Compare commits

...

1 Commits

Author SHA1 Message Date
Aaron Watry
84ae235450 Initial OpenCL implementation of the VP8 decoder.
Change-Id: I74c334af09f13473ce07bbac74b0f9ea57573347
Note: very slow, but functional.  Encoder is untested, but should still work.
2011-04-18 13:50:23 -04:00
79 changed files with 7381 additions and 306 deletions

6
.gitignore vendored
View File

@@ -60,3 +60,9 @@
/vpx_config.h
/vpx_version.h
TAGS
vpxdec
vpxenc
.project
.cproject
*.csv
*.oclpj

View File

@@ -957,6 +957,38 @@ process_common_toolchain() {
enabled rvct && check_add_cflags -Otime
enabled small && check_add_cflags -O2 || check_add_cflags -O3
fi
if enabled opencl; then
disable multithread
echo " disabling multithread"
soft_enable opencl #Provide output to make user comfortable
enable runtime_cpu_detect
#Use dlopen() to load OpenCL when possible.
case ${toolchain} in
*darwin10*)
check_add_cflags -D__APPLE__
add_extralibs -framework OpenCL
;;
*-win32-gcc)
if check_header dlfcn.h; then
add_extralibs -ldl
enable dlopen
else
#This shouldn't be a hard-coded path in the long term
add_extralibs -L/cygdrive/c/Windows/System32 -lOpenCL
fi
;;
*)
if check_header dlfcn.h; then
add_extralibs -ldl
enable dlopen
else
add_extralibs -lOpenCL
fi
;;
esac
fi
# Position Independent Code (PIC) support, for building relocatable
# shared objects

7
configure vendored
View File

@@ -40,6 +40,7 @@ Advanced options:
${toggle_runtime_cpu_detect} runtime cpu detection
${toggle_shared} shared library support
${toggle_small} favor smaller size over speed
${toggle_opencl} support for OpenCL-assisted VP8 decoding (experimental)
${toggle_postproc_visualizer} macro block / block level visualizers
Codecs:
@@ -105,6 +106,7 @@ all_platforms="${all_platforms} x86-darwin8-gcc"
all_platforms="${all_platforms} x86-darwin8-icc"
all_platforms="${all_platforms} x86-darwin9-gcc"
all_platforms="${all_platforms} x86-darwin9-icc"
all_platforms="${all_platforms} x86-darwin10-gcc"
all_platforms="${all_platforms} x86-linux-gcc"
all_platforms="${all_platforms} x86-linux-icc"
all_platforms="${all_platforms} x86-solaris-gcc"
@@ -211,6 +213,7 @@ HAVE_LIST="
alt_tree_layout
pthread_h
sys_mman_h
dlopen
"
CONFIG_LIST="
external_build
@@ -250,6 +253,7 @@ CONFIG_LIST="
realtime_only
shared
small
opencl
postproc_visualizer
os_support
"
@@ -290,6 +294,7 @@ CMDLINE_SELECT="
realtime_only
shared
small
opencl
postproc_visualizer
"
@@ -556,4 +561,6 @@ process "$@"
cat <<EOF > ${BUILD_PFX}vpx_config.c
static const char* const cfg = "$CONFIGURE_ARGS";
const char *vpx_codec_build_config(void) {return cfg;}
static const char* const libdir = "$libdir";
const char *vpx_codec_lib_dir(void) {return libdir;}
EOF

12
libs.mk
View File

@@ -123,6 +123,18 @@ endif
else
INSTALL-LIBS-yes += $(LIBSUBDIR)/libvpx.a
INSTALL-LIBS-$(CONFIG_DEBUG_LIBS) += $(LIBSUBDIR)/libvpx_g.a
#Install the OpenCL kernels if CL enabled.
ifeq ($(CONFIG_OPENCL),yes)
INSTALL-LIBS-yes += $(LIBSUBDIR)/vp8/common/opencl/filter_cl.cl
INSTALL-LIBS-yes += $(LIBSUBDIR)/vp8/common/opencl/idctllm_cl.cl
INSTALL-LIBS-yes += $(LIBSUBDIR)/vp8/common/opencl/loopfilter.cl
#only install decoder CL files if VP8 decoder enabled
ifeq ($(CONFIG_VP8_DECODER),yes)
INSTALL-LIBS-yes += $(LIBSUBDIR)/vp8/decoder/opencl/dequantize_cl.cl
endif
endif #CONFIG_OPENCL=yes
endif
CODEC_SRCS=$(call enabled,CODEC_SRCS)

View File

@@ -130,32 +130,32 @@ void vp8_setup_version(VP8_COMMON *cm)
case 0:
cm->no_lpf = 0;
cm->simpler_lpf = 0;
cm->use_bilinear_mc_filter = 0;
cm->mcomp_filter_type = SIXTAP;
cm->full_pixel = 0;
break;
case 1:
cm->no_lpf = 0;
cm->simpler_lpf = 1;
cm->use_bilinear_mc_filter = 1;
cm->mcomp_filter_type = BILINEAR;
cm->full_pixel = 0;
break;
case 2:
cm->no_lpf = 1;
cm->simpler_lpf = 0;
cm->use_bilinear_mc_filter = 1;
cm->mcomp_filter_type = BILINEAR;
cm->full_pixel = 0;
break;
case 3:
cm->no_lpf = 1;
cm->simpler_lpf = 1;
cm->use_bilinear_mc_filter = 1;
cm->mcomp_filter_type = BILINEAR;
cm->full_pixel = 1;
break;
default:
/*4,5,6,7 are reserved for future use*/
cm->no_lpf = 0;
cm->simpler_lpf = 0;
cm->use_bilinear_mc_filter = 0;
cm->mcomp_filter_type = SIXTAP;
cm->full_pixel = 0;
break;
}
@@ -170,7 +170,7 @@ void vp8_create_common(VP8_COMMON *oci)
oci->mb_no_coeff_skip = 1;
oci->no_lpf = 0;
oci->simpler_lpf = 0;
oci->use_bilinear_mc_filter = 0;
oci->mcomp_filter_type = SIXTAP;
oci->full_pixel = 0;
oci->multi_token_partition = ONE_PARTITION;
oci->clr_type = REG_YUV;

View File

@@ -14,12 +14,17 @@
void vpx_log(const char *format, ...);
#include "vpx_ports/config.h"
#include "vpx_scale/yv12config.h"
#include "../../vpx_ports/config.h"
#include "../../vpx_scale/yv12config.h"
#include "mv.h"
#include "treecoder.h"
#include "subpixel.h"
#include "vpx_ports/mem.h"
#include "../../vpx_ports/mem.h"
#include "../../vpx_config.h"
#if CONFIG_OPENCL
#include "opencl/vp8_opencl.h"
#endif
#define TRUE 1
#define FALSE 0
@@ -73,19 +78,19 @@ typedef enum
typedef enum
{
DC_PRED, /* average of above and left pixels */
V_PRED, /* vertical prediction */
H_PRED, /* horizontal prediction */
TM_PRED, /* Truemotion prediction */
B_PRED, /* block based prediction, each block has its own prediction mode */
DC_PRED = 0, /* average of above and left pixels */
V_PRED = 1, /* vertical prediction */
H_PRED = 2, /* horizontal prediction */
TM_PRED = 3, /* Truemotion prediction */
B_PRED = 4, /* block based prediction, each block has its own prediction mode */
NEARESTMV,
NEARMV,
ZEROMV,
NEWMV,
SPLITMV,
NEARESTMV = 5,
NEARMV = 6,
ZEROMV = 7,
NEWMV = 8,
SPLITMV = 9,
MB_MODE_COUNT
MB_MODE_COUNT = 10
} MB_PREDICTION_MODE;
/* Macroblock level features */
@@ -187,24 +192,47 @@ typedef struct
typedef struct
{
short *qcoeff;
short *dqcoeff;
unsigned char *predictor;
short *diff;
short *reference;
short *qcoeff_base;
int qcoeff_offset;
short *dqcoeff_base;
int dqcoeff_offset;
unsigned char *predictor_base;
int predictor_offset;
short *diff_base;
int diff_offset;
short *dequant;
#if CONFIG_OPENCL
cl_command_queue cl_commands; //pointer to macroblock CL command queue
cl_mem cl_diff_mem;
cl_mem cl_predictor_mem;
cl_mem cl_qcoeff_mem;
cl_mem cl_dqcoeff_mem;
cl_mem cl_eobs_mem;
cl_mem cl_dequant_mem; //Block-specific, not shared
cl_bool sixtap_filter; //Subpixel Prediction type (true=sixtap, false=bilinear)
#endif
/* 16 Y blocks, 4 U blocks, 4 V blocks each with 16 entries */
unsigned char **base_pre;
unsigned char **base_pre; //previous frame, same Macroblock, base pointer
int pre;
int pre_stride;
unsigned char **base_dst;
unsigned char **base_dst; //destination base pointer
int dst;
int dst_stride;
int eob;
int eob; //only used in encoder? Decoder uses MBD.eobs
char *eobs_base; //beginning of MB.eobs
B_MODE_INFO bmi;
@@ -214,16 +242,26 @@ typedef struct
{
DECLARE_ALIGNED(16, short, diff[400]); /* from idct diff */
DECLARE_ALIGNED(16, unsigned char, predictor[384]);
/* not used DECLARE_ALIGNED(16, short, reference[384]); */
DECLARE_ALIGNED(16, short, qcoeff[400]);
DECLARE_ALIGNED(16, short, dqcoeff[400]);
DECLARE_ALIGNED(16, char, eobs[25]);
#if CONFIG_OPENCL
cl_command_queue cl_commands; //Each macroblock gets its own command queue.
cl_mem cl_diff_mem;
cl_mem cl_predictor_mem;
cl_mem cl_qcoeff_mem;
cl_mem cl_dqcoeff_mem;
cl_mem cl_eobs_mem;
cl_bool sixtap_filter;
#endif
/* 16 Y blocks, 4 U, 4 V, 1 DC 2nd order block, each with 16 entries. */
BLOCKD block[25];
YV12_BUFFER_CONFIG pre; /* Filtered copy of previous frame reconstruction */
YV12_BUFFER_CONFIG dst;
YV12_BUFFER_CONFIG dst; /* Destination buffer for current frame */
MODE_INFO *mode_info_context;
int mode_info_stride;
@@ -273,6 +311,7 @@ typedef struct
unsigned int frames_since_golden;
unsigned int frames_till_alt_ref_frame;
vp8_subpix_fn_t subpixel_predict;
vp8_subpix_fn_t subpixel_predict8x4;
vp8_subpix_fn_t subpixel_predict8x8;

View File

@@ -10,6 +10,29 @@
#include <stdlib.h>
#include <stdio.h>
#define REGISTER_FILTER 1
#define CLAMP(x,min,max) if (x < min) x = min; else if ( x > max ) x = max;
#if REGISTER_FILTER
#define FILTER0 filter0
#define FILTER1 filter1
#define FILTER2 filter2
#define FILTER3 filter3
#define FILTER4 filter4
#define FILTER5 filter5
#else
#define FILTER0 vp8_filter[0]
#define FILTER1 vp8_filter[1]
#define FILTER2 vp8_filter[2]
#define FILTER3 vp8_filter[3]
#define FILTER4 vp8_filter[4]
#define FILTER5 vp8_filter[5]
#endif
#define SRC_INCREMENT src_increment
#include "filter.h"
#include "vpx_ports/mem.h"
@@ -27,7 +50,6 @@ DECLARE_ALIGNED(16, const short, vp8_bilinear_filters[8][2]) =
DECLARE_ALIGNED(16, const short, vp8_sub_pel_filters[8][6]) =
{
{ 0, 0, 128, 0, 0, 0 }, /* note that 1/8 pel positions are just as per alpha -0.5 bicubic */
{ 0, -6, 123, 12, -1, 0 },
{ 2, -11, 108, 36, -8, 1 }, /* New 1/4 pel 6 tap filter */
@@ -49,35 +71,45 @@ static void filter_block2d_first_pass
const short *vp8_filter
)
{
unsigned int i, j;
int Temp;
unsigned int i, j;
int Temp;
#if REGISTER_FILTER
short filter0 = vp8_filter[0];
short filter1 = vp8_filter[1];
short filter2 = vp8_filter[2];
short filter3 = vp8_filter[3];
short filter4 = vp8_filter[4];
short filter5 = vp8_filter[5];
#endif
int ps2 = 2*(int)pixel_step;
int ps3 = 3*(int)pixel_step;
unsigned int src_increment = src_pixels_per_line - output_width;
for (i = 0; i < output_height; i++)
{
for (j = 0; j < output_width; j++)
{
Temp = ((int)src_ptr[-2 * (int)pixel_step] * vp8_filter[0]) +
((int)src_ptr[-1 * (int)pixel_step] * vp8_filter[1]) +
((int)src_ptr[0] * vp8_filter[2]) +
((int)src_ptr[pixel_step] * vp8_filter[3]) +
((int)src_ptr[2*pixel_step] * vp8_filter[4]) +
((int)src_ptr[3*pixel_step] * vp8_filter[5]) +
(VP8_FILTER_WEIGHT >> 1); /* Rounding */
Temp = ((int)src_ptr[-1*ps2] * FILTER0);
Temp += ((int)src_ptr[-1*(int)pixel_step] * FILTER1) +
((int)src_ptr[0] * FILTER2) +
((int)src_ptr[pixel_step] * FILTER3) +
((int)src_ptr[ps2] * FILTER4) +
((int)src_ptr[ps3] * FILTER5) +
(VP8_FILTER_WEIGHT >> 1); /* Rounding */
/* Normalize back to 0-255 */
Temp = Temp >> VP8_FILTER_SHIFT;
if (Temp < 0)
Temp = 0;
else if (Temp > 255)
Temp = 255;
CLAMP(Temp, 0, 255);
output_ptr[j] = Temp;
src_ptr++;
}
/* Next row... */
src_ptr += src_pixels_per_line - output_width;
src_ptr += SRC_INCREMENT;
output_ptr += output_width;
}
}
@@ -94,36 +126,45 @@ static void filter_block2d_second_pass
const short *vp8_filter
)
{
unsigned int i, j;
int Temp;
unsigned int i, j;
int Temp;
#if REGISTER_FILTER
short filter0 = vp8_filter[0];
short filter1 = vp8_filter[1];
short filter2 = vp8_filter[2];
short filter3 = vp8_filter[3];
short filter4 = vp8_filter[4];
short filter5 = vp8_filter[5];
#endif
int ps2 = ((int)pixel_step) << 1;
int ps3 = ps2 + (int)pixel_step;
unsigned int src_increment = src_pixels_per_line - output_width;
for (i = 0; i < output_height; i++)
{
for (j = 0; j < output_width; j++)
{
/* Apply filter */
Temp = ((int)src_ptr[-2 * (int)pixel_step] * vp8_filter[0]) +
((int)src_ptr[-1 * (int)pixel_step] * vp8_filter[1]) +
((int)src_ptr[0] * vp8_filter[2]) +
((int)src_ptr[pixel_step] * vp8_filter[3]) +
((int)src_ptr[2*pixel_step] * vp8_filter[4]) +
((int)src_ptr[3*pixel_step] * vp8_filter[5]) +
Temp = ((int)src_ptr[-1*ps2] * FILTER0) +
((int)src_ptr[-1*(int)pixel_step] * FILTER1) +
((int)src_ptr[0] * FILTER2) +
((int)src_ptr[pixel_step] * FILTER3) +
((int)src_ptr[ps2] * FILTER4) +
((int)src_ptr[ps3] * FILTER5) +
(VP8_FILTER_WEIGHT >> 1); /* Rounding */
/* Normalize back to 0-255 */
Temp = Temp >> VP8_FILTER_SHIFT;
if (Temp < 0)
Temp = 0;
else if (Temp > 255)
Temp = 255;
CLAMP(Temp, 0, 255);
output_ptr[j] = (unsigned char)Temp;
src_ptr++;
}
/* Start next row */
src_ptr += src_pixels_per_line - output_width;
src_ptr += src_increment;
output_ptr += output_pitch;
}
}
@@ -167,6 +208,7 @@ void vp8_sixtap_predict_c
filter_block2d(src_ptr, dst_ptr, src_pixels_per_line, dst_pitch, HFilter, VFilter);
}
void vp8_sixtap_predict8x8_c
(
unsigned char *src_ptr,

View File

@@ -19,6 +19,7 @@
extern void vp8_arch_x86_common_init(VP8_COMMON *ctx);
extern void vp8_arch_arm_common_init(VP8_COMMON *ctx);
extern void vp8_arch_opencl_common_init(VP8_COMMON *ctx);
void vp8_machine_specific_config(VP8_COMMON *ctx)
{
@@ -82,4 +83,8 @@ void vp8_machine_specific_config(VP8_COMMON *ctx)
vp8_arch_arm_common_init(ctx);
#endif
#if CONFIG_OPENCL && (ENABLE_CL_IDCT_DEQUANT || ENABLE_CL_SUBPIXEL || ENABLE_CL_LOOPFILTER)
vp8_arch_opencl_common_init(ctx);
#endif
}

View File

@@ -31,6 +31,10 @@
#include "arm/idct_arm.h"
#endif
#if CONFIG_OPENCL
#include "opencl/idct_cl.h"
#endif
#ifndef vp8_idct_idct1
#define vp8_idct_idct1 vp8_short_idct4x4llm_1_c
#endif

View File

@@ -13,6 +13,10 @@
#include "loopfilter.h"
#include "onyxc_int.h"
#if CONFIG_OPENCL
#include "opencl/loopfilter_cl.h"
#endif
typedef unsigned char uc;
@@ -312,6 +316,13 @@ void vp8_loop_filter_frame
int i;
unsigned char *y_ptr, *u_ptr, *v_ptr;
#if CONFIG_OPENCL && ENABLE_CL_LOOPFILTER
if ( cl_initialized == CL_SUCCESS ){
vp8_loop_filter_frame_cl(cm,mbd,default_filt_lvl);
return;
}
#endif
mbd->mode_info_context = cm->mi; /* Point at base of Mb MODE_INFO list */
/* Note the baseline filter values for each segment */
@@ -394,6 +405,7 @@ void vp8_loop_filter_frame
}
/* Encoder only... */
void vp8_loop_filter_frame_yonly
(
VP8_COMMON *cm,
@@ -489,7 +501,7 @@ void vp8_loop_filter_frame_yonly
}
/* Encoder only... */
void vp8_loop_filter_partial_frame
(
VP8_COMMON *cm,

View File

@@ -49,7 +49,6 @@ static __inline signed char vp8_hevmask(signed char thresh, uc p1, uc p0, uc q0,
}
static __inline void vp8_filter(signed char mask, signed char hev, uc *op1, uc *op0, uc *oq0, uc *oq1)
{
signed char ps0, qs0;
signed char ps1, qs1;
@@ -94,6 +93,7 @@ static __inline void vp8_filter(signed char mask, signed char hev, uc *op1, uc *
*op1 = u ^ 0x80;
}
void vp8_loop_filter_horizontal_edge_c
(
unsigned char *s,

