ref_frame[0] == INTRA_FRAME);
} else if (left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) {
// one of two edges uses comp pred (2/3)
pred_context = 2 +
(left_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref ||
left_mi->mbmi.ref_frame[0] == INTRA_FRAME);
} else { // both edges use comp pred (4)
pred_context = 4;
}
} else if (above_in_image || left_in_image) { // one edge available
const MODE_INFO *edge = above_in_image ? above_mi : left_mi;
if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) {
// edge does not use comp pred (0/1)
pred_context = edge->mbmi.ref_frame[0] == cm->comp_fixed_ref;
} else { // edge uses comp pred (3)
pred_context = 3;
}
} else { // no edges available (1)
pred_context = 1;
}
assert(pred_context >= 0 && pred_context < COMP_INTER_CONTEXTS);
break;
}
case PRED_COMP_REF_P: {
const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
const int var_ref_idx = !fix_ref_idx;
if (above_in_image && left_in_image) { // both edges available
if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME &&
left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { // intra/intra (2)
pred_context = 2;
} else if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME ||
left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { // intra/inter
const MODE_INFO *edge = above_mi->mbmi.ref_frame[0] == INTRA_FRAME ?
left_mi : above_mi;
if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) { // single pred (1/3)
pred_context = 1 +
2 * edge->mbmi.ref_frame[0] != cm->comp_var_ref[1];
} else { // comp pred (1/3)
pred_context = 1 +
2 * edge->mbmi.ref_frame[var_ref_idx] != cm->comp_var_ref[1];
}
} else { // inter/inter
int l_sg = left_mi->mbmi.ref_frame[1] <= INTRA_FRAME;
int a_sg = above_mi->mbmi.ref_frame[1] <= INTRA_FRAME;
MV_REFERENCE_FRAME vrfa = a_sg ? above_mi->mbmi.ref_frame[0] :
above_mi->mbmi.ref_frame[var_ref_idx];
MV_REFERENCE_FRAME vrfl = l_sg ? left_mi->mbmi.ref_frame[0] :
left_mi->mbmi.ref_frame[var_ref_idx];
if (vrfa == vrfl && cm->comp_var_ref[1] == vrfa) {
pred_context = 0;
} else if (l_sg && a_sg) { // single/single
if ((vrfa == cm->comp_fixed_ref && vrfl == cm->comp_var_ref[0]) ||
(vrfl == cm->comp_fixed_ref && vrfa == cm->comp_var_ref[0])) {
pred_context = 4;
} else if (vrfa == vrfl) {
pred_context = 3;
} else {
pred_context = 1;
}
} else if (l_sg || a_sg) { // single/comp
MV_REFERENCE_FRAME vrfc = l_sg ? vrfa : vrfl;
MV_REFERENCE_FRAME rfs = a_sg ? vrfa : vrfl;
if (vrfc == cm->comp_var_ref[1] && rfs != cm->comp_var_ref[1]) {
pred_context = 1;
} else if (rfs == cm->comp_var_ref[1] &&
vrfc != cm->comp_var_ref[1]) {
pred_context = 2;
} else {
pred_context = 4;
}
} else if (vrfa == vrfl) { // comp/comp
pred_context = 4;
} else {
pred_context = 2;
}
}
} else if (above_in_image || left_in_image) { // one edge available
const MODE_INFO *edge = above_in_image ? above_mi : left_mi;
if (edge->mbmi.ref_frame[0] == INTRA_FRAME) {
pred_context = 2;
} else if (edge->mbmi.ref_frame[1] > INTRA_FRAME) {
pred_context =
4 * edge->mbmi.ref_frame[var_ref_idx] != cm->comp_var_ref[1];
} else {
pred_context = 3 * edge->mbmi.ref_frame[0] != cm->comp_var_ref[1];
}
} else { // no edges available (2)
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
break;
}
case PRED_SINGLE_REF_P1: {
if (above_in_image && left_in_image) { // both edges available
if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME &&
left_mi->mbmi.ref_frame[0] == INTRA_FRAME) {
pred_context = 2;
} else if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME ||
left_mi->mbmi.ref_frame[0] == INTRA_FRAME) {
const MODE_INFO *edge = above_mi->mbmi.ref_frame[0] == INTRA_FRAME ?
