/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_treecoder.h" // TBD prediction functions for various bitstream signals // Returns a context number for the given MB prediction signal unsigned char vp9_get_pred_context(const VP9_COMMON *const cm, const MACROBLOCKD *const xd, PRED_ID pred_id) { int pred_context; const MODE_INFO *const mi = xd->mode_info_context; const MODE_INFO *const above_mi = mi - cm->mode_info_stride; const MODE_INFO *const left_mi = mi - 1; const int left_in_image = xd->left_available && left_mi->mbmi.mb_in_image; const int above_in_image = xd->up_available && above_mi->mbmi.mb_in_image; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. switch (pred_id) { case PRED_SEG_ID: pred_context = above_mi->mbmi.seg_id_predicted; if (xd->left_available) pred_context += left_mi->mbmi.seg_id_predicted; break; case PRED_MBSKIP: pred_context = above_mi->mbmi.mb_skip_coeff; if (xd->left_available) pred_context += left_mi->mbmi.mb_skip_coeff; break; case PRED_SWITCHABLE_INTERP: { // left const int left_mv_pred = is_inter_mode(left_mi->mbmi.mode); const int left_interp = left_in_image && left_mv_pred ? vp9_switchable_interp_map[left_mi->mbmi.interp_filter] : VP9_SWITCHABLE_FILTERS; // above const int above_mv_pred = is_inter_mode(above_mi->mbmi.mode); const int above_interp = above_in_image && above_mv_pred ? vp9_switchable_interp_map[above_mi->mbmi.interp_filter] : VP9_SWITCHABLE_FILTERS; assert(left_interp != -1); assert(above_interp != -1); if (left_interp == above_interp) pred_context = left_interp; else if (left_interp == VP9_SWITCHABLE_FILTERS && above_interp != VP9_SWITCHABLE_FILTERS) pred_context = above_interp; else if (left_interp != VP9_SWITCHABLE_FILTERS && above_interp == VP9_SWITCHABLE_FILTERS) pred_context = left_interp; else pred_context = VP9_SWITCHABLE_FILTERS; break; } case PRED_INTRA_INTER: { if (above_in_image && left_in_image) { // both edges available if (left_mi->mbmi.ref_frame[0] == INTRA_FRAME && above_mi->mbmi.ref_frame[0] == INTRA_FRAME) { // intra/intra (3) pred_context = 3; } else { // intra/inter (1) or inter/inter (0) pred_context = left_mi->mbmi.ref_frame[0] == INTRA_FRAME || above_mi->mbmi.ref_frame[0] == INTRA_FRAME; } } else if (above_in_image || left_in_image) { // one edge available const MODE_INFO *edge = above_in_image ? above_mi : left_mi; // inter: 0, intra: 2 pred_context = 2 * (edge->mbmi.ref_frame[0] == INTRA_FRAME); } else { pred_context = 0; } assert(pred_context >= 0 && pred_context < INTRA_INTER_CONTEXTS); break; } case PRED_COMP_INTER_INTER: { if (above_in_image && left_in_image) { // both edges available if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME && left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) { // neither edge uses comp pred (0/1) pred_context = ((above_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref) ^ (left_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref)); } else if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME) { // one of two edges uses comp pred (2/3) pred_context = 2 + (above_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref || above_mi->mbmi.ref_frame[0] == INTRA_FRAME); } else if (left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) { // one of two edges uses comp pred (2/3) pred_context = 2 + (left_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref || left_mi->mbmi.ref_frame[0] == INTRA_FRAME); } else { // both edges use comp pred (4) pred_context = 4; } } else if (above_in_image || left_in_image) { // one edge available const MODE_INFO *edge = above_in_image ? above_mi : left_mi; if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) { // edge does not use comp pred (0/1) pred_context = edge->mbmi.ref_frame[0] == cm->comp_fixed_ref; } else { // edge uses comp pred (3) pred_context = 3; } } else { // no edges available (1) pred_context = 1; } assert(pred_context >= 0 && pred_context < COMP_INTER_CONTEXTS); break; } case PRED_COMP_REF_P: { const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; const int var_ref_idx = !fix_ref_idx; if (above_in_image && left_in_image) { // both