View File

@@ -11,6 +11,12 @@
#include "blockd.h"
#include "stdio.h"
#include "vpx_config.h"
#if CONFIG_OPENCL
#include "opencl/vp8_opencl.h"
#endif
typedef enum
{
PRED = 0,
@@ -20,7 +26,6 @@ typedef enum
static void setup_block
(
BLOCKD *b,
int mv_stride,
unsigned char **base,
int Stride,
int offset,
@@ -49,81 +54,176 @@ static void setup_macroblock(MACROBLOCKD *x, BLOCKSET bs)
int block;
unsigned char **y, **u, **v;
unsigned char **buf_base;
int y_off, u_off, v_off;
if (bs == DEST)
{
buf_base = &x->dst.buffer_alloc;
y_off = x->dst.y_buffer - x->dst.buffer_alloc;
u_off = x->dst.u_buffer - x->dst.buffer_alloc;
v_off = x->dst.v_buffer - x->dst.buffer_alloc;
y = &x->dst.y_buffer;
u = &x->dst.u_buffer;
v = &x->dst.v_buffer;
y_off = 0;
//y = buf_base;
//y_off = x->dst.y_buffer - x->dst.buffer_alloc;
u = buf_base;
v = buf_base;
u_off = x->dst.u_buffer - x->dst.buffer_alloc;
v_off = x->dst.v_buffer - x->dst.buffer_alloc;
}
else
{
buf_base = &x->pre.buffer_alloc;
y = &x->pre.y_buffer;
u = &x->pre.u_buffer;
v = &x->pre.v_buffer;
y_off = u_off = v_off = 0;
//y = buf_base;
//y_off = x->pre.y_buffer - x->pre.buffer_alloc;
//u = buf_base;
//u_off = x->pre.u_buffer - x->pre.buffer_alloc;
//v = buf_base;
//v_off = x->pre.v_buffer - x->pre.buffer_alloc;
}
for (block = 0; block < 16; block++) /* y blocks */
{
setup_block(&x->block[block], x->dst.y_stride, y, x->dst.y_stride,
(block >> 2) * 4 * x->dst.y_stride + (block & 3) * 4, bs);
setup_block(&x->block[block], y, x->dst.y_stride,
y_off + ((block >> 2) * 4 * x->dst.y_stride + (block & 3) * 4), bs);
}
for (block = 16; block < 20; block++) /* U and V blocks */
{
setup_block(&x->block[block], x->dst.uv_stride, u, x->dst.uv_stride,
((block - 16) >> 1) * 4 * x->dst.uv_stride + (block & 1) * 4, bs);
int block_off = ((block - 16) >> 1) * 4 * x->dst.uv_stride + (block & 1) * 4;
setup_block(&x->block[block+4], x->dst.uv_stride, v, x->dst.uv_stride,
((block - 16) >> 1) * 4 * x->dst.uv_stride + (block & 1) * 4, bs);
setup_block(&x->block[block], u, x->dst.uv_stride,
u_off + block_off, bs);
setup_block(&x->block[block+4], v, x->dst.uv_stride,
v_off + block_off, bs);
}
}
void vp8_setup_block_dptrs(MACROBLOCKD *x)
{
int r, c;
unsigned int offset;
#if CONFIG_OPENCL && !ONE_CQ_PER_MB
cl_command_queue y_cq, u_cq, v_cq;
int err;
if (cl_initialized == CL_SUCCESS){
//Create command queue for Y/U/V Planes
y_cq = clCreateCommandQueue(cl_data.context, cl_data.device_id, 0, &err);
if (!y_cq || err != CL_SUCCESS) {
printf("Error: Failed to create a command queue!\n");
cl_destroy(NULL, VP8_CL_TRIED_BUT_FAILED);
}
u_cq = clCreateCommandQueue(cl_data.context, cl_data.device_id, 0, &err);
if (!u_cq || err != CL_SUCCESS) {
printf("Error: Failed to create a command queue!\n");
cl_destroy(NULL, VP8_CL_TRIED_BUT_FAILED);
}
v_cq = clCreateCommandQueue(cl_data.context, cl_data.device_id, 0, &err);
if (!v_cq || err != CL_SUCCESS) {
printf("Error: Failed to create a command queue!\n");
cl_destroy(NULL, VP8_CL_TRIED_BUT_FAILED);
}
}
#endif
/* 16 Y blocks */
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
x->block[r*4+c].diff = &x->diff[r * 4 * 16 + c * 4];
x->block[r*4+c].predictor = x->predictor + r * 4 * 16 + c * 4;
offset = r * 4 * 16 + c * 4;
x->block[r*4+c].diff_offset = offset;
x->block[r*4+c].predictor_offset = offset;
#if CONFIG_OPENCL && !ONE_CQ_PER_MB
if (cl_initialized == CL_SUCCESS)
x->block[r*4+c].cl_commands = y_cq;
#endif
}
}
/* 4 U Blocks */
for (r = 0; r < 2; r++)
{
for (c = 0; c < 2; c++)
{
x->block[16+r*2+c].diff = &x->diff[256 + r * 4 * 8 + c * 4];
x->block[16+r*2+c].predictor = x->predictor + 256 + r * 4 * 8 + c * 4;
offset = 256 + r * 4 * 8 + c * 4;
x->block[16+r*2+c].diff_offset = offset;
x->block[16+r*2+c].predictor_offset = offset;
#if CONFIG_OPENCL && !ONE_CQ_PER_MB
if (cl_initialized == CL_SUCCESS)
x->block[16+r*2+c].cl_commands = u_cq;
#endif
}
}
/* 4 V Blocks */
for (r = 0; r < 2; r++)
{
for (c = 0; c < 2; c++)
{
x->block[20+r*2+c].diff = &x->diff[320+ r * 4 * 8 + c * 4];
x->block[20+r*2+c].predictor = x->predictor + 320 + r * 4 * 8 + c * 4;
offset = 320+ r * 4 * 8 + c * 4;
x->block[20+r*2+c].diff_offset = offset;
x->block[20+r*2+c].predictor_offset = offset;
#if CONFIG_OPENCL && !ONE_CQ_PER_MB
if (cl_initialized == CL_SUCCESS)
x->block[20+r*2+c].cl_commands = v_cq;
#endif
}
}
x->block[24].diff = &x->diff[384];
x->block[24].diff_offset = 384;
for (r = 0; r < 25; r++)
{
x->block[r].qcoeff = x->qcoeff + r * 16;
x->block[r].dqcoeff = x->dqcoeff + r * 16;
x->block[r].qcoeff_base = x->qcoeff;
x->block[r].qcoeff_offset = r * 16;
x->block[r].dqcoeff_base = x->dqcoeff;
x->block[r].dqcoeff_offset = r * 16;
x->block[r].predictor_base = x->predictor;
x->block[r].diff_base = x->diff;
x->block[r].eobs_base = x->eobs;
#if CONFIG_OPENCL
if (cl_initialized == CL_SUCCESS){
/* Copy command queue reference from macroblock */
#if ONE_CQ_PER_MB
x->block[r].cl_commands = x->cl_commands;
#endif
/* Set up CL memory buffers as appropriate */
x->block[r].cl_diff_mem = x->cl_diff_mem;
x->block[r].cl_dqcoeff_mem = x->cl_dqcoeff_mem;
x->block[r].cl_eobs_mem = x->cl_eobs_mem;
x->block[r].cl_predictor_mem = x->cl_predictor_mem;
x->block[r].cl_qcoeff_mem = x->cl_qcoeff_mem;
}
//Copy filter type to block.
x->block[r].sixtap_filter = x->sixtap_filter;
#endif
}
}
void vp8_build_block_doffsets(MACROBLOCKD *x)
{
/* handle the destination pitch features */
setup_macroblock(x, DEST);
setup_macroblock(x, PRED);

View File

@@ -120,7 +120,6 @@ typedef struct VP8Common
int mb_no_coeff_skip;
int no_lpf;
int simpler_lpf;
int use_bilinear_mc_filter;
int full_pixel;
int base_qindex;

View File

@@ -0,0 +1,233 @@
/*
* Copyright (c) 2011 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "../../decoder/onyxd_int.h"
#include "../../../vpx_ports/config.h"
#include "../../common/idct.h"
#include "blockd_cl.h"
#include "../../decoder/opencl/dequantize_cl.h"
int vp8_cl_mb_prep(MACROBLOCKD *x, int flags){
int err;
if (cl_initialized != CL_SUCCESS){
return cl_initialized;
}
//Copy all blockd.cl_*_mem objects
if (flags & DIFF)
VP8_CL_SET_BUF(x->cl_commands, x->cl_diff_mem, sizeof(cl_short)*400, x->diff,
,err
);
if (flags & PREDICTOR)
VP8_CL_SET_BUF(x->cl_commands, x->cl_predictor_mem, sizeof(cl_uchar)*384, x->predictor,
,err
);
if (flags & QCOEFF)
VP8_CL_SET_BUF(x->cl_commands, x->cl_qcoeff_mem, sizeof(cl_short)*400, x->qcoeff,
,err
);
if (flags & DQCOEFF)
VP8_CL_SET_BUF(x->cl_commands, x->cl_dqcoeff_mem, sizeof(cl_short)*400, x->dqcoeff,
,err
);
if (flags & EOBS)
VP8_CL_SET_BUF(x->cl_commands, x->cl_eobs_mem, sizeof(cl_char)*25, x->eobs,
,err
);
if (flags & PRE_BUF){
VP8_CL_SET_BUF(x->cl_commands, x->pre.buffer_mem, x->pre.buffer_size, x->pre.buffer_alloc,
,err
);
}
if (flags & DST_BUF){
VP8_CL_SET_BUF(x->cl_commands, x->dst.buffer_mem, x->dst.buffer_size, x->dst.buffer_alloc,
,err
);
}
return CL_SUCCESS;
}
int vp8_cl_mb_finish(MACROBLOCKD *x, int flags){
int err;
if (cl_initialized != CL_SUCCESS){
return cl_initialized;
}
if (flags & DIFF){
err = clEnqueueReadBuffer(x->cl_commands, x->cl_diff_mem, CL_FALSE, 0, sizeof(cl_short)*400, x->diff, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( x->cl_commands, err != CL_SUCCESS,
"Error: Failed to read from GPU!\n",
, err
);
}
if (flags & PREDICTOR){
err = clEnqueueReadBuffer(x->cl_commands, x->cl_predictor_mem, CL_FALSE, 0, sizeof(cl_uchar)*384, x->predictor, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( x->cl_commands, err != CL_SUCCESS,
"Error: Failed to read from GPU!\n",
, err
);
}
if (flags & QCOEFF){
err = clEnqueueReadBuffer(x->cl_commands, x->cl_qcoeff_mem, CL_FALSE, 0, sizeof(cl_short)*400, x->qcoeff, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( x->cl_commands, err != CL_SUCCESS,
"Error: Failed to read from GPU!\n",
, err
);
}
if (flags & DQCOEFF){
err = clEnqueueReadBuffer(x->cl_commands, x->cl_dqcoeff_mem, CL_FALSE, 0, sizeof(cl_short)*400, x->dqcoeff, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( x->cl_commands, err != CL_SUCCESS,
"Error: Failed to read from GPU!\n",
, err
);
}
if (flags & EOBS){
err = clEnqueueReadBuffer(x->cl_commands, x->cl_eobs_mem, CL_FALSE, 0, sizeof(cl_char)*25, x->eobs, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( x->cl_commands, err != CL_SUCCESS,
"Error: Failed to read from GPU!\n",
, err
);
}
if (flags & PRE_BUF){
err = clEnqueueReadBuffer(x->cl_commands, x->pre.buffer_mem, CL_FALSE,
0, x->pre.buffer_size, x->pre.buffer_alloc, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( x->cl_commands, err != CL_SUCCESS,
"Error: Failed to read from GPU!\n",
, err
);
}
if (flags & DST_BUF){
err = clEnqueueReadBuffer(x->cl_commands, x->dst.buffer_mem, CL_FALSE,
0, x->dst.buffer_size, x->dst.buffer_alloc, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( x->cl_commands, err != CL_SUCCESS,
"Error: Failed to read from GPU!\n",
, err
);
}
return CL_SUCCESS;
}
int vp8_cl_block_prep(BLOCKD *b, int flags){
int err;
if (cl_initialized != CL_SUCCESS){
return cl_initialized;
}
//Copy all blockd.cl_*_mem objects
if (flags & DIFF)
VP8_CL_SET_BUF(b->cl_commands, b->cl_diff_mem, sizeof(cl_short)*400, b->diff_base,
,err
);
if (flags & PREDICTOR)
VP8_CL_SET_BUF(b->cl_commands, b->cl_predictor_mem, sizeof(cl_uchar)*384, b->predictor_base,
,err
);
if (flags & QCOEFF)
VP8_CL_SET_BUF(b->cl_commands, b->cl_qcoeff_mem, sizeof(cl_short)*400, b->qcoeff_base,
,err
);
if (flags & DQCOEFF)
VP8_CL_SET_BUF(b->cl_commands, b->cl_dqcoeff_mem, sizeof(cl_short)*400, b->dqcoeff_base,
,err
);
if (flags & EOBS)
VP8_CL_SET_BUF(b->cl_commands, b->cl_eobs_mem, sizeof(cl_char)*25, b->eobs_base,
,err
);
if (flags & DEQUANT)
VP8_CL_SET_BUF(b->cl_commands, b->cl_dequant_mem, sizeof(cl_short)*16 ,b->dequant,
,err
);
return CL_SUCCESS;
}
int vp8_cl_block_finish(BLOCKD *b, int flags){
int err;
if (cl_initialized != CL_SUCCESS){
return cl_initialized;
}
if (flags & DIFF){
err = clEnqueueReadBuffer(b->cl_commands, b->cl_diff_mem, CL_FALSE, 0, sizeof(cl_short)*400, b->diff_base, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to read from GPU!\n",
, err
);
}
if (flags & PREDICTOR){
err = clEnqueueReadBuffer(b->cl_commands, b->cl_predictor_mem, CL_FALSE, 0, sizeof(cl_uchar)*384, b->predictor_base, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to read from GPU!\n",
, err
);
}
if (flags & QCOEFF){
err = clEnqueueReadBuffer(b->cl_commands, b->cl_qcoeff_mem, CL_FALSE, 0, sizeof(cl_short)*400, b->qcoeff_base, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to read from GPU!\n",
, err
);
}
if (flags & DQCOEFF){
err = clEnqueueReadBuffer(b->cl_commands, b->cl_dqcoeff_mem, CL_FALSE, 0, sizeof(cl_short)*400, b->dqcoeff_base, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to read from GPU!\n",
, err
);
}
if (flags & EOBS){
err = clEnqueueReadBuffer(b->cl_commands, b->cl_eobs_mem, CL_FALSE, 0, sizeof(cl_char)*25, b->eobs_base, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to read from GPU!\n",
, err
);
}
if (flags & DEQUANT){
err = clEnqueueReadBuffer(b->cl_commands, b->cl_dequant_mem, CL_FALSE, 0, sizeof(cl_short)*16 ,b->dequant, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to read from GPU!\n",
, err
);
}
return CL_SUCCESS;
}

View File

@@ -0,0 +1,64 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef BLOCKD_OPENCL_H
#define BLOCKD_OPENCL_H
#ifdef __cplusplus
extern "C" {
#endif
#include "vp8_opencl.h"
#include "../blockd.h"
#define DIFF 0x0001
#define PREDICTOR 0x0002
#define QCOEFF 0x0004
#define DQCOEFF 0x0008
#define EOBS 0x0010
#define DEQUANT 0x0020
#define PRE_BUF 0x0040
#define DST_BUF 0x0080
#define BLOCK_COPY_ALL 0xffff
/*
#define BLOCK_MEM_SIZE 6
enum {
DIFF_MEM = 0,
PRED_MEM = 1,
QCOEFF_MEM = 2,
DQCOEFF_MEM = 3,
EOBS_MEM = 4,
DEQUANT_MEM = 5
} BLOCK_MEM_TYPES;
struct cl_block_mem{
cl_mem gpu_mem;
size_t size;
void *host_mem;
};
typedef struct cl_block_mem block_mem;
*/
extern int vp8_cl_block_finish(BLOCKD *b, int flags);
extern int vp8_cl_block_prep(BLOCKD *b, int flags);
extern int vp8_cl_mb_prep(MACROBLOCKD *x, int flags);
extern int vp8_cl_mb_finish(MACROBLOCKD *x, int flags);
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,106 @@
/*
* Copyright (c) 2011 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp8_opencl.h"
#include <stdio.h>
CL_FUNCTIONS cl;
void *dll = NULL;
int cl_loaded = VP8_CL_NOT_INITIALIZED;
int close_cl(){
int ret = dlclose(dll);
if (ret != 0)
fprintf(stderr, "Error closing OpenCL library: %s", dlerror());
return ret;
}
int load_cl(char *lib_name){
//printf("Loading OpenCL library\n");
dll = dlopen(lib_name, RTLD_NOW|RTLD_LOCAL);
if (dll != NULL){
//printf("Found CL library\n");
} else {
//printf("Didn't find CL library\n");
return VP8_CL_TRIED_BUT_FAILED;
}
CL_LOAD_FN("clGetPlatformIDs", cl.getPlatformIDs);
CL_LOAD_FN("clGetPlatformInfo", cl.getPlatformInfo);
CL_LOAD_FN("clGetDeviceIDs", cl.getDeviceIDs);
CL_LOAD_FN("clGetDeviceInfo", cl.getDeviceInfo);
CL_LOAD_FN("clCreateContext", cl.createContext);
// CL_LOAD_FN("clCreateContextFromType", cl.createContextFromType);
// CL_LOAD_FN("clRetainContext", cl.retainContext);
CL_LOAD_FN("clReleaseContext", cl.releaseContext);
// CL_LOAD_FN("clGetContextInfo", cl.getContextInfo);
CL_LOAD_FN("clCreateCommandQueue", cl.createCommandQueue);
// CL_LOAD_FN("clRetainCommandQueue", cl.retainCommandQueue);
CL_LOAD_FN("clReleaseCommandQueue", cl.releaseCommandQueue);
// CL_LOAD_FN("clGetCommandQueueInfo", cl.getCommandQueue);
CL_LOAD_FN("clCreateBuffer", cl.createBuffer);
// CL_LOAD_FN("clCreateImage2D", cl.createImage2D);
// CL_LOAD_FN("clCreateImage3D", cl.createImage3D);
// CL_LOAD_FN("clRetainMemObject", cl.retainMemObject);
CL_LOAD_FN("clReleaseMemObject", cl.releaseMemObject);
// CL_LOAD_FN("clGetSupportedImageFormats", cl.getSupportedImageFormats);
// CL_LOAD_FN("clGetMemObjectInfo", cl.getMemObjectInfo);
// CL_LOAD_FN("clGetImageInfo", cl.getImageInfo);
// CL_LOAD_FN("clCreateSampler", cl.createSampler);
// CL_LOAD_FN("clRetainSampler", cl.retainSampler);
// CL_LOAD_FN("clReleaseSampler", cl.releaseSampler);
// CL_LOAD_FN("clGetSamplerInfo", cl.getSamplerInfo);
CL_LOAD_FN("clCreateProgramWithSource", cl.createProgramWithSource);
// CL_LOAD_FN("clCreateProgramWithBinary", cl.createProgramWithBinary);
// CL_LOAD_FN("clRetainProgram", cl.retainProgram);
CL_LOAD_FN("clReleaseProgram", cl.releaseProgram);
CL_LOAD_FN("clBuildProgram", cl.buildProgram);
// CL_LOAD_FN("clUnloadCompiler", cl.unloadCompiler);
CL_LOAD_FN("clGetProgramInfo", cl.getProgramInfo);
CL_LOAD_FN("clGetProgramBuildInfo", cl.getProgramBuildInfo);
CL_LOAD_FN("clCreateKernel", cl.createKernel);
// CL_LOAD_FN("clCreateKernelsInProgram", cl.createKernelsInProgram);
// CL_LOAD_FN("clRetainKernel", cl.retainKernel);
CL_LOAD_FN("clReleaseKernel", cl.releaseKernel);
CL_LOAD_FN("clSetKernelArg", cl.setKernelArg);
// CL_LOAD_FN("clGetKernelInfo", cl.getKernelInfo);
CL_LOAD_FN("clGetKernelWorkGroupInfo", cl.getKernelWorkGroupInfo);
// CL_LOAD_FN("clWaitForEvents", cl.waitForEvents);
// CL_LOAD_FN("clGetEventInfo", cl.getEventInfo);
// CL_LOAD_FN("clRetainEvent", cl.retainEvent);
// CL_LOAD_FN("clReleaseEvent", cl.releaseEvent);
// CL_LOAD_FN("clGetEventProfilingInfo", cl.getEventProfilingInfo);
CL_LOAD_FN("clFlush", cl.flush);
CL_LOAD_FN("clFinish", cl.finish);
CL_LOAD_FN("clEnqueueReadBuffer", cl.enqueueReadBuffer);
CL_LOAD_FN("clEnqueueWriteBuffer", cl.enqueueWriteBuffer);
CL_LOAD_FN("clEnqueueCopyBuffer", cl.enqueueCopyBuffer);
// CL_LOAD_FN("clEnqueueReadImage", cl.enqueueReadImage);
// CL_LOAD_FN("clEnqueueWriteImage", cl.enqueueWriteImage);
// CL_LOAD_FN("clEnqueueCopyImage", cl.enqueueCopyImage);
// CL_LOAD_FN("clEnqueueCopyImageToBuffer", cl.enqueueCopyImageToBuffer);
// CL_LOAD_FN("clEnqueueCopyBufferToImage", cl.enqueueCopyBufferToImage);
// CL_LOAD_FN("clEnqueueMapBuffer", cl.enqueueMapBuffer);
// CL_LOAD_FN("clEnqueueMapImage", cl.enqueueMapImage);
// CL_LOAD_FN("clEnqueueUnmapMemObject", cl.enqueueUnmapMemObject);
CL_LOAD_FN("clEnqueueNDRangeKernel", cl.enqueueNDRAngeKernel);
// CL_LOAD_FN("clEnqueueTask", cl.enqueueTask);
// CL_LOAD_FN("clEnqueueNativeKernel", cl.enqueueNativeKernel);
// CL_LOAD_FN("clEnqueueMarker", cl.enqueueMarker);
// CL_LOAD_FN("clEnqueueWaitForEvents", cl.enqueueWaitForEvents);
CL_LOAD_FN("clEnqueueBarrier", cl.enqueueBarrier);
// CL_LOAD_FN("clGetExtensionFunctionAddress", cl.getExtensionFunctionAddress);
return CL_SUCCESS;
}