left_mi : above_mi;
if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) {
pred_context = 4 * (edge->mbmi.ref_frame[0] == LAST_FRAME);
} else {
pred_context = 1 + (edge->mbmi.ref_frame[0] == LAST_FRAME ||
edge->mbmi.ref_frame[1] == LAST_FRAME);
}
} else if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME &&
left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) {
pred_context = 2 * (above_mi->mbmi.ref_frame[0] == LAST_FRAME) +
2 * (left_mi->mbmi.ref_frame[0] == LAST_FRAME);
} else if (above_mi->mbmi.ref_frame[1] > INTRA_FRAME &&
left_mi->mbmi.ref_frame[1] > INTRA_FRAME) {
pred_context = 1 + (above_mi->mbmi.ref_frame[0] == LAST_FRAME ||
above_mi->mbmi.ref_frame[1] == LAST_FRAME ||
left_mi->mbmi.ref_frame[0] == LAST_FRAME ||
left_mi->mbmi.ref_frame[1] == LAST_FRAME);
} else {
MV_REFERENCE_FRAME rfs = above_mi->mbmi.ref_frame[1] <= INTRA_FRAME ?
above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0];
MV_REFERENCE_FRAME crf1 = above_mi->mbmi.ref_frame[1] > INTRA_FRAME ?
above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0];
MV_REFERENCE_FRAME crf2 = above_mi->mbmi.ref_frame[1] > INTRA_FRAME ?
above_mi->mbmi.ref_frame[1] : left_mi->mbmi.ref_frame[1];
if (rfs == LAST_FRAME) {
pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME);
} else {
pred_context = crf1 == LAST_FRAME || crf2 == LAST_FRAME;
}
}
} else if (above_in_image || left_in_image) { // one edge available
const MODE_INFO *edge = above_in_image ? above_mi : left_mi;
if (edge->mbmi.ref_frame[0] == INTRA_FRAME) {
pred_context = 2;
} else if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) {
pred_context = 4 * (edge->mbmi.ref_frame[0] == LAST_FRAME);
} else {
pred_context = 1 + (edge->mbmi.ref_frame[0] == LAST_FRAME ||
edge->mbmi.ref_frame[1] == LAST_FRAME);
}
} else { // no edges available (2)
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
break;
}
case PRED_SINGLE_REF_P2: {
if (above_in_image && left_in_image) { // both edges available
if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME &&
left_mi->mbmi.ref_frame[0] == INTRA_FRAME) {
pred_context = 2;
} else if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME ||
left_mi->mbmi.ref_frame[0] == INTRA_FRAME) {
const MODE_INFO *edge = above_mi->mbmi.ref_frame[0] == INTRA_FRAME ?
left_mi : above_mi;
if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) {
if (edge->mbmi.ref_frame[0] == LAST_FRAME) {
pred_context = 3;
} else {
pred_context = 4 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME);
}
} else {
pred_context = 1 + 2 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME ||
edge->mbmi.ref_frame[1] == GOLDEN_FRAME);
}
} else if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME &&
left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) {
if (above_mi->mbmi.ref_frame[0] == LAST_FRAME &&
left_mi->mbmi.ref_frame[0] == LAST_FRAME) {
pred_context = 3;
} else if (above_mi->mbmi.ref_frame[0] == LAST_FRAME ||
left_mi->mbmi.ref_frame[0] == LAST_FRAME) {
const MODE_INFO *edge = above_mi->mbmi.ref_frame[0] == LAST_FRAME ?