edges available if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME && left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { // intra/intra (2) pred_context = 2; } else if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME || left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { // intra/inter const MODE_INFO *edge = above_mi->mbmi.ref_frame[0] == INTRA_FRAME ? left_mi : above_mi; if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) { // single pred (1/3) pred_context = 1 + 2 * edge->mbmi.ref_frame[0] != cm->comp_var_ref[1]; } else { // comp pred (1/3) pred_context = 1 + 2 * edge->mbmi.ref_frame[var_ref_idx] != cm->comp_var_ref[1]; } } else { // inter/inter int l_sg = left_mi->mbmi.ref_frame[1] <= INTRA_FRAME; int a_sg = above_mi->mbmi.ref_frame[1] <= INTRA_FRAME; MV_REFERENCE_FRAME vrfa = a_sg ? above_mi->mbmi.ref_frame[0] : above_mi->mbmi.ref_frame[var_ref_idx]; MV_REFERENCE_FRAME vrfl = l_sg ? left_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[var_ref_idx]; if (vrfa == vrfl && cm->comp_var_ref[1] == vrfa) { pred_context = 0; } else if (l_sg && a_sg) { // single/single if ((vrfa == cm->comp_fixed_ref && vrfl == cm->comp_var_ref[0]) || (vrfl == cm->comp_fixed_ref && vrfa == cm->comp_var_ref[0])) { pred_context = 4; } else if (vrfa == vrfl) { pred_context = 3; } else { pred_context = 1; } } else if (l_sg || a_sg) { // single/comp MV_REFERENCE_FRAME vrfc = l_sg ? vrfa : vrfl; MV_REFERENCE_FRAME rfs = a_sg ? vrfa : vrfl; if (vrfc == cm->comp_var_ref[1] && rfs != cm->comp_var_ref[1]) { pred_context = 1; } else if (rfs == cm->comp_var_ref[1] && vrfc != cm->comp_var_ref[1]) { pred_context = 2; } else { pred_context = 4; } } else if (vrfa == vrfl) { // comp/comp pred_context = 4; } else { pred_context = 2; } } } else if (above_in_image || left_in_image) { // one edge available const MODE_INFO *edge = above_in_image ? above_mi : left_mi; if (edge->mbmi.ref_frame[0] == INTRA_FRAME) { pred_context = 2; } else if (edge->mbmi.ref_frame[1] > INTRA_FRAME) { pred_context = 4 * edge->mbmi.ref_frame[var_ref_idx] != cm->comp_var_ref[1]; } else { pred_context = 3 * edge->mbmi.ref_frame[0] != cm->comp_var_ref[1]; } } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); break; } case PRED_SINGLE_REF_P1: { if (above_in_image && left_in_image) { // both edges available if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME && left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { pred_context = 2; } else if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME || left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { const MODE_INFO *edge = above_mi->mbmi.ref_frame[0] == INTRA_FRAME ? left_mi : above_mi; if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) { pred_context = 4 * (edge->mbmi.ref_frame[0] == LAST_FRAME); } else { pred_context = 1 + (edge->mbmi.ref_frame[0] == LAST_FRAME || edge->mbmi.ref_frame[1] == LAST_FRAME); } } else if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME && left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) { pred_context = 2 * (above_mi->mbmi.ref_frame[0] == LAST_FRAME) + 2 * (left_mi->mbmi.ref_frame[0] == LAST_FRAME); } else if (above_mi->mbmi.ref_frame[1] > INTRA_FRAME && left_mi->mbmi.ref_frame[1] > INTRA_FRAME) { pred_context = 1 + (above_mi->mbmi.ref_frame[0] == LAST_FRAME || above_mi->mbmi.ref_frame[1] == LAST_FRAME || left_mi->mbmi.ref_frame[0] == LAST_FRAME || left_mi->mbmi.ref_frame[1] == LAST_FRAME); } else { MV_REFERENCE_FRAME rfs = above_mi->mbmi.ref_frame[1] <= INTRA_FRAME ? above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0]; MV_REFERENCE_FRAME crf1 = above_mi->mbmi.ref_frame[1] > INTRA_FRAME ? above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0]; MV_REFERENCE_FRAME crf2 = above_mi->mbmi.ref_frame[1] > INTRA_FRAME ? above_mi->mbmi.ref_frame[1] : left_mi->mbmi.ref_frame[1]; if (rfs == LAST_FRAME) { pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME); } else { pred_context = crf1 == LAST_FRAME || crf2 == LAST_FRAME; } } } else if (above_in_image || left_in_image) { // one edge available const MODE_INFO *edge = above_in_image ? above_mi : left_mi; if (edge->mbmi.ref_frame[0] == INTRA_FRAME) { pred_context = 2; } else if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) { pred_context = 4 * (edge->mbmi.ref_frame[0] == LAST_FRAME); } else { pred_context = 1 + (edge->mbmi.ref_frame[0] == LAST_FRAME || edge->mbmi.ref_frame[1] == LAST_FRAME); } } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); break; } case PRED_SINGLE_REF_P2: { if (above_in_image && left_in_image) { // both edges available if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME && left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { pred_context = 2; } else if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME || left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { const MODE_INFO *edge = above_mi->mbmi.ref_frame[0] == INTRA_FRAME ? left_mi : above_mi; if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) { if (edge->mbmi.ref_frame[0] == LAST_FRAME) { pred_context = 3; } else { pred_context = 4 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME); } } else { pred_context = 1 + 2 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME || edge->mbmi.ref_frame[1] == GOLDEN_FRAME); } } else if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME && left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) { if (above_mi->mbmi.ref_frame[0] == LAST_FRAME && left_mi->mbmi.ref_frame[0] == LAST_FRAME) { pred_context = 3; } else if (above_mi->mbmi.ref_frame[0] == LAST_FRAME || left_mi->mbmi.ref_frame[0] == LAST_FRAME) { const MODE_INFO *edge = above_mi->mbmi.ref_frame[0] == LAST_FRAME ? left_mi : above_mi; pred_context = 4 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME); } else { pred_context = 2 * (above_mi->mbmi.ref_frame[0] == GOLDEN_FRAME) + 2 * (left_mi->mbmi.ref_frame[0] == GOLDEN_FRAME); } } else if (above_mi->mbmi.ref_frame[1] > INTRA_FRAME && left_mi->mbmi.ref_frame[1] > INTRA_FRAME) { if (above_mi->mbmi.ref_frame[0] == left_mi->mbmi.ref_frame[0] && above_mi->mbmi.ref_frame[1] == left_mi->mbmi.ref_frame[1]) { pred_context = 3 * (above_mi->mbmi.ref_frame[0] == GOLDEN_FRAME || above_mi->mbmi.ref_frame[1] == GOLDEN_FRAME || left_mi->mbmi.ref_frame[0] == GOLDEN_FRAME || left_mi->mbmi.ref_frame[1] == GOLDEN_FRAME); } else { pred_context = 2; } } else { MV_REFERENCE_FRAME rfs = above_mi->mbmi.ref_frame[1] <= INTRA_FRAME ? above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0]; MV_REFERENCE_FRAME crf1 = above_mi->mbmi.ref_frame[1] > INTRA_FRAME ? above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0]; MV_REFERENCE_FRAME crf2 = above_mi->mbmi.ref_frame[1] > INTRA_FRAME ? above_mi->mbmi.ref_frame[1] : left_mi->mbmi.ref_frame[1]; if (rfs == GOLDEN_FRAME) { pred_context = 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); } else if (rfs == ALTREF_FRAME) { pred_context = crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME; } else { pred_context = 1 + 2 * (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); } } } else if (above_in_image || left_in_image) { // one edge available const MODE_INFO *edge = above_in_image ? above_mi : left_mi; if (edge->mbmi.ref_frame[0] == INTRA_FRAME || (edge->mbmi.ref_frame[0] == LAST_FRAME && edge->mbmi.ref_frame[1] <= INTRA_FRAME)) { pred_context = 2; } else if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) { pred_context = 4 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME); } else { pred_context = 3 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME || edge->mbmi.ref_frame[1] == GOLDEN_FRAME); } } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); break; } case PRED_TX_SIZE: { #if TX_SIZE_CONTEXTS == 2 int above_context, left_context; int max_tx_size; if (mi->mbmi.sb_type < BLOCK_SIZE_SB8X8) max_tx_size = TX_4X4; else if (mi->mbmi.sb_type < BLOCK_SIZE_MB16X16) max_tx_size = TX_8X8; else if (mi->mbmi.sb_type < BLOCK_SIZE_SB32X32) max_tx_size = TX_16X16; else max_tx_size = TX_32X32; above_context = left_context = max_tx_size; if (above_in_image) { above_context = (above_mi->mbmi.mb_skip_coeff ? max_tx_size : above_mi->mbmi.txfm_size); } if (left_in_image) { left_context = (left_mi->mbmi.mb_skip_coeff ? max_tx_size : left_mi->mbmi.txfm_size); } if (!left_in_image) { left_context = above_context; } if (!above_in_image) { above_context = left_context; } pred_context = (above_context + left_context > max_tx_size); #else pred_context = 0; #endif break; } default: assert(0); pred_context = 0; // *** add error trap code. break; } return pred_context; } // This function returns a context probability for coding a given // prediction signal vp9_prob vp9_get_pred_prob(const VP9_COMMON *const cm, const MACROBLOCKD *const xd, PRED_ID pred_id) { const int pred_context = vp9_get_pred_context(cm, xd, pred_id); switch (pred_id) { case PRED_SEG_ID: return cm->segment_pred_probs[pred_context]; case PRED_MBSKIP: return cm->fc.mbskip_probs[pred_context]; case PRED_INTRA_INTER: return cm->fc.intra_inter_prob[pred_context]; case PRED_COMP_INTER_INTER: return cm->fc.comp_inter_prob[pred_context]; case PRED_COMP_REF_P: return cm->fc.comp_ref_prob[pred_context]; case PRED_SINGLE_REF_P1: return cm->fc.single_ref_prob[pred_context][0]; case PRED_SINGLE_REF_P2: return cm->fc.single_ref_prob[pred_context][1]; default: assert(0); return 128; // *** add error trap code. } } // This function returns a context probability ptr for coding a given // prediction signal const vp9_prob *vp9_get_pred_probs(const VP9_COMMON *const cm, const MACROBLOCKD *const xd, PRED_ID pred_id) { const MODE_INFO *const mi = xd->mode_info_context; const int pred_context = vp9_get_pred_context(cm, xd, pred_id); switch (pred_id) { case PRED_SWITCHABLE_INTERP: return &cm->fc.switchable_interp_prob[pred_context][0]; case PRED_TX_SIZE: if (mi->mbmi.sb_type < BLOCK_SIZE_MB16X16) return cm->fc.tx_probs_8x8p[pred_context]; else if (mi->mbmi.sb_type < BLOCK_SIZE_SB32X32) return cm->fc.tx_probs_16x16p[pred_context]; else return cm->fc.tx_probs_32x32p[pred_context]; default: assert(0); return NULL; // *** add error trap code. } } // This function returns the status of the given prediction signal. // I.e. is the predicted value for the given signal correct. unsigned char vp9_get_pred_flag(const MACROBLOCKD *const xd, PRED_ID pred_id) { switch (pred_id) { case PRED_SEG_ID: return xd->mode_info_context->mbmi.seg_id_predicted; case PRED_MBSKIP: return xd->mode_info_context->mbmi.mb_skip_coeff; default: assert(0); return 0; // *** add error trap code. } } // This function sets the status of the given prediction signal. // I.e. is the predicted value for the given signal correct. void vp9_set_pred_flag(MACROBLOCKD *const xd, PRED_ID pred_id, unsigned char pred_flag) { const int mis = xd->mode_info_stride; BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type; const int bh = 1 << mi_height_log2(bsize); const int bw = 1 << mi_width_log2(bsize); #define sub(a, b) (b) < 0 ? (a) + (b) : (a) const int x_mis = sub(bw, xd->mb_to_right_edge >> (3 + LOG2_MI_SIZE)); const int y_mis = sub(bh, xd->mb_to_bottom_edge >> (3 + LOG2_MI_SIZE)); #undef sub int x, y; switch (pred_id) { case PRED_SEG_ID: for (y = 0; y < y_mis; y++) { for (x = 0; x < x_mis; x++) { xd->mode_info_context[y * mis + x].mbmi.seg_id_predicted = pred_flag; } } break; case PRED_MBSKIP: for (y = 0; y < y_mis; y++) { for (x = 0; x < x_mis; x++) { xd->mode_info_context[y * mis + x].mbmi.mb_skip_coeff = pred_flag; } } break; default: assert(0); // *** add error trap code. break; } } // The following contain the guts of the prediction code used to // peredict various bitstream signals. // Macroblock segment id prediction function int vp9_get_pred_mi_segid(VP9_COMMON *cm, BLOCK_SIZE_TYPE sb_type, int mi_row, int mi_col) { const int mi_index = mi_row * cm->mi_cols + mi_col; const int bw = 1 << mi_width_log2(sb_type); const int bh = 1 << mi_height_log2(sb_type); const int ymis = MIN(cm->mi_rows - mi_row, bh); const int xmis = MIN(cm->mi_cols - mi_col, bw); int segment_id = INT_MAX; int x, y; for (y = 0; y < ymis; y++) { for (x = 0; x < xmis; x++) { const int index = mi_index + (y * cm->mi_cols + x); segment_id = MIN(segment_id, cm->last_frame_seg_map[index]); } } return segment_id; }