View File

@@ -0,0 +1,253 @@
/*
* Copyright (c) 2011 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef DYNAMIC_CL_H
#define DYNAMIC_CL_H
#ifdef __cplusplus
extern "C" {
#endif
#ifdef __APPLE__
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif
#include <dlfcn.h>
int load_cl(char *lib_name);
int close_cl();
extern int cl_loaded;
typedef cl_int(*fn_clGetPlatformIDs_t)(cl_uint, cl_platform_id *, cl_uint *);
typedef cl_int(*fn_clGetPlatformInfo_t)(cl_platform_id, cl_platform_info, size_t, void *, size_t *);
typedef cl_int(*fn_clGetDeviceIDs_t)(cl_platform_id, cl_device_type, cl_uint, cl_device_id *, cl_uint *);
typedef cl_int(*fn_clGetDeviceInfo_t)(cl_device_id, cl_device_info, size_t, void *, size_t *);
typedef cl_context(*fn_clCreateContext_t)(const cl_context_properties *, cl_uint, const cl_device_id *, void (*pfn_notify)(const char *, const void *, size_t, void *), void *, cl_int *);
typedef cl_context(*fn_clCreateContextFromType_t)(const cl_context_properties *, cl_device_type, void (*pfn_notify)(const char *, const void *, size_t, void *), void *, cl_int *);
typedef cl_int(*fn_clRetainContext_t)(cl_context);
typedef cl_int(*fn_clReleaseContext_t)(cl_context);
typedef cl_int(*fn_clGetContextInfo_t)(cl_context, cl_context_info, size_t, void *, size_t *);
typedef cl_command_queue(*fn_clCreateCommandQueue_t)(cl_context, cl_device_id, cl_command_queue_properties, cl_int *);
typedef cl_int(*fn_clRetainCommandQueue_t)(cl_command_queue);
typedef cl_int(*fn_clReleaseCommandQueue_t)(cl_command_queue);
typedef cl_int(*fn_clGetCommandQueueInfo_t)(cl_command_queue, cl_command_queue_info, size_t, void *, size_t *);
typedef cl_mem(*fn_clCreateBuffer_t)(cl_context, cl_mem_flags, size_t, void *, cl_int *);
typedef cl_mem(*fn_clCreateImage2D_t)(cl_context, cl_mem_flags, const cl_image_format *, size_t, size_t, size_t, void *, cl_int *);
typedef cl_mem(*fn_clCreateImage3D_t)(cl_context, cl_mem_flags, const cl_image_format *, size_t, size_t, size_t, size_t, size_t, void *, cl_int *);
typedef cl_int(*fn_clRetainMemObject_t)(cl_mem);
typedef cl_int(*fn_clReleaseMemObject_t)(cl_mem);
typedef cl_int(*fn_clGetSupportedImageFormats_t)(cl_context, cl_mem_flags, cl_mem_object_type, cl_uint, cl_image_format *, cl_uint *);
typedef cl_int(*fn_clGetMemObjectInfo_t)(cl_mem, cl_mem_info, size_t, void *, size_t *);
typedef cl_int(*fn_clGetImageInfo_t)(cl_mem, cl_image_info, size_t, void *, size_t *);
typedef cl_sampler(*fn_clCreateSampler_t)(cl_context, cl_bool, cl_addressing_mode, cl_filter_mode, cl_int *);
typedef cl_int(*fn_clRetainSampler_t)(cl_sampler);
typedef cl_int(*fn_clReleaseSampler_t)(cl_sampler);
typedef cl_int(*fn_clGetSamplerInfo_t)(cl_sampler, cl_sampler_info, size_t, void *, size_t *);
typedef cl_program(*fn_clCreateProgramWithSource_t)(cl_context, cl_uint, const char **, const size_t *, cl_int *);
typedef cl_program(*fn_clCreateProgramWithBinary_t)(cl_context, cl_uint, const cl_device_id *, const size_t *, const unsigned char **, cl_int *, cl_int *);
typedef cl_int(*fn_clRetainProgram_t)(cl_program);
typedef cl_int(*fn_clReleaseProgram_t)(cl_program);
typedef cl_int(*fn_clBuildProgram_t)(cl_program, cl_uint, const cl_device_id *, const char *, void (*pfn_notify)(cl_program,void*), void *);
typedef cl_int(*fn_clUnloadCompiler_t)(void);
typedef cl_int(*fn_clGetProgramInfo_t)(cl_program, cl_program_info, size_t, void *, size_t *);
typedef cl_int(*fn_clGetProgramBuildInfo_t)(cl_program, cl_device_id, cl_program_build_info, size_t, void *, size_t *);
typedef cl_kernel(*fn_clCreateKernel_t)(cl_program, const char *, cl_int *);
typedef cl_int(*fn_clCreateKernelsInProgram_t)(cl_program, cl_uint, cl_kernel *, cl_uint *);
typedef cl_int(*fn_clRetainKernel_t)(cl_kernel);
typedef cl_int(*fn_clReleaseKernel_t)(cl_kernel);
typedef cl_int(*fn_clSetKernelArg_t)(cl_kernel, cl_uint, size_t, const void *);
typedef cl_int(*fn_clGetKernelInfo_t)(cl_kernel, cl_kernel_info, size_t, void *, size_t *);
typedef cl_int(*fn_clGetKernelWorkGroupInfo_t)(cl_kernel, cl_device_id, cl_kernel_work_group_info, size_t, void *, size_t *);
typedef cl_int(*fn_clWaitForEvents_t)(cl_uint, const cl_event *);
typedef cl_int(*fn_clGetEventInfo_t)(cl_event, cl_event_info, size_t, void *, size_t *);
typedef cl_int(*fn_clRetainEvent_t)(cl_event);
typedef cl_int(*fn_clReleaseEvent_t)(cl_event);
typedef cl_int(*fn_clGetEventProfilingInfo_t)(cl_event, cl_profiling_info, size_t, void *, size_t *);
typedef cl_int(*fn_clFlush_t)(cl_command_queue);
typedef cl_int(*fn_clFinish_t)(cl_command_queue);
typedef cl_int(*fn_clEnqueueReadBuffer_t)(cl_command_queue, cl_mem, cl_bool, size_t, size_t, void *, cl_uint, const cl_event *, cl_event *);
typedef cl_int(*fn_clEnqueueWriteBuffer_t)(cl_command_queue, cl_mem, cl_bool, size_t, size_t, const void *, cl_uint, const cl_event *, cl_event *);
typedef cl_int(*fn_clEnqueueCopyBuffer_t)(cl_command_queue, cl_mem, cl_mem, size_t, size_t, size_t, cl_uint, const cl_event *, cl_event *);
typedef cl_int(*fn_clEnqueueReadImage_t)(cl_command_queue, cl_mem, cl_bool, const size_t *, const size_t *, size_t, size_t, void *, cl_uint, const cl_event *, cl_event *);
typedef cl_int(*fn_clEnqueueWriteImage_t)(cl_command_queue, cl_mem, cl_bool, const size_t *, const size_t *, size_t, size_t, const void *, cl_uint, const cl_event *, cl_event *);
typedef cl_int(*fn_clEnqueueCopyImage_t)(cl_command_queue, cl_mem, cl_mem, const size_t *, const size_t *, const size_t *, cl_uint, const cl_event *, cl_event *);
typedef cl_int(*fn_clEnqueueCopyImageToBuffer_t)(cl_command_queue, cl_mem, cl_mem, const size_t *, const size_t *, size_t, cl_uint, const cl_event *, cl_event *);
typedef cl_int(*fn_clEnqueueCopyBufferToImage_t)(cl_command_queue, cl_mem, cl_mem, size_t, const size_t *, const size_t *, cl_uint, const cl_event *, cl_event *);
typedef void*(*fn_clEnqueueMapBuffer_t)(cl_command_queue, cl_mem, cl_bool, cl_map_flags, size_t, size_t, cl_uint, const cl_event *, cl_event *, cl_int *);
typedef void*(*fn_clEnqueueMapImage_t)(cl_command_queue, cl_mem, cl_bool, cl_map_flags, const size_t *, const size_t *, size_t *, size_t *, cl_uint, const cl_event *, cl_event *, cl_int *);
typedef cl_int(*fn_clEnqueueUnmapMemObject_t)(cl_command_queue, cl_mem, void *, cl_uint, const cl_event *, cl_event *);
typedef cl_int(*fn_clEnqueueNDRangeKernel_t)(cl_command_queue, cl_kernel, cl_uint, const size_t *, const size_t *, const size_t *, cl_uint, const cl_event *, cl_event *);
typedef cl_int(*fn_clEnqueueTask_t)(cl_command_queue, cl_kernel, cl_uint, const cl_event *, cl_event *);
typedef cl_int(*fn_clEnqueueNativeKernel_t)(cl_command_queue, void (*user_func)(void *), void *, size_t, cl_uint, const cl_mem *, const void **, cl_uint, const cl_event *, cl_event *);
typedef cl_int(*fn_clEnqueueMarker_t)(cl_command_queue, cl_event *);
typedef cl_int(*fn_clEnqueueWaitForEvents_t)(cl_command_queue, cl_uint, const cl_event *);
typedef cl_int(*fn_clEnqueueBarrier_t)(cl_command_queue);
typedef void*(*fn_clGetExtensionFunctionAddress_t)(const char *);
typedef struct CL_FUNCTIONS {
fn_clGetPlatformIDs_t getPlatformIDs;
fn_clGetPlatformInfo_t getPlatformInfo;
fn_clGetDeviceIDs_t getDeviceIDs;
fn_clGetDeviceInfo_t getDeviceInfo;
fn_clCreateContext_t createContext;
fn_clCreateContextFromType_t createContextFromType;
fn_clRetainContext_t retainContext;
fn_clReleaseContext_t releaseContext;
fn_clGetContextInfo_t getContextInfo;
fn_clCreateCommandQueue_t createCommandQueue;
fn_clRetainCommandQueue_t retainCommandQueue;
fn_clReleaseCommandQueue_t releaseCommandQueue;
fn_clGetCommandQueueInfo_t getCommandQueue;
fn_clCreateBuffer_t createBuffer;
fn_clCreateImage2D_t createImage2D;
fn_clCreateImage3D_t createImage3D;
fn_clRetainMemObject_t retainMemObject;
fn_clReleaseMemObject_t releaseMemObject;
fn_clGetSupportedImageFormats_t getSupportedImageFormats;
fn_clGetMemObjectInfo_t getMemObjectInfo;
fn_clGetImageInfo_t getImageInfo;
fn_clCreateSampler_t createSampler;
fn_clRetainSampler_t retainSampler;
fn_clReleaseSampler_t releaseSampler;
fn_clGetSamplerInfo_t getSamplerInfo;
fn_clCreateProgramWithSource_t createProgramWithSource;
fn_clCreateProgramWithBinary_t createProgramWithBinary;
fn_clRetainProgram_t retainProgram;
fn_clReleaseProgram_t releaseProgram;
fn_clBuildProgram_t buildProgram;
fn_clUnloadCompiler_t unloadCompiler;
fn_clGetProgramInfo_t getProgramInfo;
fn_clGetProgramBuildInfo_t getProgramBuildInfo;
fn_clCreateKernel_t createKernel;
fn_clCreateKernelsInProgram_t createKernelsInProgram;
fn_clRetainKernel_t retainKernel;
fn_clReleaseKernel_t releaseKernel;
fn_clSetKernelArg_t setKernelArg;
fn_clGetKernelInfo_t getKernelInfo;
fn_clGetKernelWorkGroupInfo_t getKernelWorkGroupInfo;
fn_clWaitForEvents_t waitForEvents;
fn_clGetEventInfo_t getEventInfo;
fn_clRetainEvent_t retainEvent;
fn_clReleaseEvent_t releaseEvent;
fn_clGetEventProfilingInfo_t getEventProfilingInfo;
fn_clFlush_t flush;
fn_clFinish_t finish;
fn_clEnqueueReadBuffer_t enqueueReadBuffer;
fn_clEnqueueWriteBuffer_t enqueueWriteBuffer;
fn_clEnqueueCopyBuffer_t enqueueCopyBuffer;
fn_clEnqueueReadImage_t enqueueReadImage;
fn_clEnqueueWriteImage_t enqueueWriteImage;
fn_clEnqueueCopyImage_t enqueueCopyImage;
fn_clEnqueueCopyImageToBuffer_t enqueueCopyImageToBuffer;
fn_clEnqueueCopyBufferToImage_t enqueueCopyBufferToImage;
fn_clEnqueueMapBuffer_t enqueueMapBuffer;
fn_clEnqueueMapImage_t enqueueMapImage;
fn_clEnqueueUnmapMemObject_t enqueueUnmapMemObject;
fn_clEnqueueNDRangeKernel_t enqueueNDRAngeKernel;
fn_clEnqueueTask_t enqueueTask;
fn_clEnqueueNativeKernel_t enqueueNativeKernel;
fn_clEnqueueMarker_t enqueueMarker;
fn_clEnqueueWaitForEvents_t enqueueWaitForEvents;
fn_clEnqueueBarrier_t enqueueBarrier;
fn_clGetExtensionFunctionAddress_t getExtensionFunctionAddress;
} CL_FUNCTIONS;
extern CL_FUNCTIONS cl;
#define clGetPlatformIDs cl.getPlatformIDs
#define clGetPlatformInfo cl.getPlatformInfo
#define clGetDeviceIDs cl.getDeviceIDs
#define clGetDeviceInfo cl.getDeviceInfo
#define clCreateContext cl.createContext
#define clCreateContextFromType cl.createContextFromType
#define clRetainContext cl.retainContext
#define clReleaseContext cl.releaseContext
#define clGetContextInfo cl.getContextInfo
#define clCreateCommandQueue cl.createCommandQueue
#define clRetainCommandQueue cl.retainCommandQueue
#define clReleaseCommandQueue cl.releaseCommandQueue
#define clGetCommandQueueInfo cl.getCommandQueue
#define clCreateBuffer cl.createBuffer
#define clCreateSubBuffer cl.createSubBuffer
#define clCreateImage2D cl.createImage2D
#define clCreateImage3D cl.createImage3D
#define clRetainMemObject cl.retainMemObject
#define clReleaseMemObject cl.releaseMemObject
#define clGetSupportedImageFormats cl.getSupportedImageFormats
#define clGetMemObjectInfo cl.getMemObjectInfo
#define clGetImageInfo cl.getImageInfo
#define clSetMemObjectDestructorCallback cl.setMemObjectDestructorCallback
#define clCreateSampler cl.createSampler
#define clRetainSampler cl.retainSampler
#define clReleaseSampler cl.releaseSampler
#define clGetSamplerInfo cl.getSamplerInfo
#define clCreateProgramWithSource cl.createProgramWithSource
#define clCreateProgramWithBinary cl.createProgramWithBinary
#define clRetainProgram cl.retainProgram
#define clReleaseProgram cl.releaseProgram
#define clBuildProgram cl.buildProgram
#define clUnloadCompiler cl.unloadCompiler
#define clGetProgramInfo cl.getProgramInfo
#define clGetProgramBuildInfo cl.getProgramBuildInfo
#define clCreateKernel cl.createKernel
#define clCreateKernelsInProgram cl.createKernelsInProgram
#define clRetainKernel cl.retainKernel
#define clReleaseKernel cl.releaseKernel
#define clSetKernelArg cl.setKernelArg
#define clGetKernelInfo cl.getKernelInfo
#define clGetKernelWorkGroupInfo cl.getKernelWorkGroupInfo
#define clWaitForEvents cl.waitForEvents
#define clGetEventInfo cl.getEventInfo
#define clCreateUserEvent cl.createUserEvent
#define clRetainEvent cl.retainEvent
#define clReleaseEvent cl.releaseEvent
#define clSetUserEventStatus cl.setUserEventStatus
#define clSetEventCallback cl.setEventCallback
#define clGetEventProfilingInfo cl.getEventProfilingInfo
#define clFlush cl.flush
#define clFinish cl.finish
#define clEnqueueReadBuffer cl.enqueueReadBuffer
#define clEnqueueReadBufferRect cl.enqueueReadBufferRect
#define clEnqueueWriteBuffer cl.enqueueWriteBuffer
#define clEnqueueWriteBufferRect cl.enqueueWriteBufferRect
#define clEnqueueCopyBuffer cl.enqueueCopyBuffer
#define clEnqueueCopyBufferRect cl.enqueueCopyBufferRect
#define clEnqueueReadImage cl.enqueueReadImage
#define clEnqueueWriteImage cl.enqueueWriteImage
#define clEnqueueCopyImage cl.enqueueCopyImage
#define clEnqueueCopyImageToBuffer cl.enqueueCopyImageToBuffer
#define clEnqueueCopyBufferToImage cl.enqueueCopyBufferToImage
#define clEnqueueMapBuffer cl.enqueueMapBuffer
#define clEnqueueMapImage cl.enqueueMapImage
#define clEnqueueUnmapMemObject cl.enqueueUnmapMemObject
#define clEnqueueNDRangeKernel cl.enqueueNDRAngeKernel
#define clEnqueueTask cl.enqueueTask
#define clEnqueueNativeKernel cl.enqueueNativeKernel
#define clEnqueueMarker cl.enqueueMarker
#define clEnqueueWaitForEvents cl.enqueueWaitForEvents
#define clEnqueueBarrier cl.enqueueBarrier
#define clGetExtensionFunctionAddress cl.getExtensionFunctionAddress
#define CL_LOAD_FN(name, ref) \
ref = dlsym(dll,name); \
if (ref == NULL){ \
dlclose(dll); \
return CL_INVALID_PLATFORM; \
}
#ifdef __cplusplus
}
#endif
#endif /* DYNAMIC_CL_H */