left_mi : above_mi;
pred_context = 4 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME);
} else {
pred_context = 2 * (above_mi->mbmi.ref_frame[0] == GOLDEN_FRAME) +
2 * (left_mi->mbmi.ref_frame[0] == GOLDEN_FRAME);
}
} else if (above_mi->mbmi.ref_frame[1] > INTRA_FRAME &&
left_mi->mbmi.ref_frame[1] > INTRA_FRAME) {
if (above_mi->mbmi.ref_frame[0] == left_mi->mbmi.ref_frame[0] &&
above_mi->mbmi.ref_frame[1] == left_mi->mbmi.ref_frame[1]) {
pred_context = 3 * (above_mi->mbmi.ref_frame[0] == GOLDEN_FRAME ||
above_mi->mbmi.ref_frame[1] == GOLDEN_FRAME ||
left_mi->mbmi.ref_frame[0] == GOLDEN_FRAME ||
left_mi->mbmi.ref_frame[1] == GOLDEN_FRAME);
} else {
pred_context = 2;
}
} else {
MV_REFERENCE_FRAME rfs = above_mi->mbmi.ref_frame[1] <= INTRA_FRAME ?
above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0];
MV_REFERENCE_FRAME crf1 = above_mi->mbmi.ref_frame[1] > INTRA_FRAME ?
above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0];
MV_REFERENCE_FRAME crf2 = above_mi->mbmi.ref_frame[1] > INTRA_FRAME ?
above_mi->mbmi.ref_frame[1] : left_mi->mbmi.ref_frame[1];
if (rfs == GOLDEN_FRAME) {
pred_context = 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME);
} else if (rfs == ALTREF_FRAME) {
pred_context = crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME;
} else {
pred_context =
1 + 2 * (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME);
}
}
} else if (above_in_image || left_in_image) { // one edge available
const MODE_INFO *edge = above_in_image ? above_mi : left_mi;
if (edge->mbmi.ref_frame[0] == INTRA_FRAME ||
(edge->mbmi.ref_frame[0] == LAST_FRAME &&
edge->mbmi.ref_frame[1] <= INTRA_FRAME)) {
pred_context = 2;
} else if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) {
pred_context = 4 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME);
} else {
pred_context = 3 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME ||
edge->mbmi.ref_frame[1] == GOLDEN_FRAME);
}
} else { // no edges available (2)
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
break;
}
case PRED_TX_SIZE: {
#if TX_SIZE_CONTEXTS == 2
int above_context, left_context;
int max_tx_size;
if (mi->mbmi.sb_type < BLOCK_SIZE_SB8X8)
max_tx_size = TX_4X4;
else if (mi->mbmi.sb_type < BLOCK_SIZE_MB16X16)
max_tx_size = TX_8X8;
else if (mi->mbmi.sb_type < BLOCK_SIZE_SB32X32)
max_tx_size = TX_16X16;
else
max_tx_size = TX_32X32;
above_context = left_context = max_tx_size;
if (above_in_image) {
above_context = (above_mi->mbmi.mb_skip_coeff ?
max_tx_size : above_mi->mbmi.txfm_size);
}
if (left_in_image) {
left_context = (left_mi->mbmi.mb_skip_coeff ?
max_tx_size : left_mi->mbmi.txfm_size);
}
if (!left_in_image) {
left_context = above_context;
}
if (!above_in_image) {
above_context = left_context;
}
pred_context = (above_context + left_context > max_tx_size);
#else
pred_context = 0;
#endif
break;
}
default:
assert(0);
pred_context = 0; // *** add error trap code.
break;
}
return pred_context;
}
// This function returns a context probability for coding a given
// prediction signal
vp9_prob vp9_get_pred_prob(const VP9_COMMON *const cm,
const MACROBLOCKD *const xd,
PRED_ID pred_id) {
const int pred_context = vp9_get_pred_context(cm, xd, pred_id);
switch (pred_id) {
case PRED_SEG_ID:
return cm->segment_pred_probs[pred_context];
case PRED_MBSKIP:
return cm->fc.mbskip_probs[pred_context];
case PRED_INTRA_INTER:
return cm->fc.intra_inter_prob[pred_context];
case PRED_COMP_INTER_INTER:
return cm->fc.comp_inter_prob[pred_context];
case PRED_COMP_REF_P:
return cm->fc.comp_ref_prob[pred_context];
case PRED_SINGLE_REF_P1:
return cm->fc.single_ref_prob[pred_context][0];
case PRED_SINGLE_REF_P2:
return cm->fc.single_ref_prob[pred_context][1];
default:
assert(0);
return 128; // *** add error trap code.