View File

@@ -0,0 +1,824 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
//ACW: Remove me after debugging.
#include <stdio.h>
#include <string.h>
#include "vp8_opencl.h"
#include "filter_cl.h"
#include "../blockd.h"
#define SIXTAP_FILTER_LEN 6
const char *filterCompileOptions = "-Ivp8/common/opencl -DVP8_FILTER_WEIGHT=128 -DVP8_FILTER_SHIFT=7 -DFILTER_OFFSET";
const char *filter_cl_file_name = "vp8/common/opencl/filter_cl.cl";
#define STATIC_MEM 1
#if STATIC_MEM
static cl_mem int_mem = NULL;
#endif
void cl_destroy_filter(){
if (cl_data.filter_program)
clReleaseProgram(cl_data.filter_program);
//VP8_CL_RELEASE_KERNEL(cl_data.vp8_block_variation_kernel);
#if !TWO_PASS_SIXTAP
VP8_CL_RELEASE_KERNEL(cl_data.vp8_sixtap_predict_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_sixtap_predict8x8_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_sixtap_predict8x4_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_sixtap_predict16x16_kernel);
#else
VP8_CL_RELEASE_KERNEL(cl_data.vp8_filter_block2d_first_pass_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_filter_block2d_second_pass_kernel);
#endif
//VP8_CL_RELEASE_KERNEL(cl_data.vp8_bilinear_predict4x4_kernel);
//VP8_CL_RELEASE_KERNEL(cl_data.vp8_bilinear_predict8x4_kernel);
//VP8_CL_RELEASE_KERNEL(cl_data.vp8_bilinear_predict8x8_kernel);
//VP8_CL_RELEASE_KERNEL(cl_data.vp8_bilinear_predict16x16_kernel);
#if MEM_COPY_KERNEL
VP8_CL_RELEASE_KERNEL(cl_data.vp8_memcpy_kernel);
#endif
VP8_CL_RELEASE_KERNEL(cl_data.vp8_filter_block2d_bil_first_pass_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_filter_block2d_bil_second_pass_kernel);
#if STATIC_MEM
if (int_mem != NULL)
clReleaseMemObject(int_mem);
int_mem = NULL;
#endif
cl_data.filter_program = NULL;
}
int cl_init_filter() {
int err;
// Create the filter compute program from the file-defined source code
if ( cl_load_program(&cl_data.filter_program, filter_cl_file_name,
filterCompileOptions) != CL_SUCCESS )
return VP8_CL_TRIED_BUT_FAILED;
// Create the compute kernel in the program we wish to run
#if TWO_PASS_SIXTAP
VP8_CL_CREATE_KERNEL(cl_data,filter_program,vp8_filter_block2d_first_pass_kernel,"vp8_filter_block2d_first_pass_kernel");
VP8_CL_CREATE_KERNEL(cl_data,filter_program,vp8_filter_block2d_second_pass_kernel,"vp8_filter_block2d_second_pass_kernel");
VP8_CL_CALC_LOCAL_SIZE(vp8_filter_block2d_first_pass_kernel,vp8_filter_block2d_first_pass_kernel_size);
VP8_CL_CALC_LOCAL_SIZE(vp8_filter_block2d_second_pass_kernel,vp8_filter_block2d_second_pass_kernel_size);
#else
VP8_CL_CREATE_KERNEL(cl_data,filter_program,vp8_sixtap_predict_kernel,"vp8_sixtap_predict_kernel");
VP8_CL_CALC_LOCAL_SIZE(vp8_sixtap_predict_kernel,vp8_sixtap_predict_kernel_size);
VP8_CL_CREATE_KERNEL(cl_data,filter_program,vp8_sixtap_predict8x8_kernel,"vp8_sixtap_predict8x8_kernel");
VP8_CL_CALC_LOCAL_SIZE(vp8_sixtap_predict8x8_kernel,vp8_sixtap_predict8x8_kernel_size);
VP8_CL_CREATE_KERNEL(cl_data,filter_program,vp8_sixtap_predict8x4_kernel,"vp8_sixtap_predict8x4_kernel");
VP8_CL_CALC_LOCAL_SIZE(vp8_sixtap_predict8x4_kernel,vp8_sixtap_predict8x4_kernel_size);
VP8_CL_CREATE_KERNEL(cl_data,filter_program,vp8_sixtap_predict16x16_kernel,"vp8_sixtap_predict16x16_kernel");
VP8_CL_CALC_LOCAL_SIZE(vp8_sixtap_predict16x16_kernel,vp8_sixtap_predict16x16_kernel_size);
#endif
//VP8_CL_CALC_LOCAL_SIZE(vp8_filter_block2d_bil_first_pass_kernel,vp8_filter_block2d_bil_first_pass_kernel_size);
//VP8_CL_CALC_LOCAL_SIZE(vp8_filter_block2d_bil_second_pass_kernel,vp8_filter_block2d_bil_second_pass_kernel_size);
VP8_CL_CREATE_KERNEL(cl_data,filter_program,vp8_filter_block2d_bil_first_pass_kernel,"vp8_filter_block2d_bil_first_pass_kernel");
VP8_CL_CREATE_KERNEL(cl_data,filter_program,vp8_filter_block2d_bil_second_pass_kernel,"vp8_filter_block2d_bil_second_pass_kernel");
//VP8_CL_CREATE_KERNEL(cl_data,filter_program,vp8_bilinear_predict4x4_kernel,"vp8_bilinear_predict4x4_kernel");
//VP8_CL_CREATE_KERNEL(cl_data,filter_program,vp8_bilinear_predict8x4_kernel,"vp8_bilinear_predict8x4_kernel");
//VP8_CL_CREATE_KERNEL(cl_data,filter_program,vp8_bilinear_predict8x8_kernel,"vp8_bilinear_predict8x8_kernel");
//VP8_CL_CREATE_KERNEL(cl_data,filter_program,vp8_bilinear_predict16x16_kernel,"vp8_bilinear_predict16x16_kernel");
#if MEM_COPY_KERNEL
VP8_CL_CREATE_KERNEL(cl_data,filter_program,vp8_memcpy_kernel,"vp8_memcpy_kernel");
VP8_CL_CALC_LOCAL_SIZE(vp8_memcpy_kernel,vp8_memcpy_kernel_size);
#endif
#if STATIC_MEM
VP8_CL_CREATE_BUF(NULL, int_mem, NULL, sizeof(cl_int)*21*16, NULL, ,err);
#endif
return CL_SUCCESS;
}
void vp8_filter_block2d_first_pass_cl(
cl_command_queue cq,
cl_mem src_mem,
int src_offset,
cl_mem int_mem,
unsigned int src_pixels_per_line,
unsigned int int_height,
unsigned int int_width,
int xoffset
){
int err;
size_t global = int_width*int_height;
size_t local = cl_data.vp8_filter_block2d_first_pass_kernel_size;
if (local > global)
local = global;
err = clSetKernelArg(cl_data.vp8_filter_block2d_first_pass_kernel, 0, sizeof (cl_mem), &src_mem);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_first_pass_kernel, 1, sizeof (int), &src_offset);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_first_pass_kernel, 2, sizeof (cl_mem), &int_mem);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_first_pass_kernel, 3, sizeof (cl_uint), &src_pixels_per_line);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_first_pass_kernel, 4, sizeof (cl_uint), &int_height);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_first_pass_kernel, 5, sizeof (cl_int), &int_width);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_first_pass_kernel, 6, sizeof (int), &xoffset);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",
,
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel( cq, cl_data.vp8_filter_block2d_first_pass_kernel, 1, NULL, &global, &local , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);,
);
}
void vp8_filter_block2d_second_pass_cl(
cl_command_queue cq,
cl_mem int_mem,
int int_offset,
cl_mem dst_mem,
int dst_offset,
int dst_pitch,
unsigned int output_height,
unsigned int output_width,
int yoffset
){
int err;
size_t global = output_width*output_height;
size_t local = cl_data.vp8_filter_block2d_second_pass_kernel_size;
if (local > global){
//printf("Local is now %ld\n",global);
local = global;
}
/* Set kernel arguments */
err = clSetKernelArg(cl_data.vp8_filter_block2d_second_pass_kernel, 0, sizeof (cl_mem), &int_mem);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_second_pass_kernel, 1, sizeof (int), &int_offset);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_second_pass_kernel, 2, sizeof (cl_mem), &dst_mem);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_second_pass_kernel, 3, sizeof (int), &dst_offset);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_second_pass_kernel, 4, sizeof (int), &dst_pitch);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_second_pass_kernel, 5, sizeof (int), &output_width);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_second_pass_kernel, 6, sizeof (int), &output_width);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_second_pass_kernel, 7, sizeof (int), &output_height);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_second_pass_kernel, 8, sizeof (int), &output_width);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_second_pass_kernel, 9, sizeof (int), &yoffset);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",
,
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel( cq, cl_data.vp8_filter_block2d_second_pass_kernel, 1, NULL, &global, &local , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);,
);
}
void vp8_sixtap_single_pass(
cl_command_queue cq,
cl_kernel kernel,
size_t local,
size_t global,
cl_mem src_mem,
cl_mem dst_mem,
unsigned char *src_base,
int src_offset,
size_t src_len,
int src_pixels_per_line,
int xoffset,
int yoffset,
unsigned char *dst_base,
int dst_offset,
int dst_pitch,
size_t dst_len
){
int err;
#if !STATIC_MEM
cl_mem int_mem;
#endif
int free_src = 0, free_dst = 0;
if (local > global){
local = global;
}
/* Make space for kernel input/output data.
* Initialize the buffer as well if needed.
*/
if (src_mem == NULL){
VP8_CL_CREATE_BUF( cq, src_mem,, sizeof (unsigned char) * src_len, src_base-2,,);
src_offset = 2;
free_src = 1;
} else {
src_offset -= 2*src_pixels_per_line;
}
if (dst_mem == NULL){
VP8_CL_CREATE_BUF( cq, dst_mem,, sizeof (unsigned char) * dst_len + dst_offset, dst_base,, );
free_dst = 1;
}
#if !STATIC_MEM
CL_CREATE_BUF( cq, int_mem,, sizeof(cl_int)*FData_height*FData_width, NULL,, );
#endif
err = clSetKernelArg(kernel, 0, sizeof (cl_mem), &src_mem);
err |= clSetKernelArg(kernel, 1, sizeof (int), &src_offset);
err |= clSetKernelArg(kernel, 2, sizeof (cl_int), &src_pixels_per_line);
err |= clSetKernelArg(kernel, 3, sizeof (cl_int), &xoffset);
err |= clSetKernelArg(kernel, 4, sizeof (cl_int), &yoffset);
err |= clSetKernelArg(kernel, 5, sizeof (cl_mem), &dst_mem);
err |= clSetKernelArg(kernel, 6, sizeof (cl_int), &dst_offset);
err |= clSetKernelArg(kernel, 7, sizeof (int), &dst_pitch);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",
,
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel( cq, kernel, 1, NULL, &global, &local , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);,
);
if (free_src == 1)
clReleaseMemObject(src_mem);
if (free_dst == 1){
/* Read back the result data from the device */
err = clEnqueueReadBuffer(cq, dst_mem, CL_FALSE, 0, sizeof (unsigned char) * dst_len + dst_offset, dst_base, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to read output array!\n",
,
);
clReleaseMemObject(dst_mem);
}
}
void vp8_sixtap_run_cl(
cl_command_queue cq,
cl_mem src_mem,
cl_mem dst_mem,
unsigned char *src_base,
int src_offset,
size_t src_len,
int src_pixels_per_line,
int xoffset,
int yoffset,
unsigned char *dst_base,
int dst_offset,
int dst_pitch,
size_t dst_len,
unsigned int FData_height,
unsigned int FData_width,
unsigned int output_height,
unsigned int output_width,
int int_offset
)
{
int err;
#if !STATIC_MEM
cl_mem int_mem;
#endif
int free_src = 0, free_dst = 0;
/* Make space for kernel input/output data.
* Initialize the buffer as well if needed.
*/
if (src_mem == NULL){
VP8_CL_CREATE_BUF( cq, src_mem,, sizeof (unsigned char) * src_len, src_base-2,,);
src_offset = 2;
free_src = 1;
} else {
src_offset -= 2*src_pixels_per_line;
}
if (dst_mem == NULL){
VP8_CL_CREATE_BUF( cq, dst_mem,, sizeof (unsigned char) * dst_len + dst_offset, dst_base,, );
free_dst = 1;
}
#if !STATIC_MEM
CL_CREATE_BUF( cq, int_mem,, sizeof(cl_int)*FData_height*FData_width, NULL,, );
#endif
vp8_filter_block2d_first_pass_cl(
cq, src_mem, src_offset, int_mem, src_pixels_per_line,
FData_height, FData_width, xoffset
);
vp8_filter_block2d_second_pass_cl(cq,int_mem,int_offset,dst_mem,dst_offset,dst_pitch,
output_height,output_width,yoffset);
if (free_src == 1)
clReleaseMemObject(src_mem);
if (free_dst == 1){
/* Read back the result data from the device */
err = clEnqueueReadBuffer(cq, dst_mem, CL_FALSE, 0, sizeof (unsigned char) * dst_len + dst_offset, dst_base, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to read output array!\n",
,
);
clReleaseMemObject(dst_mem);
}
#if !STATIC_MEM
clReleaseMemObject(int_mem);
#endif
}
void vp8_sixtap_predict4x4_cl
(
cl_command_queue cq,
unsigned char *src_base,
cl_mem src_mem,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
unsigned char *dst_base,
cl_mem dst_mem,
int dst_offset,
int dst_pitch
) {
int output_width=4, output_height=4, FData_height=9, FData_width=4;
//Size of output to transfer
int dst_len = DST_LEN(dst_pitch,output_height,output_width);
int src_len = SIXTAP_SRC_LEN(FData_width,FData_height,src_pixels_per_line);
#if TWO_PASS_SIXTAP
int int_offset = 8;
unsigned char *src_ptr = src_base + src_offset;
vp8_sixtap_run_cl(cq, src_mem, dst_mem,
(src_ptr-2*src_pixels_per_line),src_offset, src_len,
src_pixels_per_line, xoffset,yoffset,dst_base,dst_offset,
dst_pitch,dst_len,FData_height,FData_width,output_height,
output_width,int_offset
);
#else
vp8_sixtap_single_pass(
cq,
cl_data.vp8_sixtap_predict_kernel,
cl_data.vp8_sixtap_predict_kernel_size,
FData_height*FData_width,
src_mem,
dst_mem,
src_base,
src_offset,
src_len,
src_pixels_per_line,
xoffset,
yoffset,
dst_base,
dst_offset,
dst_pitch,
dst_len
);
#endif
return;
}
void vp8_sixtap_predict8x8_cl
(
cl_command_queue cq,
unsigned char *src_base,
cl_mem src_mem,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
unsigned char *dst_base,
cl_mem dst_mem,
int dst_offset,
int dst_pitch
) {
int output_width=8, output_height=8, FData_height=13, FData_width=8;
//Size of output to transfer
int dst_len = DST_LEN(dst_pitch,output_height,output_width);
int src_len = SIXTAP_SRC_LEN(FData_width,FData_height,src_pixels_per_line);
#if TWO_PASS_SIXTAP
int int_offset = 16;
unsigned char *src_ptr = src_base + src_offset;
vp8_sixtap_run_cl(cq, src_mem, dst_mem,
(src_ptr-2*src_pixels_per_line),src_offset, src_len,
src_pixels_per_line, xoffset,yoffset,dst_base,dst_offset,
dst_pitch,dst_len,FData_height,FData_width,output_height,
output_width,int_offset
);
#else
vp8_sixtap_single_pass(
cq,
cl_data.vp8_sixtap_predict8x8_kernel,
cl_data.vp8_sixtap_predict8x8_kernel_size,
FData_height*FData_width,
src_mem,
dst_mem,
src_base,
src_offset,
src_len,
src_pixels_per_line,
xoffset,
yoffset,
dst_base,
dst_offset,
dst_pitch,
dst_len
);
#endif
return;
}
void vp8_sixtap_predict8x4_cl
(
cl_command_queue cq,
unsigned char *src_base,
cl_mem src_mem,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
unsigned char *dst_base,
cl_mem dst_mem,
int dst_offset,
int dst_pitch
) {
int output_width=8, output_height=4, FData_height=9, FData_width=8;
//Size of output to transfer
int dst_len = DST_LEN(dst_pitch,output_height,output_width);
int src_len = SIXTAP_SRC_LEN(FData_width,FData_height,src_pixels_per_line);
#if TWO_PASS_SIXTAP
int int_offset = 16;
unsigned char *src_ptr = src_base + src_offset;
vp8_sixtap_run_cl(cq, src_mem, dst_mem,
(src_ptr-2*src_pixels_per_line),src_offset, src_len,
src_pixels_per_line, xoffset,yoffset,dst_base,dst_offset,
dst_pitch,dst_len,FData_height,FData_width,output_height,
output_width,int_offset
);
#else
vp8_sixtap_single_pass(
cq,
cl_data.vp8_sixtap_predict8x4_kernel,
cl_data.vp8_sixtap_predict8x4_kernel_size,
FData_height*FData_width,
src_mem,
dst_mem,
src_base,
src_offset,
src_len,
src_pixels_per_line,
xoffset,
yoffset,
dst_base,
dst_offset,
dst_pitch,
dst_len
);
#endif
return;
}
void vp8_sixtap_predict16x16_cl
(
cl_command_queue cq,
unsigned char *src_base,
cl_mem src_mem,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
unsigned char *dst_base,
cl_mem dst_mem,
int dst_offset,
int dst_pitch
) {
int output_width=16, output_height=16, FData_height=21, FData_width=16;
//Size of output to transfer
int dst_len = DST_LEN(dst_pitch,output_height,output_width);
int src_len = SIXTAP_SRC_LEN(FData_width,FData_height,src_pixels_per_line);
#if TWO_PASS_SIXTAP
int int_offset = 32;
unsigned char *src_ptr = src_base + src_offset;
vp8_sixtap_run_cl(cq, src_mem, dst_mem,
(src_ptr-2*src_pixels_per_line),src_offset, src_len,
src_pixels_per_line, xoffset,yoffset,dst_base,dst_offset,
dst_pitch,dst_len,FData_height,FData_width,output_height,
output_width,int_offset
);
#else
vp8_sixtap_single_pass(
cq,
cl_data.vp8_sixtap_predict16x16_kernel,
cl_data.vp8_sixtap_predict16x16_kernel_size,
FData_height*FData_width,
src_mem,
dst_mem,
src_base,
src_offset,
src_len,
src_pixels_per_line,
xoffset,
yoffset,
dst_base,
dst_offset,
dst_pitch,
dst_len
);
#endif
return;
}
void vp8_filter_block2d_bil_first_pass_cl(
cl_command_queue cq,
unsigned char *src_base,
cl_mem src_mem,
int src_offset,
cl_mem int_mem,
int src_pixels_per_line,
int height,
int width,
int xoffset
)
{
int err;
size_t global = width*height;
int free_src = 0;
if (src_mem == NULL){
int src_len = BIL_SRC_LEN(width,height,src_pixels_per_line);
/*Make space for kernel input/output data. Initialize the buffer as well if needed. */
VP8_CL_CREATE_BUF(cq, src_mem, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
sizeof (unsigned char) * src_len, src_base+src_offset,,
);
src_offset = 0; //Set to zero as long as src_mem starts at base+offset
free_src = 1;
}
err = clSetKernelArg(cl_data.vp8_filter_block2d_bil_first_pass_kernel, 0, sizeof (cl_mem), &src_mem);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_bil_first_pass_kernel, 1, sizeof (int), &src_offset);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_bil_first_pass_kernel, 2, sizeof (cl_mem), &int_mem);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_bil_first_pass_kernel, 3, sizeof (int), &src_pixels_per_line);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_bil_first_pass_kernel, 4, sizeof (int), &height);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_bil_first_pass_kernel, 5, sizeof (int), &width);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_bil_first_pass_kernel, 6, sizeof (int), &xoffset);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",
,
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel( cq, cl_data.vp8_filter_block2d_bil_first_pass_kernel, 1, NULL, &global, NULL , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);,
);
if (free_src == 1)
clReleaseMemObject(src_mem);
}
void vp8_filter_block2d_bil_second_pass_cl(
cl_command_queue cq,
cl_mem int_mem,
unsigned char *dst_base,
cl_mem dst_mem,
int dst_offset,
int dst_pitch,
int height,
int width,
int yoffset
)
{
int err;
size_t global = width*height;
//Size of output data
int dst_len = DST_LEN(dst_pitch,height,width);
int free_dst = 0;
if (dst_mem == NULL){
VP8_CL_CREATE_BUF(cq, dst_mem, CL_MEM_WRITE_ONLY|CL_MEM_COPY_HOST_PTR,
sizeof (unsigned char) * dst_len + dst_offset, dst_base,,
);
free_dst = 1;
}
err = clSetKernelArg(cl_data.vp8_filter_block2d_bil_second_pass_kernel, 0, sizeof (cl_mem), &int_mem);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_bil_second_pass_kernel, 1, sizeof (cl_mem), &dst_mem);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_bil_second_pass_kernel, 2, sizeof (int), &dst_offset);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_bil_second_pass_kernel, 3, sizeof (int), &dst_pitch);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_bil_second_pass_kernel, 4, sizeof (int), &height);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_bil_second_pass_kernel, 5, sizeof (int), &width);
err |= clSetKernelArg(cl_data.vp8_filter_block2d_bil_second_pass_kernel, 6, sizeof (int), &yoffset);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",
,
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel( cq, cl_data.vp8_filter_block2d_bil_second_pass_kernel, 1, NULL, &global, NULL , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);,
);
if (free_dst == 1){
/* Read back the result data from the device */
err = clEnqueueReadBuffer(cq, dst_mem, CL_FALSE, 0, sizeof (unsigned char) * dst_len + dst_offset, dst_base, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to read output array!\n",
,
);
clReleaseMemObject(dst_mem);
}
}
void vp8_bilinear_predict4x4_cl
(
cl_command_queue cq,
unsigned char *src_base,
cl_mem src_mem,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
unsigned char *dst_base,
cl_mem dst_mem,
int dst_offset,
int dst_pitch
) {
const int height = 4, width = 4;
#if !STATIC_MEM
int err;
cl_mem int_mem = NULL;
VP8_CL_CREATE_BUF(NULL, int_mem, NULL, sizeof(cl_int)*21*16, NULL, ,);
#endif
/* First filter 1-D horizontally... */
vp8_filter_block2d_bil_first_pass_cl(cq, src_base, src_mem, src_offset, int_mem, src_pixels_per_line, height + 1, width, xoffset);
/* then 1-D vertically... */
vp8_filter_block2d_bil_second_pass_cl(cq, int_mem, dst_base, dst_mem, dst_offset, dst_pitch, height, width, yoffset);
#if !STATIC_MEM
clReleaseMemObject(int_mem);
#endif
}
void vp8_bilinear_predict8x8_cl
(
cl_command_queue cq,
unsigned char *src_base,
cl_mem src_mem,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
unsigned char *dst_base,
cl_mem dst_mem,
int dst_offset,
int dst_pitch
) {
const int height = 8, width = 8;
#if !STATIC_MEM
int err;
cl_mem int_mem = NULL;
VP8_CL_CREATE_BUF(NULL, int_mem, NULL, sizeof(cl_int)*21*16, NULL, ,);
#endif
/* First filter 1-D horizontally... */
vp8_filter_block2d_bil_first_pass_cl(cq, src_base, src_mem, src_offset, int_mem, src_pixels_per_line, height + 1, width, xoffset);
/* then 1-D vertically... */
vp8_filter_block2d_bil_second_pass_cl(cq, int_mem, dst_base, dst_mem, dst_offset, dst_pitch, height, width, yoffset);
#if !STATIC_MEM
clReleaseMemObject(int_mem);
#endif
}
void vp8_bilinear_predict8x4_cl
(
cl_command_queue cq,
unsigned char *src_base,
cl_mem src_mem,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
unsigned char *dst_base,
cl_mem dst_mem,
int dst_offset,
int dst_pitch
) {
const int height = 4, width = 8;
#if !STATIC_MEM
int err;
cl_mem int_mem = NULL;
VP8_CL_CREATE_BUF(NULL, int_mem, NULL, sizeof(cl_int)*21*16, NULL, ,);
#endif
/* First filter 1-D horizontally... */
vp8_filter_block2d_bil_first_pass_cl(cq, src_base, src_mem, src_offset, int_mem, src_pixels_per_line, height + 1, width, xoffset);
/* then 1-D vertically... */
vp8_filter_block2d_bil_second_pass_cl(cq, int_mem, dst_base, dst_mem, dst_offset, dst_pitch, height, width, yoffset);
#if !STATIC_MEM
clReleaseMemObject(int_mem);
#endif
}
void vp8_bilinear_predict16x16_cl
(
cl_command_queue cq,
unsigned char *src_base,
cl_mem src_mem,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
unsigned char *dst_base,
cl_mem dst_mem,
int dst_offset,
int dst_pitch
) {
const int height = 16, width = 16;
#if !STATIC_MEM
int err;
cl_mem int_mem = NULL;
VP8_CL_CREATE_BUF(NULL, int_mem, NULL, sizeof(cl_int)*21*16, NULL, ,);
#endif
/* First filter 1-D horizontally... */
vp8_filter_block2d_bil_first_pass_cl(cq, src_base, src_mem, src_offset, int_mem, src_pixels_per_line, height + 1, width, xoffset);
/* then 1-D vertically... */
vp8_filter_block2d_bil_second_pass_cl(cq, int_mem, dst_base, dst_mem, dst_offset, dst_pitch, height, width, yoffset);
#if !STATIC_MEM
clReleaseMemObject(int_mem);
#endif
}

View File

@@ -0,0 +1,562 @@
#pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable
#pragma OPENCL EXTENSION cl_amd_printf : enable
__constant int bilinear_filters[8][2] = {
{ 128, 0},
{ 112, 16},
{ 96, 32},
{ 80, 48},
{ 64, 64},
{ 48, 80},
{ 32, 96},
{ 16, 112}
};
__constant short sub_pel_filters[8][8] = {
//These were originally 8x6, but are padded for vector ops
{ 0, 0, 128, 0, 0, 0, 0, 0}, /* note that 1/8 pel positions are just as per alpha -0.5 bicubic */
{ 0, -6, 123, 12, -1, 0, 0, 0},
{ 2, -11, 108, 36, -8, 1, 0, 0}, /* New 1/4 pel 6 tap filter */
{ 0, -9, 93, 50, -6, 0, 0, 0},
{ 3, -16, 77, 77, -16, 3, 0, 0}, /* New 1/2 pel 6 tap filter */
{ 0, -6, 50, 93, -9, 0, 0, 0},
{ 1, -8, 36, 108, -11, 2, 0, 0}, /* New 1/4 pel 6 tap filter */
{ 0, -1, 12, 123, -6, 0, 0, 0},
};
kernel void vp8_filter_block2d_first_pass_kernel(
__global unsigned char *src_base,
int src_offset,
__global int *output_ptr,
unsigned int src_pixels_per_line,
unsigned int output_height,
unsigned int output_width,
int filter_offset
){
uint tid = get_global_id(0);
global unsigned char *src_ptr = &src_base[src_offset];
//Note that src_offset will be reset later, which is why we use it now
int Temp;
__constant short *vp8_filter = sub_pel_filters[filter_offset];
if (tid < (output_width*output_height)){
src_offset = tid + (tid/output_width * (src_pixels_per_line - output_width));
Temp = (int)(src_ptr[src_offset - 2] * vp8_filter[0]) +
(int)(src_ptr[src_offset - 1] * vp8_filter[1]) +
(int)(src_ptr[src_offset] * vp8_filter[2]) +
(int)(src_ptr[src_offset + 1] * vp8_filter[3]) +
(int)(src_ptr[src_offset + 2] * vp8_filter[4]) +
(int)(src_ptr[src_offset + 3] * vp8_filter[5]) +
(VP8_FILTER_WEIGHT >> 1); /* Rounding */
/* Normalize back to 0-255 */
Temp = Temp >> VP8_FILTER_SHIFT;
if (Temp < 0)
Temp = 0;
else if ( Temp > 255 )
Temp = 255;
output_ptr[tid] = Temp;
}
}
kernel void vp8_filter_block2d_second_pass_kernel
(
__global int *src_base,
int src_offset,
__global unsigned char *output_base,
int output_offset,
int output_pitch,
unsigned int src_pixels_per_line,
unsigned int pixel_step,
unsigned int output_height,
unsigned int output_width,
int filter_offset
) {
uint i = get_global_id(0);
global int *src_ptr = &src_base[src_offset];
global unsigned char *output_ptr = &output_base[output_offset];
int out_offset; //Not same as output_offset...
int Temp;
int PS2 = 2*(int)pixel_step;
int PS3 = 3*(int)pixel_step;
unsigned int src_increment = src_pixels_per_line - output_width;
__constant short *vp8_filter = sub_pel_filters[filter_offset];
if (i < (output_width * output_height)){
out_offset = i/output_width;
src_offset = out_offset;
src_offset = i + (src_offset * src_increment);
out_offset = i%output_width + (out_offset * output_pitch);
/* Apply filter */
Temp = ((int)src_ptr[src_offset - PS2] * vp8_filter[0]) +
((int)src_ptr[src_offset -(int)pixel_step] * vp8_filter[1]) +
((int)src_ptr[src_offset] * vp8_filter[2]) +
((int)src_ptr[src_offset + pixel_step] * vp8_filter[3]) +
((int)src_ptr[src_offset + PS2] * vp8_filter[4]) +
((int)src_ptr[src_offset + PS3] * vp8_filter[5]) +
(VP8_FILTER_WEIGHT >> 1); /* Rounding */
/* Normalize back to 0-255 */
Temp = Temp >> VP8_FILTER_SHIFT;
if (Temp < 0)
Temp = 0;
else if (Temp > 255)
Temp = 255;
output_ptr[out_offset] = (unsigned char)Temp;
}
}
kernel void vp8_filter_block2d_bil_first_pass_kernel(
__global unsigned char *src_base,
int src_offset,
__global int *output_ptr,
unsigned int src_pixels_per_line,
unsigned int output_height,
unsigned int output_width,
int filter_offset
)
{
uint tid = get_global_id(0);
if (tid < output_width * output_height){
global unsigned char *src_ptr = &src_base[src_offset];
unsigned int i, j;
__constant int *vp8_filter = bilinear_filters[filter_offset];
unsigned int out_row,out_offset;
int src_increment = src_pixels_per_line - output_width;
i = tid / output_width;
j = tid % output_width;
src_offset = i*(output_width+src_increment) + j;
out_row = output_width * i;
out_offset = out_row + j;
/* Apply bilinear filter */
output_ptr[out_offset] = (((int)src_ptr[src_offset] * vp8_filter[0]) +
((int)src_ptr[src_offset+1] * vp8_filter[1]) +
(VP8_FILTER_WEIGHT / 2)) >> VP8_FILTER_SHIFT;
}
}
kernel void vp8_filter_block2d_bil_second_pass_kernel
(
__global int *src_ptr,
__global unsigned char *output_base,
int output_offset,
int output_pitch,
unsigned int output_height,
unsigned int output_width,
int filter_offset
)
{
uint tid = get_global_id(0);
if (tid < output_width * output_height){
global unsigned char *output_ptr = &output_base[output_offset];
unsigned int i, j;
int Temp;
__constant int *vp8_filter = bilinear_filters[filter_offset];
int out_offset;
int src_offset;
i = tid / output_width;
j = tid % output_width;
src_offset = i*(output_width) + j;
out_offset = i*output_pitch + j;
/* Apply filter */
Temp = ((int)src_ptr[src_offset] * vp8_filter[0]) +
((int)src_ptr[src_offset+output_width] * vp8_filter[1]) +
(VP8_FILTER_WEIGHT / 2);
output_ptr[out_offset++] = (unsigned int)(Temp >> VP8_FILTER_SHIFT);
}
}
//Called from reconinter_cl.c
kernel void vp8_memcpy_kernel(
global unsigned char *src_base,
int src_offset,
int src_stride,
global unsigned char *dst_base,
int dst_offset,
int dst_stride,
int num_bytes,
int num_iter
){
int i,r;
global unsigned char *src = &src_base[src_offset];
global unsigned char *dst = &dst_base[dst_offset];
src_offset = dst_offset = 0;
r = get_global_id(1);
if (r < get_global_size(1)){
i = get_global_id(0);
if (i < get_global_size(0)){
src_offset = r*src_stride + i;
dst_offset = r*dst_stride + i;
dst[dst_offset] = src[src_offset];
}
}
}
//Not used currently.
void vp8_memset_short(
global short *mem,
int offset,
short newval,
unsigned int size
)
{
int tid = get_global_id(0);
if (tid < (size/2)){
mem[offset+tid/2] = newval;
}
}
__kernel void vp8_bilinear_predict4x4_kernel
(
__global unsigned char *src_base,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
__global unsigned char *dst_base,
int dst_offset,
int dst_pitch,
__global int *int_mem
)
{
int Height = 4, Width = 4;
/* First filter 1-D horizontally... */
vp8_filter_block2d_bil_first_pass_kernel(src_base, src_offset, int_mem, src_pixels_per_line, Height + 1, Width, xoffset);
/* then 1-D vertically... */
vp8_filter_block2d_bil_second_pass_kernel(int_mem, dst_base, dst_offset, dst_pitch, Height, Width, yoffset);
}
__kernel void vp8_bilinear_predict8x8_kernel
(
__global unsigned char *src_base,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
__global unsigned char *dst_base,
int dst_offset,
int dst_pitch,
__global int *int_mem
)
{
int Height = 8, Width = 8;
/* First filter 1-D horizontally... */
vp8_filter_block2d_bil_first_pass_kernel(src_base, src_offset, int_mem, src_pixels_per_line, Height + 1, Width, xoffset);
/* then 1-D vertically... */
vp8_filter_block2d_bil_second_pass_kernel(int_mem, dst_base, dst_offset, dst_pitch, Height, Width, yoffset);
}
__kernel void vp8_bilinear_predict8x4_kernel
(
__global unsigned char *src_base,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
__global unsigned char *dst_base,
int dst_offset,
int dst_pitch,
__global int *int_mem
)
{
int Height = 4, Width = 8;
/* First filter 1-D horizontally... */
vp8_filter_block2d_bil_first_pass_kernel(src_base, src_offset, int_mem, src_pixels_per_line, Height + 1, Width, xoffset);
/* then 1-D vertically... */
vp8_filter_block2d_bil_second_pass_kernel(int_mem, dst_base, dst_offset, dst_pitch, Height, Width, yoffset);
}
__kernel void vp8_bilinear_predict16x16_kernel
(
__global unsigned char *src_base,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
__global unsigned char *dst_base,
int dst_offset,
int dst_pitch,
__global int *int_mem
)
{
int Height = 16, Width = 16;
/* First filter 1-D horizontally... */
vp8_filter_block2d_bil_first_pass_kernel(src_base, src_offset, int_mem, src_pixels_per_line, Height + 1, Width, xoffset);
/* then 1-D vertically... */
vp8_filter_block2d_bil_second_pass_kernel(int_mem, dst_base, dst_offset, dst_pitch, Height, Width, yoffset);
}
void vp8_filter_block2d_first_pass(
global unsigned char *src_base,
int src_offset,
local int *output_ptr,
unsigned int src_pixels_per_line,
unsigned int pixel_step,
unsigned int output_height,
unsigned int output_width,
int filter_offset
){
uint tid = get_global_id(0);
uint i = tid;
int nthreads = get_global_size(0);
int ngroups = nthreads / get_local_size(0);
global unsigned char *src_ptr = &src_base[src_offset];
//Note that src_offset will be reset later, which is why we capture it now
int Temp;
__constant short *vp8_filter = sub_pel_filters[filter_offset];
if (tid < (output_width*output_height)){
short filter0 = vp8_filter[0];
short filter1 = vp8_filter[1];
short filter2 = vp8_filter[2];
short filter3 = vp8_filter[3];
short filter4 = vp8_filter[4];
short filter5 = vp8_filter[5];
if (ngroups > 1){
//This is generally only true on Apple CPU-CL, which gives a group
//size of 1, regardless of the CPU core count.
for (i=0; i < output_width*output_height; i++){
src_offset = i + (i/output_width * (src_pixels_per_line - output_width));
Temp = (int)(src_ptr[src_offset - 2] * filter0) +
(int)(src_ptr[src_offset - 1] * filter1) +
(int)(src_ptr[src_offset] * filter2) +
(int)(src_ptr[src_offset + 1] * filter3) +
(int)(src_ptr[src_offset + 2] * filter4) +
(int)(src_ptr[src_offset + 3] * filter5) +
(VP8_FILTER_WEIGHT >> 1); /* Rounding */
/* Normalize back to 0-255 */
Temp >>= VP8_FILTER_SHIFT;
if (Temp < 0)
Temp = 0;
else if ( Temp > 255 )
Temp = 255;
output_ptr[i] = Temp;
}
} else {
src_offset = i + (i/output_width * (src_pixels_per_line - output_width));
Temp = (int)(src_ptr[src_offset - 2] * filter0) +
(int)(src_ptr[src_offset - 1] * filter1) +
(int)(src_ptr[src_offset] * filter2) +
(int)(src_ptr[src_offset + 1] * filter3) +
(int)(src_ptr[src_offset + 2] * filter4) +
(int)(src_ptr[src_offset + 3] * filter5) +
(VP8_FILTER_WEIGHT >> 1); /* Rounding */
/* Normalize back to 0-255 */
Temp >>= VP8_FILTER_SHIFT;
if (Temp < 0)
Temp = 0;
else if ( Temp > 255 )
Temp = 255;
output_ptr[i] = Temp;
}
}
//Add a fence so that no 2nd pass stuff starts before 1st pass writes are done.
barrier(CLK_LOCAL_MEM_FENCE);
}
void vp8_filter_block2d_second_pass
(
local int *src_ptr,
global unsigned char *output_base,
int output_offset,
int output_pitch,
unsigned int src_pixels_per_line,
unsigned int pixel_step,
unsigned int output_height,
unsigned int output_width,
int filter_offset
) {
global unsigned char *output_ptr = &output_base[output_offset];
int out_offset; //Not same as output_offset...
int src_offset;
int Temp;
int PS2 = 2*(int)pixel_step;
int PS3 = 3*(int)pixel_step;
unsigned int src_increment = src_pixels_per_line - output_width;
uint i = get_global_id(0);
__constant short *vp8_filter = sub_pel_filters[filter_offset];
if (i < (output_width * output_height)){
out_offset = i/output_width;
src_offset = out_offset;
src_offset = i + (src_offset * src_increment);
out_offset = i%output_width + (out_offset * output_pitch);
/* Apply filter */
Temp = ((int)src_ptr[src_offset - PS2] * vp8_filter[0]) +
((int)src_ptr[src_offset -(int)pixel_step] * vp8_filter[1]) +
((int)src_ptr[src_offset] * vp8_filter[2]) +
((int)src_ptr[src_offset + pixel_step] * vp8_filter[3]) +
((int)src_ptr[src_offset + PS2] * vp8_filter[4]) +
((int)src_ptr[src_offset + PS3] * vp8_filter[5]) +
(VP8_FILTER_WEIGHT >> 1); /* Rounding */
/* Normalize back to 0-255 */
Temp = Temp >> VP8_FILTER_SHIFT;
if (Temp < 0)
Temp = 0;
else if (Temp > 255)
Temp = 255;
output_ptr[out_offset] = (unsigned char)Temp;
}
}
__kernel void vp8_sixtap_predict_kernel
(
__global unsigned char *src_ptr,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
__global unsigned char *dst_ptr,
int dst_offset,
int dst_pitch
)
{
local int FData[9*4];
/* First filter 1-D horizontally... */
vp8_filter_block2d_first_pass(src_ptr, src_offset, FData, src_pixels_per_line, 1, 9, 4, xoffset);
/* then filter vertically... */
vp8_filter_block2d_second_pass(&FData[8], dst_ptr, dst_offset, dst_pitch, 4, 4, 4, 4, yoffset);
}
__kernel void vp8_sixtap_predict8x8_kernel
(
__global unsigned char *src_ptr,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
__global unsigned char *dst_ptr,
int dst_offset,
int dst_pitch
)
{
local int FData[13*16]; /* Temp data bufffer used in filtering */
/* First filter 1-D horizontally... */
vp8_filter_block2d_first_pass(src_ptr, src_offset, FData, src_pixels_per_line, 1, 13, 8, xoffset);
/* then filter vertically... */
vp8_filter_block2d_second_pass(&FData[16], dst_ptr, dst_offset, dst_pitch, 8, 8, 8, 8, yoffset);
}
__kernel void vp8_sixtap_predict8x4_kernel
(
__global unsigned char *src_ptr,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
__global unsigned char *dst_ptr,
int dst_offset,
int dst_pitch
)
{
local int FData[13*16]; /* Temp data buffer used in filtering */
/* First filter 1-D horizontally... */
vp8_filter_block2d_first_pass(src_ptr, src_offset, FData, src_pixels_per_line, 1, 9, 8, xoffset);
/* then filter verticaly... */
vp8_filter_block2d_second_pass(&FData[16], dst_ptr, dst_offset, dst_pitch, 8, 8, 4, 8, yoffset);
}
__kernel void vp8_sixtap_predict16x16_kernel
(
__global unsigned char *src_ptr,
int src_offset,
int src_pixels_per_line,
int xoffset,
int yoffset,
__global unsigned char *dst_ptr,
int dst_offset,
int dst_pitch
)
{
local int FData[21*24]; /* Temp data buffer used in filtering */
/* First filter 1-D horizontally... */
vp8_filter_block2d_first_pass(src_ptr, src_offset, FData, src_pixels_per_line, 1, 21, 16, xoffset);
/* then filter verticaly... */
vp8_filter_block2d_second_pass(&FData[32], dst_ptr, dst_offset, dst_pitch, 16, 16, 16, 16, yoffset);
return;
}