}
}
// This function returns a context probability ptr for coding a given
// prediction signal
const vp9_prob *vp9_get_pred_probs(const VP9_COMMON *const cm,
const MACROBLOCKD *const xd,
PRED_ID pred_id) {
const MODE_INFO *const mi = xd->mode_info_context;
const int pred_context = vp9_get_pred_context(cm, xd, pred_id);
switch (pred_id) {
case PRED_SWITCHABLE_INTERP:
return &cm->fc.switchable_interp_prob[pred_context][0];
case PRED_TX_SIZE:
if (mi->mbmi.sb_type < BLOCK_SIZE_MB16X16)
return cm->fc.tx_probs_8x8p[pred_context];
else if (mi->mbmi.sb_type < BLOCK_SIZE_SB32X32)
return cm->fc.tx_probs_16x16p[pred_context];
else
return cm->fc.tx_probs_32x32p[pred_context];
default:
assert(0);
return NULL; // *** add error trap code.
}
}
// This function returns the status of the given prediction signal.
// I.e. is the predicted value for the given signal correct.
unsigned char vp9_get_pred_flag(const MACROBLOCKD *const xd,
PRED_ID pred_id) {
switch (pred_id) {
case PRED_SEG_ID:
return xd->mode_info_context->mbmi.seg_id_predicted;
case PRED_MBSKIP:
return xd->mode_info_context->mbmi.mb_skip_coeff;
default:
assert(0);
return 0; // *** add error trap code.
}
}
// This function sets the status of the given prediction signal.
// I.e. is the predicted value for the given signal correct.
void vp9_set_pred_flag(MACROBLOCKD *const xd,
PRED_ID pred_id,
unsigned char pred_flag) {
const int mis = xd->mode_info_stride;
BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type;
const int bh = 1 << mi_height_log2(bsize);
const int bw = 1 << mi_width_log2(bsize);
#define sub(a, b) (b) < 0 ? (a) + (b) : (a)
const int x_mis = sub(bw, xd->mb_to_right_edge >> (3 + LOG2_MI_SIZE));
const int y_mis = sub(bh, xd->mb_to_bottom_edge >> (3 + LOG2_MI_SIZE));
#undef sub
int x, y;
switch (pred_id) {
case PRED_SEG_ID:
for (y = 0; y < y_mis; y++) {
for (x = 0; x < x_mis; x++) {
xd->mode_info_context[y * mis + x].mbmi.seg_id_predicted = pred_flag;
}
}
break;
case PRED_MBSKIP:
for (y = 0; y < y_mis; y++) {
for (x = 0; x < x_mis; x++) {
xd->mode_info_context[y * mis + x].mbmi.mb_skip_coeff = pred_flag;
}
}
break;
default:
assert(0);
// *** add error trap code.
break;
}
}
// The following contain the guts of the prediction code used to
// peredict various bitstream signals.
// Macroblock segment id prediction function
int vp9_get_pred_mi_segid(VP9_COMMON *cm, BLOCK_SIZE_TYPE sb_type,
int mi_row, int mi_col) {
const int mi_index = mi_row * cm->mi_cols + mi_col;
const int bw = 1 << mi_width_log2(sb_type);
const int bh = 1 << mi_height_log2(sb_type);
const int ymis = MIN(cm->mi_rows - mi_row, bh);
const int xmis = MIN(cm->mi_cols - mi_col, bw);
int segment_id = INT_MAX;
int x, y;
for (y = 0; y < ymis; y++) {
for (x = 0; x < xmis; x++) {
const int index = mi_index + (y * cm->mi_cols + x);
segment_id = MIN(segment_id, cm->last_frame_seg_map[index]);
}
}
return segment_id;
}