View File

@@ -0,0 +1,74 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef FILTER_CL_H_
#define FILTER_CL_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "vp8_opencl.h"
#define VP8_FILTER_WEIGHT 128
#define VP8_FILTER_SHIFT 7
#define REGISTER_FILTER 1
#define CLAMP(x,min,max) if (x < min) x = min; else if ( x > max ) x = max;
#define PRE_CALC_PIXEL_STEPS 1
#define PRE_CALC_SRC_INCREMENT 1
#if PRE_CALC_PIXEL_STEPS
#define PS2 two_pixel_steps
#define PS3 three_pixel_steps
#else
#define PS2 2*(int)pixel_step
#define PS3 3*(int)pixel_step
#endif
#if REGISTER_FILTER
#define FILTER0 filter0
#define FILTER1 filter1
#define FILTER2 filter2
#define FILTER3 filter3
#define FILTER4 filter4
#define FILTER5 filter5
#else
#define FILTER0 vp8_filter[0]
#define FILTER1 vp8_filter[1]
#define FILTER2 vp8_filter[2]
#define FILTER3 vp8_filter[3]
#define FILTER4 vp8_filter[4]
#define FILTER5 vp8_filter[5]
#endif
#if PRE_CALC_SRC_INCREMENT
#define SRC_INCREMENT src_increment
#else
#define SRC_INCREMENT (src_pixels_per_line - output_width)
#endif
#define FILTER_OFFSET //Filter data stored as CL constant memory
#define FILTER_REF sub_pel_filters[filter_offset]
extern const char *filterCompileOptions;
extern const char *filter_cl_file_name;
//Copy the -2*pixel_step (and ps*3) bytes because the filter algorithm
//accesses negative indexes
#define SIXTAP_SRC_LEN(out_width,out_height,src_px) ((out_width)*(out_height) + (((out_width)*(out_height)-1)/(out_width))*(src_px - out_width) + 5)
#define BIL_SRC_LEN(out_width,out_height,src_px) ((out_height) * src_px + out_width)
#define DST_LEN(dst_pitch,dst_height,dst_width) (dst_pitch * (dst_height) + (dst_width))
#ifdef __cplusplus
}
#endif
#endif /* FILTER_CL_H_ */

View File

@@ -0,0 +1,45 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef IDCT_OPENCL_H
#define IDCT_OPENCL_H
#ifdef __cplusplus
extern "C" {
#endif
#include "vp8_opencl.h"
#include "vp8/common/blockd.h"
#define prototype_second_order_cl(sym) \
void sym(BLOCKD *b)
#define prototype_idct_cl(sym) \
void sym(BLOCKD *b, int pitch)
#define prototype_idct_scalar_add_cl(sym) \
void sym(BLOCKD *b, cl_int use_diff, int diff_offset, int qcoeff_offset, \
int pred_offset, unsigned char *output, cl_mem out_mem, int out_offset, size_t out_size, \
int pitch, int stride)\
extern prototype_idct_cl(vp8_short_idct4x4llm_1_cl);
extern prototype_idct_cl(vp8_short_idct4x4llm_cl);
extern prototype_idct_scalar_add_cl(vp8_dc_only_idct_add_cl);
extern prototype_second_order_cl(vp8_short_inv_walsh4x4_1_cl);
extern prototype_second_order_cl(vp8_short_inv_walsh4x4_cl);
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,325 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
//ACW: Remove me after debugging.
#include <stdio.h>
#include <string.h>
#include "idct_cl.h"
#include "idctllm_cl.h"
#include "blockd_cl.h"
void cl_destroy_idct(){
if (cl_data.idct_program)
clReleaseProgram(cl_data.idct_program);
cl_data.idct_program = NULL;
VP8_CL_RELEASE_KERNEL(cl_data.vp8_short_inv_walsh4x4_1_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_short_inv_walsh4x4_1st_pass_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_short_inv_walsh4x4_2nd_pass_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_dc_only_idct_add_kernel);
//VP8_CL_RELEASE_KERNEL(cl_data.vp8_short_idct4x4llm_1_kernel);
//VP8_CL_RELEASE_KERNEL(cl_data.vp8_short_idct4x4llm_kernel);
}
int cl_init_idct() {
int err;
// Create the filter compute program from the file-defined source code
if (cl_load_program(&cl_data.idct_program, idctllm_cl_file_name,
idctCompileOptions) != CL_SUCCESS)
return VP8_CL_TRIED_BUT_FAILED;
// Create the compute kernel in the program we wish to run
VP8_CL_CREATE_KERNEL(cl_data,idct_program,vp8_short_inv_walsh4x4_1_kernel,"vp8_short_inv_walsh4x4_1_kernel");
VP8_CL_CREATE_KERNEL(cl_data,idct_program,vp8_short_inv_walsh4x4_1st_pass_kernel,"vp8_short_inv_walsh4x4_1st_pass_kernel");
VP8_CL_CREATE_KERNEL(cl_data,idct_program,vp8_short_inv_walsh4x4_2nd_pass_kernel,"vp8_short_inv_walsh4x4_2nd_pass_kernel");
VP8_CL_CREATE_KERNEL(cl_data,idct_program,vp8_dc_only_idct_add_kernel,"vp8_dc_only_idct_add_kernel");
////idct4x4llm kernels are only useful for the encoder
//VP8_CL_CREATE_KERNEL(cl_data,idct_program,vp8_short_idct4x4llm_1_kernel,"vp8_short_idct4x4llm_1_kernel");
//VP8_CL_CREATE_KERNEL(cl_data,idct_program,vp8_short_idct4x4llm_kernel,"vp8_short_idct4x4llm_kernel");
return CL_SUCCESS;
}
#define max(x,y) (x > y ? x: y)
//#define NO_CL
/* Only useful for encoder... Untested... */
void vp8_short_idct4x4llm_cl(BLOCKD *b, int pitch)
{
int err;
short *input = b->dqcoeff_base + b->dqcoeff_offset;
short *output = &b->diff_base[b->diff_offset];
cl_mem src_mem, dst_mem;
//1 instance for now. This should be split into 2-pass * 4 thread.
size_t global = 1;
if (cl_initialized != CL_SUCCESS){
vp8_short_idct4x4llm_c(input,output,pitch);
return;
}
VP8_CL_CREATE_BUF(b->cl_commands, src_mem,,
sizeof(short)*16, input,
vp8_short_idct4x4llm_c(input,output,pitch),
);
VP8_CL_CREATE_BUF(b->cl_commands, dst_mem,,
sizeof(short)*(4+(pitch/2)*3), output,
vp8_short_idct4x4llm_c(input,output,pitch),
);
//Set arguments and run kernel
err = 0;
err = clSetKernelArg(cl_data.vp8_short_idct4x4llm_kernel, 0, sizeof (cl_mem), &src_mem);
err |= clSetKernelArg(cl_data.vp8_short_idct4x4llm_kernel, 1, sizeof (cl_mem), &dst_mem);
err |= clSetKernelArg(cl_data.vp8_short_idct4x4llm_kernel, 2, sizeof (int), &pitch);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",
vp8_short_idct4x4llm_c(input,output,pitch),
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel(b->cl_commands, cl_data.vp8_short_idct4x4llm_kernel, 1, NULL, &global, NULL , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);
vp8_short_idct4x4llm_c(input,output,pitch),
);
/* Read back the result data from the device */
err = clEnqueueReadBuffer(b->cl_commands, dst_mem, CL_FALSE, 0, sizeof(short)*(4+pitch/2*3), output, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS(b->cl_commands, err != CL_SUCCESS,
"Error: Failed to read output array!\n",
vp8_short_idct4x4llm_c(input,output,pitch),
);
clReleaseMemObject(src_mem);
clReleaseMemObject(dst_mem);
return;
}
/* Only useful for encoder... Untested... */
void vp8_short_idct4x4llm_1_cl(BLOCKD *b, int pitch)
{
int err;
size_t global = 4;
short *input = b->dqcoeff_base + b->dqcoeff_offset;
short *output = &b->diff_base[b->diff_offset];
cl_mem src_mem, dst_mem;
if (cl_initialized != CL_SUCCESS){
vp8_short_idct4x4llm_1_c(input,output,pitch);
return;
}
printf("vp8_short_idct4x4llm_1_cl\n");
VP8_CL_CREATE_BUF(b->cl_commands, src_mem,,
sizeof(short), input,
vp8_short_idct4x4llm_1_c(input,output,pitch),
);
VP8_CL_CREATE_BUF(b->cl_commands, dst_mem,,
sizeof(short)*(4+(pitch/2)*3), output,
vp8_short_idct4x4llm_1_c(input,output,pitch),
);
//Set arguments and run kernel
err = 0;
err = clSetKernelArg(cl_data.vp8_short_idct4x4llm_1_kernel, 0, sizeof (cl_mem), &src_mem);
err |= clSetKernelArg(cl_data.vp8_short_idct4x4llm_1_kernel, 1, sizeof (cl_mem), &dst_mem);
err |= clSetKernelArg(cl_data.vp8_short_idct4x4llm_1_kernel, 2, sizeof (int), &pitch);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",
vp8_short_idct4x4llm_1_c(input,output,pitch),
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel(b->cl_commands, cl_data.vp8_short_idct4x4llm_1_kernel, 1, NULL, &global, NULL , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);
vp8_short_idct4x4llm_1_c(input,output,pitch),
);
/* Read back the result data from the device */
err = clEnqueueReadBuffer(b->cl_commands, dst_mem, CL_FALSE, 0, sizeof(short)*(4+pitch/2*3), output, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS(b->cl_commands, err != CL_SUCCESS,
"Error: Failed to read output array!\n",
vp8_short_idct4x4llm_1_c(input,output,pitch),
);
clReleaseMemObject(src_mem);
clReleaseMemObject(dst_mem);
return;
}
void vp8_dc_only_idct_add_cl(BLOCKD *b, cl_int use_diff, int diff_offset,
int qcoeff_offset, int pred_offset,
unsigned char *dst_base, cl_mem dst_mem, int dst_offset, size_t dest_size,
int pitch, int stride
)
{
int err;
size_t global = 16;
int free_mem = 0;
//cl_mem dest_mem = NULL;
if (dst_mem == NULL){
VP8_CL_CREATE_BUF(b->cl_commands, dst_mem,,
dest_size, dst_base,,
);
free_mem = 1;
}
//Set arguments and run kernel
err = clSetKernelArg(cl_data.vp8_dc_only_idct_add_kernel, 0, sizeof (cl_mem), &b->cl_predictor_mem);
err |= clSetKernelArg(cl_data.vp8_dc_only_idct_add_kernel, 1, sizeof (int), &pred_offset);
err |= clSetKernelArg(cl_data.vp8_dc_only_idct_add_kernel, 2, sizeof (cl_mem), &dst_mem);
err |= clSetKernelArg(cl_data.vp8_dc_only_idct_add_kernel, 3, sizeof (int), &dst_offset);
err |= clSetKernelArg(cl_data.vp8_dc_only_idct_add_kernel, 4, sizeof (int), &pitch);
err |= clSetKernelArg(cl_data.vp8_dc_only_idct_add_kernel, 5, sizeof (int), &stride);
err |= clSetKernelArg(cl_data.vp8_dc_only_idct_add_kernel, 6, sizeof (cl_int), &use_diff);
err |= clSetKernelArg(cl_data.vp8_dc_only_idct_add_kernel, 7, sizeof (cl_mem), &b->cl_diff_mem);
err |= clSetKernelArg(cl_data.vp8_dc_only_idct_add_kernel, 8, sizeof (int), &diff_offset);
err |= clSetKernelArg(cl_data.vp8_dc_only_idct_add_kernel, 9, sizeof (cl_mem), &b->cl_qcoeff_mem);
err |= clSetKernelArg(cl_data.vp8_dc_only_idct_add_kernel, 10, sizeof (int), &qcoeff_offset);
err |= clSetKernelArg(cl_data.vp8_dc_only_idct_add_kernel, 11, sizeof (cl_mem), &b->cl_dequant_mem);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",,
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel(b->cl_commands, cl_data.vp8_dc_only_idct_add_kernel, 1, NULL, &global, NULL , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);,
);
if (free_mem == 1){
/* Read back the result data from the device */
err = clEnqueueReadBuffer(b->cl_commands, dst_mem, CL_FALSE, 0,
dest_size, dst_base, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS(b->cl_commands, err != CL_SUCCESS,
"Error: Failed to read output array!\n",,
);
clReleaseMemObject(dst_mem);
}
return;
}
void vp8_short_inv_walsh4x4_cl(BLOCKD *b)
{
int err;
size_t global = 4;
if (cl_initialized != CL_SUCCESS){
vp8_short_inv_walsh4x4_c(b->dqcoeff_base+b->dqcoeff_offset,&b->diff_base[b->diff_offset]);
return;
}
//Set arguments and run kernel
err = 0;
err = clSetKernelArg(cl_data.vp8_short_inv_walsh4x4_1st_pass_kernel, 0, sizeof (cl_mem), &b->cl_dqcoeff_mem);
err |= clSetKernelArg(cl_data.vp8_short_inv_walsh4x4_1st_pass_kernel, 1, sizeof(int), &b->dqcoeff_offset);
err |= clSetKernelArg(cl_data.vp8_short_inv_walsh4x4_1st_pass_kernel, 2, sizeof (cl_mem), &b->cl_diff_mem);
err |= clSetKernelArg(cl_data.vp8_short_inv_walsh4x4_1st_pass_kernel, 3, sizeof(int), &b->diff_offset);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",
vp8_short_inv_walsh4x4_c(b->dqcoeff_base+b->dqcoeff_offset, &b->diff_base[b->diff_offset]),
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel(b->cl_commands, cl_data.vp8_short_inv_walsh4x4_1st_pass_kernel, 1, NULL, &global, NULL , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);
vp8_short_inv_walsh4x4_c(b->dqcoeff_base+b->dqcoeff_offset, &b->diff_base[b->diff_offset]),
);
//Second pass
//Set arguments and run kernel
err = 0;
err = clSetKernelArg(cl_data.vp8_short_inv_walsh4x4_2nd_pass_kernel, 0, sizeof (cl_mem), &b->cl_diff_mem);
err |= clSetKernelArg(cl_data.vp8_short_inv_walsh4x4_2nd_pass_kernel, 1, sizeof(int), &b->diff_offset);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",
vp8_short_inv_walsh4x4_c(b->dqcoeff_base+b->dqcoeff_offset, &b->diff_base[b->diff_offset]),
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel(b->cl_commands, cl_data.vp8_short_inv_walsh4x4_2nd_pass_kernel, 1, NULL, &global, NULL , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);
vp8_short_inv_walsh4x4_c(b->dqcoeff_base+b->dqcoeff_offset, &b->diff_base[b->diff_offset]),
);
return;
}
void vp8_short_inv_walsh4x4_1_cl(BLOCKD *b)
{
int err;
size_t global = 4;
if (cl_initialized != CL_SUCCESS){
vp8_short_inv_walsh4x4_1_c(b->dqcoeff_base + b->dqcoeff_offset,
&b->diff_base[b->diff_offset]);
return;
}
//Set arguments and run kernel
err = 0;
err = clSetKernelArg(cl_data.vp8_short_inv_walsh4x4_1_kernel, 0, sizeof (cl_mem), &b->cl_dqcoeff_mem);
err |= clSetKernelArg(cl_data.vp8_short_inv_walsh4x4_1_kernel, 1, sizeof (int), &b->dqcoeff_offset);
err |= clSetKernelArg(cl_data.vp8_short_inv_walsh4x4_1_kernel, 2, sizeof (cl_mem), &b->cl_diff_mem);
err |= clSetKernelArg(cl_data.vp8_short_inv_walsh4x4_1_kernel, 3, sizeof (int), &b->diff_offset);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",
vp8_short_inv_walsh4x4_1_c(b->dqcoeff_base + b->dqcoeff_offset,
&b->diff_base[b->diff_offset]),
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel(b->cl_commands, cl_data.vp8_short_inv_walsh4x4_1_kernel, 1, NULL, &global, NULL , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);
vp8_short_inv_walsh4x4_1_c(b->dqcoeff_base + b->dqcoeff_offset,
&b->diff_base[b->diff_offset]),
);
return;
}

View File

@@ -0,0 +1,309 @@
#pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable
#pragma OPENCL EXTENSION cl_amd_printf : enable
__constant int cospi8sqrt2minus1 = 20091;
__constant int sinpi8sqrt2 = 35468;
__constant int rounding = 0;
kernel void vp8_short_idct4x4llm_1st_pass_kernel(global short*,global short *,int);
kernel void vp8_short_idct4x4llm_2nd_pass_kernel(global short*,int);
__kernel void vp8_short_idct4x4llm_kernel(
__global short *input,
__global short *output,
int pitch
){
vp8_short_idct4x4llm_1st_pass_kernel(input,output,pitch);
vp8_short_idct4x4llm_2nd_pass_kernel(output,pitch);
}
__kernel void vp8_short_idct4x4llm_1st_pass_kernel(
__global short *ip,
__global short *op,
int pitch
)
{
int i;
int a1, b1, c1, d1;
int temp1, temp2;
int shortpitch = pitch >> 1;
for (i = 0; i < 4; i++)
{
a1 = ip[0] + ip[8];
b1 = ip[0] - ip[8];
temp1 = (ip[4] * sinpi8sqrt2 + rounding) >> 16;
temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1 + rounding) >> 16);
c1 = temp1 - temp2;
temp1 = ip[4] + ((ip[4] * cospi8sqrt2minus1 + rounding) >> 16);
temp2 = (ip[12] * sinpi8sqrt2 + rounding) >> 16;
d1 = temp1 + temp2;
op[shortpitch*0] = a1 + d1;
op[shortpitch*3] = a1 - d1;
op[shortpitch*1] = b1 + c1;
op[shortpitch*2] = b1 - c1;
ip++;
op++;
}
return;
}
__kernel void vp8_short_idct4x4llm_2nd_pass_kernel(
__global short *output,
int pitch
)
{
int i;
int a1, b1, c1, d1;
int temp1, temp2;
int shortpitch = pitch >> 1;
__global short *ip = output;
__global short *op = output;
for (i = 0; i < 4; i++)
{
a1 = ip[0] + ip[2];
b1 = ip[0] - ip[2];
temp1 = (ip[1] * sinpi8sqrt2 + rounding) >> 16;
temp2 = ip[3] + ((ip[3] * cospi8sqrt2minus1 + rounding) >> 16);
c1 = temp1 - temp2;
temp1 = ip[1] + ((ip[1] * cospi8sqrt2minus1 + rounding) >> 16);
temp2 = (ip[3] * sinpi8sqrt2 + rounding) >> 16;
d1 = temp1 + temp2;
op[0] = (a1 + d1 + 4) >> 3;
op[3] = (a1 - d1 + 4) >> 3;
op[1] = (b1 + c1 + 4) >> 3;
op[2] = (b1 - c1 + 4) >> 3;
ip += shortpitch;
op += shortpitch;
}
return;
}
__kernel void vp8_short_idct4x4llm_1_kernel(
__global short *input,
__global short *output,
int pitch
)
{
int a1;
int out_offset;
int shortpitch = pitch >> 1;
//short4 a;
a1 = ((input[0] + 4) >> 3);
//a = a1;
int tid = get_global_id(0);
if (tid < 4){
out_offset = shortpitch * tid;
//vstore4(a,0,&output[out_offset];
output[out_offset] = a1;
output[out_offset+1] = a1;
output[out_offset+2] = a1;
output[out_offset+3] = a1;
}
}
__kernel void vp8_dc_only_idct_add_kernel(
__global unsigned char *pred_base,
int pred_offset,
__global unsigned char *dst_base,
int dst_offset,
int pitch,
int stride,
int use_diff,
global short *diff_base,
int diff_offset,
global short *qcoeff_base,
int qcoeff_offset,
global short *dequant
)
{
int r, c;
//int pred_offset;
global unsigned char *pred_ptr = &pred_base[pred_offset];
global unsigned char *dst_ptr = &dst_base[dst_offset];
int tid = get_global_id(0);
int a1;
if (tid < 16){
if (use_diff == 1){
a1 = diff_base[diff_offset];
} else {
a1 = qcoeff_base[qcoeff_offset] * dequant[0];
}
a1 = (a1 + 4)>>3;
r = tid / 4;
c = tid % 4;
pred_offset = r * pitch;
dst_offset += r * stride;
int a = a1 + pred_ptr[pred_offset + c] ;
if (a < 0)
a = 0;
else if (a > 255)
a = 255;
dst_base[dst_offset + c] = (unsigned char) a ;
}
}
__kernel void vp8_short_inv_walsh4x4_1st_pass_kernel(
__global short *src_base,
int src_offset,
__global short *output_base,
int out_offset
)
{
__global short *input = src_base + src_offset;
__global short *output = output_base + src_offset;
int tid = get_global_id(0);
#define VEC_WALSH 0
#if VEC_WALSH
//4-short vectors to calculate things in
short4 a,b,c,d, a2v, b2v, c2v, d2v, a1t, b1t, c1t, d1t;
short16 out;
if (tid == 0){
//first pass loop in vector form
a = vload4(0,input) + vload4(3,input);
b = vload4(1,input) + vload4(2,input);
c = vload4(1,input) - vload4(2,input);
d = vload4(0,input) - vload4(3,input);
vstore4(a + b, 0, output);
vstore4(c + d, 1, output);
vstore4(a - b, 2, output);
vstore4(d - c, 3, output);
return;
//2nd pass
a = (short4)(output[0], output[4], output[8], output[12]);
b = (short4)(output[1], output[5], output[9], output[13]);
c = (short4)(output[1], output[5], output[9], output[13]);
d = (short4)(output[0], output[4], output[8], output[12]);
a1t = (short4)(output[3], output[7], output[11], output[15]);
b1t = (short4)(output[2], output[6], output[10], output[14]);
c1t = (short4)(output[2], output[6], output[10], output[14]);
d1t = (short4)(output[3], output[7], output[11], output[15]);
a = a + a1t + (short)3;
b = b + b1t;
c = c - c1t;
d = d - d1t + (short)3;
a2v = (a + b) >> (short)3;
b2v = (c + d) >> (short)3;
c2v = (a - b) >> (short)3;
d2v = (d - c) >> (short)3;
out.s048c = a2v;
out.s159d = b2v;
out.s26ae = c2v;
out.s37bf = d2v;
vstore16(out,0,output);
}
#else
int i;
int a1, b1, c1, d1;
int a2, b2, c2, d2;
global short *ip = input;
global short *op = output;
int offset;
if (tid < 4){
offset = tid;
a1 = ip[offset] + ip[offset + 12];
b1 = ip[offset + 4] + ip[offset + 8];
c1 = ip[offset + 4] - ip[offset + 8];
d1 = ip[offset] - ip[offset + 12];
op[offset] = a1 + b1;
op[offset + 4] = c1 + d1;
op[offset + 8] = a1 - b1;
op[offset + 12] = d1 - c1;
}
#endif
}
__kernel void vp8_short_inv_walsh4x4_2nd_pass_kernel(
__global short *output_base,
int out_offset
)
{
int i;
int a1, b1, c1, d1;
int a2, b2, c2, d2;
__global short *output = output_base + out_offset;
int tid = get_global_id(0);
int offset = 0;
if (tid < 4){
offset = 4*tid;
a1 = output[offset] + output[offset + 3];
b1 = output[offset + 1] + output[offset + 2];
c1 = output[offset + 1] - output[offset + 2];
d1 = output[offset + 0] - output[offset + 3];
a2 = a1 + b1;
b2 = c1 + d1;
c2 = a1 - b1;
d2 = d1 - c1;
output[offset + 0] = (a2 + 3) >> 3;
output[offset + 1] = (b2 + 3) >> 3;
output[offset + 2] = (c2 + 3) >> 3;
output[offset + 3] = (d2 + 3) >> 3;
}
}
__kernel void vp8_short_inv_walsh4x4_1_kernel(
__global short *src_data,
int src_offset,
__global short *dst_data,
int dst_offset
){
int a1;
int tid = get_global_id(0);
//short16 a;
int i;
short4 a;
__global short *input = src_data + src_offset;
__global short *output = dst_data + dst_offset;
if (tid < 4)
{
a1 = ((input[0] + 3) >> 3);
a = (short)a1; //Set all elements of vector to a1
vstore4(a, tid, output);
}
}

View File

@@ -0,0 +1,26 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "vp8_opencl.h"
#include "vp8/common/blockd.h"
#define CLAMP(x,min,max) if (x < min) x = min; else if ( x > max ) x = max;
//External functions that are fallbacks if CL is unavailable
extern void vp8_short_idct4x4llm_c(short *input, short *output, int pitch);
extern void vp8_short_idct4x4llm_1_c(short *input, short *output, int pitch);
extern void vp8_dc_only_idct_add_c(short input_dc, unsigned char *pred_ptr, unsigned char *dst_ptr, int pitch, int stride);
extern void vp8_short_inv_walsh4x4_c(short *input, short *output);
extern void vp8_short_inv_walsh4x4_1_c(short *input, short *output);
const char *idctCompileOptions = "-Ivp8/common/opencl";
const char *idctllm_cl_file_name = "vp8/common/opencl/idctllm_cl.cl";

View File

@@ -0,0 +1,427 @@
#pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable
#pragma OPENCL EXTENSION cl_amd_printf : enable
typedef unsigned char uc;
typedef signed char sc;
__inline signed char vp8_filter_mask(sc, sc, uc, uc, uc, uc, uc, uc, uc, uc);
__inline signed char vp8_simple_filter_mask(signed char, signed char, uc, uc, uc, uc);
__inline signed char vp8_hevmask(signed char, uc, uc, uc, uc);
__inline signed char vp8_signed_char_clamp(int);
__inline void vp8_mbfilter(signed char mask,signed char hev,global uc *op2,
global uc *op1,global uc *op0,global uc *oq0,global uc *oq1,global uc *oq2);
void vp8_simple_filter(signed char mask,global uc *base, int op1_off,int op0_off,int oq0_off,int oq1_off);
typedef struct
{
signed char lim[16];
signed char flim[16];
signed char thr[16];
signed char mbflim[16];
signed char mbthr[16];
signed char uvlim[16];
signed char uvflim[16];
signed char uvthr[16];
signed char uvmbflim[16];
signed char uvmbthr[16];
} loop_filter_info;
void vp8_filter(
signed char mask,
signed char hev,
global uc *base,
int op1_off,
int op0_off,
int oq0_off,
int oq1_off
)
{
global uc *op1 = &base[op1_off];
global uc *op0 = &base[op0_off];
global uc *oq0 = &base[oq0_off];
global uc *oq1 = &base[oq1_off];
signed char ps0, qs0;
signed char ps1, qs1;
signed char vp8_filter, Filter1, Filter2;
signed char u;
ps1 = (signed char) * op1 ^ 0x80;
ps0 = (signed char) * op0 ^ 0x80;
qs0 = (signed char) * oq0 ^ 0x80;
qs1 = (signed char) * oq1 ^ 0x80;
/* add outer taps if we have high edge variance */
vp8_filter = vp8_signed_char_clamp(ps1 - qs1);
vp8_filter &= hev;
/* inner taps */
vp8_filter = vp8_signed_char_clamp(vp8_filter + 3 * (qs0 - ps0));
vp8_filter &= mask;
/* save bottom 3 bits so that we round one side +4 and the other +3
* if it equals 4 we'll set to adjust by -1 to account for the fact
* we'd round 3 the other way
*/
Filter1 = vp8_signed_char_clamp(vp8_filter + 4);
Filter2 = vp8_signed_char_clamp(vp8_filter + 3);
Filter1 >>= 3;
Filter2 >>= 3;
u = vp8_signed_char_clamp(qs0 - Filter1);
*oq0 = u ^ 0x80;
u = vp8_signed_char_clamp(ps0 + Filter2);
*op0 = u ^ 0x80;
vp8_filter = Filter1;
/* outer tap adjustments */
vp8_filter += 1;
vp8_filter >>= 1;
vp8_filter &= ~hev;
u = vp8_signed_char_clamp(qs1 - vp8_filter);
*oq1 = u ^ 0x80;
u = vp8_signed_char_clamp(ps1 + vp8_filter);
*op1 = u ^ 0x80;
}
kernel void vp8_loop_filter_horizontal_edge_kernel
(
global unsigned char *s_base,
int s_off,
int p, /* pitch */
global signed char *flimit,
global signed char *limit,
global signed char *thresh,
int off_stride
)
{
int hev = 0; /* high edge variance */
signed char mask = 0;
int i = get_global_id(0);
if (i < get_global_size(0)){
s_off += i;
mask = vp8_filter_mask(limit[i], flimit[i], s_base[s_off - 4*p],
s_base[s_off - 3*p], s_base[s_off - 2*p], s_base[s_off - p],
s_base[s_off], s_base[s_off + p], s_base[s_off + 2*p],
s_base[s_off + 3*p]);
hev = vp8_hevmask(thresh[i], s_base[s_off - 2*p], s_base[s_off - p],
s_base[s_off], s_base[s_off+p]);
vp8_filter(mask, hev, s_base, s_off - 2 * p, s_off - p, s_off,
s_off + p);
}
}
kernel void vp8_loop_filter_vertical_edge_kernel
(
global unsigned char *s_base,
int s_off,
int p,
global signed char *flimit,
global signed char *limit,
global signed char *thresh,
int off_stride
)
{
int hev = 0; /* high edge variance */
signed char mask = 0;
int i = get_global_id(0);
if ( i < get_global_size(0) ){
s_off += p * i;
mask = vp8_filter_mask(limit[i], flimit[i],
s_base[s_off-4], s_base[s_off-3], s_base[s_off-2],
s_base[s_off-1], s_base[s_off], s_base[s_off+1],
s_base[s_off+2], s_base[s_off+3]);
hev = vp8_hevmask(thresh[i], s_base[s_off-2], s_base[s_off-1],
s_base[s_off], s_base[s_off+1]);
vp8_filter(mask, hev, s_base, s_off - 2, s_off - 1, s_off, s_off + 1);
}
}
kernel void vp8_mbloop_filter_horizontal_edge_kernel
(
global unsigned char *s_base,
int s_off,
int p,
global signed char *flimit,
global signed char *limit,
global signed char *thresh,
int off_stride
)
{
global uc *s = s_base+s_off;
signed char hev = 0; /* high edge variance */
signed char mask = 0;
int i = get_global_id(0);
if (i < get_global_size(0)){
s += i;
mask = vp8_filter_mask(limit[i], flimit[i],
s[-4*p], s[-3*p], s[-2*p], s[-1*p],
s[0*p], s[1*p], s[2*p], s[3*p]);
hev = vp8_hevmask(thresh[i], s[-2*p], s[-1*p], s[0*p], s[1*p]);
vp8_mbfilter(mask, hev, s - 3 * p, s - 2 * p, s - 1 * p, s, s + 1 * p, s + 2 * p);
}
}
kernel void vp8_mbloop_filter_vertical_edge_kernel
(
global unsigned char *s_base,
int s_off,
int p,
global signed char *flimit,
global signed char *limit,
global signed char *thresh,
int off_stride
)
{
global uc *s = s_base + s_off;
signed char hev = 0; /* high edge variance */
signed char mask = 0;
int i = get_global_id(0);
if (i < get_global_size(0)){
s += p * i;
mask = vp8_filter_mask(limit[i], flimit[i],
s[-4], s[-3], s[-2], s[-1], s[0], s[1], s[2], s[3]);
hev = vp8_hevmask(thresh[i], s[-2], s[-1], s[0], s[1]);
vp8_mbfilter(mask, hev, s - 3, s - 2, s - 1, s, s + 1, s + 2);
}
}
kernel void vp8_loop_filter_simple_horizontal_edge_kernel
(
global unsigned char *s_base,
int s_off,
int p,
global const signed char *flimit,
global const signed char *limit,
global const signed char *thresh,
int off_stride
)
{
signed char mask = 0;
int i = get_global_id(0);
(void) thresh;
if (i < get_global_size(0))
{
s_off += i;
mask = vp8_simple_filter_mask(limit[i], flimit[i], s_base[s_off-2*p], s_base[s_off-p], s_base[s_off], s_base[s_off+p]);
vp8_simple_filter(mask, s_base, s_off - 2 * p, s_off - 1 * p, s_off, s_off + 1 * p);
}
}
kernel void vp8_loop_filter_simple_vertical_edge_kernel
(
global unsigned char *s_base,
int s_off,
int p,
global signed char *flimit,
global signed char *limit,
global signed char *thresh,
int off_stride
)
{
signed char mask = 0;
int i = get_global_id(0);
(void) thresh;
if (i < get_global_size(0)){
s_off += p * i;
mask = vp8_simple_filter_mask(limit[i], flimit[i], s_base[s_off-2], s_base[s_off-1], s_base[s_off], s_base[s_off+1]);
vp8_simple_filter(mask, s_base, s_off - 2, s_off - 1, s_off, s_off + 1);
}
}
//Inline and non-kernel functions follow.
__inline void vp8_mbfilter(
signed char mask,
signed char hev,
global uc *op2,
global uc *op1,
global uc *op0,
global uc *oq0,
global uc *oq1,
global uc *oq2
)
{
signed char s, u;
signed char vp8_filter, Filter1, Filter2;
signed char ps2 = (signed char) * op2 ^ 0x80;
signed char ps1 = (signed char) * op1 ^ 0x80;
signed char ps0 = (signed char) * op0 ^ 0x80;
signed char qs0 = (signed char) * oq0 ^ 0x80;
signed char qs1 = (signed char) * oq1 ^ 0x80;
signed char qs2 = (signed char) * oq2 ^ 0x80;
/* add outer taps if we have high edge variance */
vp8_filter = vp8_signed_char_clamp(ps1 - qs1);
vp8_filter = vp8_signed_char_clamp(vp8_filter + 3 * (qs0 - ps0));
vp8_filter &= mask;
Filter2 = vp8_filter;
Filter2 &= hev;
/* save bottom 3 bits so that we round one side +4 and the other +3 */
Filter1 = vp8_signed_char_clamp(Filter2 + 4);
Filter2 = vp8_signed_char_clamp(Filter2 + 3);
Filter1 >>= 3;
Filter2 >>= 3;
qs0 = vp8_signed_char_clamp(qs0 - Filter1);
ps0 = vp8_signed_char_clamp(ps0 + Filter2);
/* only apply wider filter if not high edge variance */
vp8_filter &= ~hev;
Filter2 = vp8_filter;
/* roughly 3/7th difference across boundary */
u = vp8_signed_char_clamp((63 + Filter2 * 27) >> 7);
s = vp8_signed_char_clamp(qs0 - u);
*oq0 = s ^ 0x80;
s = vp8_signed_char_clamp(ps0 + u);
*op0 = s ^ 0x80;
/* roughly 2/7th difference across boundary */
u = vp8_signed_char_clamp((63 + Filter2 * 18) >> 7);
s = vp8_signed_char_clamp(qs1 - u);
*oq1 = s ^ 0x80;
s = vp8_signed_char_clamp(ps1 + u);
*op1 = s ^ 0x80;
/* roughly 1/7th difference across boundary */
u = vp8_signed_char_clamp((63 + Filter2 * 9) >> 7);
s = vp8_signed_char_clamp(qs2 - u);
*oq2 = s ^ 0x80;
s = vp8_signed_char_clamp(ps2 + u);
*op2 = s ^ 0x80;
}
__inline signed char vp8_signed_char_clamp(int t)
{
t = (t < -128 ? -128 : t);
t = (t > 127 ? 127 : t);
return (signed char) t;
}
/* is there high variance internal edge ( 11111111 yes, 00000000 no) */
__inline signed char vp8_hevmask(signed char thresh, uc p1, uc p0, uc q0, uc q1)
{
signed char hev = 0;
hev |= (abs(p1 - p0) > thresh) * -1;
hev |= (abs(q1 - q0) > thresh) * -1;
return hev;
}
/* should we apply any filter at all ( 11111111 yes, 00000000 no) */
__inline signed char vp8_filter_mask(
signed char limit,
signed char flimit,
uc p3, uc p2, uc p1, uc p0, uc q0, uc q1, uc q2, uc q3)
{
signed char mask = 0;
mask |= (abs(p3 - p2) > limit) * -1;
mask |= (abs(p2 - p1) > limit) * -1;
mask |= (abs(p1 - p0) > limit) * -1;
mask |= (abs(q1 - q0) > limit) * -1;
mask |= (abs(q2 - q1) > limit) * -1;
mask |= (abs(q3 - q2) > limit) * -1;
mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > flimit * 2 + limit) * -1;
mask = ~mask;
return mask;
}
/* should we apply any filter at all ( 11111111 yes, 00000000 no) */
__inline signed char vp8_simple_filter_mask(
signed char limit,
signed char flimit,
uc p1,
uc p0,
uc q0,
uc q1
)
{
signed char mask = (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 <= flimit * 2 + limit) * -1;
return mask;
}
void vp8_simple_filter(
signed char mask,
global uc *base,
int op1_off,
int op0_off,
int oq0_off,
int oq1_off
)
{
global uc *op1 = base + op1_off;
global uc *op0 = base + op0_off;
global uc *oq0 = base + oq0_off;
global uc *oq1 = base + oq1_off;
signed char vp8_filter, Filter1, Filter2;
signed char p1 = (signed char) * op1 ^ 0x80;
signed char p0 = (signed char) * op0 ^ 0x80;
signed char q0 = (signed char) * oq0 ^ 0x80;
signed char q1 = (signed char) * oq1 ^ 0x80;
signed char u;
vp8_filter = vp8_signed_char_clamp(p1 - q1);
vp8_filter = vp8_signed_char_clamp(vp8_filter + 3 * (q0 - p0));
vp8_filter &= mask;
/* save bottom 3 bits so that we round one side +4 and the other +3 */
Filter1 = vp8_signed_char_clamp(vp8_filter + 4);
Filter1 >>= 3;
u = vp8_signed_char_clamp(q0 - Filter1);
*oq0 = u ^ 0x80;
Filter2 = vp8_signed_char_clamp(vp8_filter + 3);
Filter2 >>= 3;
u = vp8_signed_char_clamp(p0 + Filter2);
*op0 = u ^ 0x80;
}

View File

@@ -0,0 +1,457 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "../../../vpx_ports/config.h"
#include "loopfilter_cl.h"
#include "../onyxc_int.h"
#include "vpx_config.h"
#include "vp8_opencl.h"
#include "blockd_cl.h"
const char *loopFilterCompileOptions = "-Ivp8/common/opencl";
const char *loop_filter_cl_file_name = "vp8/common/opencl/loopfilter.cl";
typedef unsigned char uc;
extern void vp8_loop_filter_frame
(
VP8_COMMON *cm,
MACROBLOCKD *mbd,
int default_filt_lvl
);
prototype_loopfilter_cl(vp8_loop_filter_horizontal_edge_cl);
prototype_loopfilter_cl(vp8_loop_filter_vertical_edge_cl);
prototype_loopfilter_cl(vp8_mbloop_filter_horizontal_edge_cl);
prototype_loopfilter_cl(vp8_mbloop_filter_vertical_edge_cl);
prototype_loopfilter_cl(vp8_loop_filter_simple_horizontal_edge_cl);
prototype_loopfilter_cl(vp8_loop_filter_simple_vertical_edge_cl);
/* Horizontal MB filtering */
void vp8_loop_filter_mbh_cl(
MACROBLOCKD *x,
cl_mem buf_base,
int y_off,
int u_off,
int v_off,
int y_stride,
int uv_stride,
loop_filter_info *lfi,
int simpler_lpf
)
{
(void) simpler_lpf;
vp8_mbloop_filter_horizontal_edge_cl(x, buf_base, y_off, y_stride, lfi->mbflim, lfi->lim, lfi->thr, 2, 1);
vp8_mbloop_filter_horizontal_edge_cl(x, buf_base, u_off, uv_stride, lfi->mbflim, lfi->lim, lfi->thr, 1, 1);
vp8_mbloop_filter_horizontal_edge_cl(x, buf_base, v_off, uv_stride, lfi->mbflim, lfi->lim, lfi->thr, 1, 1);
}
void vp8_loop_filter_mbhs_cl(MACROBLOCKD *x, cl_mem buf_base, int y_off, int u_off, int v_off,
int y_stride, int uv_stride, loop_filter_info *lfi, int simpler_lpf)
{
(void) uv_stride;
(void) simpler_lpf;
vp8_loop_filter_simple_horizontal_edge_cl(x, buf_base, y_off, y_stride, lfi->mbflim, lfi->lim, lfi->thr, 2, 1);
}
/* Vertical MB Filtering */
void vp8_loop_filter_mbv_cl(MACROBLOCKD *x, cl_mem buf_base, int y_off, int u_off, int v_off,
int y_stride, int uv_stride, loop_filter_info *lfi, int simpler_lpf)
{
(void) simpler_lpf;
vp8_mbloop_filter_vertical_edge_cl(x, buf_base, y_off, y_stride, lfi->mbflim, lfi->lim, lfi->thr, 2, 1);
vp8_mbloop_filter_vertical_edge_cl(x, buf_base, u_off, uv_stride, lfi->mbflim, lfi->lim, lfi->thr, 1, 1);
vp8_mbloop_filter_vertical_edge_cl(x, buf_base, v_off, uv_stride, lfi->mbflim, lfi->lim, lfi->thr, 1, 1);
}
void vp8_loop_filter_mbvs_cl(MACROBLOCKD *x, cl_mem buf_base, int y_off, int u_off, int v_off,
int y_stride, int uv_stride, loop_filter_info *lfi, int simpler_lpf)
{
(void) uv_stride;
(void) simpler_lpf;
vp8_loop_filter_simple_vertical_edge_cl(x, buf_base, y_off, y_stride, lfi->mbflim, lfi->lim, lfi->thr, 2, 1);
}
/* Horizontal B Filtering */
void vp8_loop_filter_bh_cl(MACROBLOCKD *x, cl_mem buf_base, int y_off, int u_off, int v_off,
int y_stride, int uv_stride, loop_filter_info *lfi, int simpler_lpf)
{
(void) simpler_lpf;
vp8_loop_filter_horizontal_edge_cl(x, buf_base, y_off + 4 * y_stride, y_stride, lfi->flim, lfi->lim, lfi->thr, 2, 1);
vp8_loop_filter_horizontal_edge_cl(x, buf_base, y_off + 8 * y_stride, y_stride, lfi->flim, lfi->lim, lfi->thr, 2, 1);
vp8_loop_filter_horizontal_edge_cl(x, buf_base, y_off + 12 * y_stride, y_stride, lfi->flim, lfi->lim, lfi->thr, 2, 1);
vp8_loop_filter_horizontal_edge_cl(x, buf_base, u_off + 4 * uv_stride, uv_stride, lfi->flim, lfi->lim, lfi->thr, 1, 1);
vp8_loop_filter_horizontal_edge_cl(x, buf_base, v_off + 4 * uv_stride, uv_stride, lfi->flim, lfi->lim, lfi->thr, 1, 1);
}
void vp8_loop_filter_bhs_cl(MACROBLOCKD *x, cl_mem buf_base, int y_off, int u_off, int v_off,
int y_stride, int uv_stride, loop_filter_info *lfi, int simpler_lpf)
{
(void) uv_stride;
(void) simpler_lpf;
vp8_loop_filter_simple_horizontal_edge_cl(x, buf_base, y_off + 4 * y_stride, y_stride, lfi->flim, lfi->lim, lfi->thr, 2, 1);
vp8_loop_filter_simple_horizontal_edge_cl(x, buf_base, y_off + 8 * y_stride, y_stride, lfi->flim, lfi->lim, lfi->thr, 2, 1);
vp8_loop_filter_simple_horizontal_edge_cl(x, buf_base, y_off + 12 * y_stride, y_stride, lfi->flim, lfi->lim, lfi->thr, 2, 1);
}
/* Vertical B Filtering */
void vp8_loop_filter_bv_cl(MACROBLOCKD *x, cl_mem buf_base, int y_off, int u_off, int v_off,
int y_stride, int uv_stride, loop_filter_info *lfi, int simpler_lpf)
{
(void) simpler_lpf;
vp8_loop_filter_vertical_edge_cl(x, buf_base, y_off + 4, y_stride, lfi->flim, lfi->lim, lfi->thr, 2, 1);
vp8_loop_filter_vertical_edge_cl(x, buf_base, y_off + 8, y_stride, lfi->flim, lfi->lim, lfi->thr, 2, 1);
vp8_loop_filter_vertical_edge_cl(x, buf_base, y_off + 12, y_stride, lfi->flim, lfi->lim, lfi->thr, 2, 1);
vp8_loop_filter_vertical_edge_cl(x, buf_base, u_off + 4, uv_stride, lfi->flim, lfi->lim, lfi->thr, 1, 1);
vp8_loop_filter_vertical_edge_cl(x, buf_base, v_off + 4, uv_stride, lfi->flim, lfi->lim, lfi->thr, 1, 1);
}
void vp8_loop_filter_bvs_cl(MACROBLOCKD *x, cl_mem buf_base, int y_off, int u_off, int v_off,
int y_stride, int uv_stride, loop_filter_info *lfi, int simpler_lpf)
{
(void) uv_stride;
(void) simpler_lpf;
vp8_loop_filter_simple_vertical_edge_cl(x, buf_base, y_off + 4, y_stride, lfi->flim, lfi->lim, lfi->thr, 2, 1);
vp8_loop_filter_simple_vertical_edge_cl(x, buf_base, y_off + 8, y_stride, lfi->flim, lfi->lim, lfi->thr, 2, 1);
vp8_loop_filter_simple_vertical_edge_cl(x, buf_base, y_off + 12, y_stride, lfi->flim, lfi->lim, lfi->thr, 2, 1);
}
void vp8_init_loop_filter_cl(VP8_COMMON *cm)
{
loop_filter_info *lfi = cm->lf_info;
int sharpness_lvl = cm->sharpness_level;
int frame_type = cm->frame_type;
int i, j;
int block_inside_limit = 0;
int HEVThresh;
const int yhedge_boost = 2;
/* For each possible value for the loop filter fill out a "loop_filter_info" entry. */
for (i = 0; i <= MAX_LOOP_FILTER; i++)
{
int filt_lvl = i;
if (frame_type == KEY_FRAME)
{
if (filt_lvl >= 40)
HEVThresh = 2;
else if (filt_lvl >= 15)
HEVThresh = 1;
else
HEVThresh = 0;
}
else
{
if (filt_lvl >= 40)
HEVThresh = 3;
else if (filt_lvl >= 20)
HEVThresh = 2;
else if (filt_lvl >= 15)
HEVThresh = 1;
else
HEVThresh = 0;
}
/* Set loop filter paramaeters that control sharpness. */
block_inside_limit = filt_lvl >> (sharpness_lvl > 0);
block_inside_limit = block_inside_limit >> (sharpness_lvl > 4);
if (sharpness_lvl > 0)
{
if (block_inside_limit > (9 - sharpness_lvl))
block_inside_limit = (9 - sharpness_lvl);
}
if (block_inside_limit < 1)
block_inside_limit = 1;
for (j = 0; j < 16; j++)
{
lfi[i].lim[j] = block_inside_limit;
lfi[i].mbflim[j] = filt_lvl + yhedge_boost;
lfi[i].flim[j] = filt_lvl;
lfi[i].thr[j] = HEVThresh;
}
}
}
/* Put vp8_init_loop_filter() in vp8dx_create_decompressor(). Only call vp8_frame_init_loop_filter() while decoding
* each frame. Check last_frame_type to skip the function most of times.
*/
void vp8_frame_init_loop_filter_cl(loop_filter_info *lfi, int frame_type)
{
int HEVThresh;
int i, j;
/* For each possible value for the loop filter fill out a "loop_filter_info" entry. */
for (i = 0; i <= MAX_LOOP_FILTER; i++)
{
int filt_lvl = i;
if (frame_type == KEY_FRAME)
{
if (filt_lvl >= 40)
HEVThresh = 2;
else if (filt_lvl >= 15)
HEVThresh = 1;
else
HEVThresh = 0;
}
else
{
if (filt_lvl >= 40)
HEVThresh = 3;
else if (filt_lvl >= 20)
HEVThresh = 2;
else if (filt_lvl >= 15)
HEVThresh = 1;
else
HEVThresh = 0;
}
for (j = 0; j < 16; j++)
{
lfi[i].thr[j] = HEVThresh;
}
}
}
//This might not need to be copied from loopfilter.c
void vp8_adjust_mb_lf_value_cl(MACROBLOCKD *mbd, int *filter_level)
{
MB_MODE_INFO *mbmi = &mbd->mode_info_context->mbmi;
if (mbd->mode_ref_lf_delta_enabled)
{
/* Apply delta for reference frame */
*filter_level += mbd->ref_lf_deltas[mbmi->ref_frame];
/* Apply delta for mode */
if (mbmi->ref_frame == INTRA_FRAME)
{
/* Only the split mode BPRED has a further special case */
if (mbmi->mode == B_PRED)
*filter_level += mbd->mode_lf_deltas[0];
}
else
{
/* Zero motion mode */
if (mbmi->mode == ZEROMV)
*filter_level += mbd->mode_lf_deltas[1];
/* Split MB motion mode */
else if (mbmi->mode == SPLITMV)
*filter_level += mbd->mode_lf_deltas[3];
/* All other inter motion modes (Nearest, Near, New) */
else
*filter_level += mbd->mode_lf_deltas[2];
}
/* Range check */
if (*filter_level > MAX_LOOP_FILTER)
*filter_level = MAX_LOOP_FILTER;
else if (*filter_level < 0)
*filter_level = 0;
}
}
//Start of externally callable functions.
int cl_init_loop_filter() {
int err;
// Create the filter compute program from the file-defined source code
if ( cl_load_program(&cl_data.loop_filter_program, loop_filter_cl_file_name,
loopFilterCompileOptions) != CL_SUCCESS )
return VP8_CL_TRIED_BUT_FAILED;
// Create the compute kernels in the program we wish to run
VP8_CL_CREATE_KERNEL(cl_data,loop_filter_program,vp8_loop_filter_horizontal_edge_kernel,"vp8_loop_filter_horizontal_edge_kernel");
VP8_CL_CREATE_KERNEL(cl_data,loop_filter_program,vp8_loop_filter_vertical_edge_kernel,"vp8_loop_filter_vertical_edge_kernel");
VP8_CL_CREATE_KERNEL(cl_data,loop_filter_program,vp8_mbloop_filter_horizontal_edge_kernel,"vp8_mbloop_filter_horizontal_edge_kernel");
VP8_CL_CREATE_KERNEL(cl_data,loop_filter_program,vp8_mbloop_filter_vertical_edge_kernel,"vp8_mbloop_filter_vertical_edge_kernel");
VP8_CL_CREATE_KERNEL(cl_data,loop_filter_program,vp8_loop_filter_simple_horizontal_edge_kernel,"vp8_loop_filter_simple_horizontal_edge_kernel");
VP8_CL_CREATE_KERNEL(cl_data,loop_filter_program,vp8_loop_filter_simple_vertical_edge_kernel,"vp8_loop_filter_simple_vertical_edge_kernel");
return CL_SUCCESS;
}
void cl_destroy_loop_filter(){
if (cl_data.loop_filter_program)
clReleaseProgram(cl_data.loop_filter_program);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_loop_filter_horizontal_edge_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_loop_filter_vertical_edge_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_mbloop_filter_horizontal_edge_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_mbloop_filter_vertical_edge_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_loop_filter_simple_horizontal_edge_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_loop_filter_simple_vertical_edge_kernel);
cl_data.loop_filter_program = NULL;
}
void vp8_loop_filter_set_baselines_cl(MACROBLOCKD *mbd, int default_filt_lvl, int *baseline_filter_level){
int alt_flt_enabled = mbd->segmentation_enabled;
int i;
if (alt_flt_enabled)
{
for (i = 0; i < MAX_MB_SEGMENTS; i++)
{
/* Abs value */
if (mbd->mb_segement_abs_delta == SEGMENT_ABSDATA)
baseline_filter_level[i] = mbd->segment_feature_data[MB_LVL_ALT_LF][i];
/* Delta Value */
else
{
baseline_filter_level[i] = default_filt_lvl + mbd->segment_feature_data[MB_LVL_ALT_LF][i];
baseline_filter_level[i] = (baseline_filter_level[i] >= 0) ? ((baseline_filter_level[i] <= MAX_LOOP_FILTER) ? baseline_filter_level[i] : MAX_LOOP_FILTER) : 0; /* Clamp to valid range */
}
}
}
else
{
for (i = 0; i < MAX_MB_SEGMENTS; i++)
baseline_filter_level[i] = default_filt_lvl;
}
}
void vp8_loop_filter_frame_cl
(
VP8_COMMON *cm,
MACROBLOCKD *mbd,
int default_filt_lvl
)
{
YV12_BUFFER_CONFIG *post = cm->frame_to_show;
loop_filter_info *lfi = cm->lf_info;
FRAME_TYPE frame_type = cm->frame_type;
LOOPFILTERTYPE filter_type = cm->filter_type;
int mb_row;
int mb_col;
int baseline_filter_level[MAX_MB_SEGMENTS];
int filter_level;
int alt_flt_enabled = mbd->segmentation_enabled;
int err;
unsigned char *buf_base;
int y_off, u_off, v_off;
//unsigned char *y_ptr, *u_ptr, *v_ptr;
mbd->mode_info_context = cm->mi; /* Point at base of Mb MODE_INFO list */
/* Note the baseline filter values for each segment */
vp8_loop_filter_set_baselines_cl(mbd, default_filt_lvl, baseline_filter_level);
/* Initialize the loop filter for this frame. */
if ((cm->last_filter_type != cm->filter_type) || (cm->last_sharpness_level != cm->sharpness_level))
vp8_init_loop_filter_cl(cm);
else if (frame_type != cm->last_frame_type)
vp8_frame_init_loop_filter_cl(lfi, frame_type);
/* Set up the buffer pointers */
buf_base = post->buffer_alloc;
y_off = post->y_buffer - buf_base;
u_off = post->u_buffer - buf_base;
v_off = post->v_buffer - buf_base;
VP8_CL_SET_BUF(mbd->cl_commands, post->buffer_mem, post->buffer_size, post->buffer_alloc,
vp8_loop_filter_frame(cm,mbd,default_filt_lvl),);
/* vp8_filter each macro block */
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++)
{
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++)
{
int Segment = (alt_flt_enabled) ? mbd->mode_info_context->mbmi.segment_id : 0;
filter_level = baseline_filter_level[Segment];
/* Distance of Mb to the various image edges.
* These specified to 8th pel as they are always compared to values
* that are in 1/8th pel units. Apply any context driven MB level
* adjustment
*/
filter_level = vp8_adjust_mb_lf_value(mbd, filter_level);
if (filter_level)
{
if (mb_col > 0){
if (filter_type == NORMAL_LOOPFILTER)
vp8_loop_filter_mbv_cl(mbd, post->buffer_mem, y_off, u_off, v_off, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
else
vp8_loop_filter_mbvs_cl(mbd, post->buffer_mem, y_off, u_off, v_off, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
}
if (mbd->mode_info_context->mbmi.dc_diff > 0){
if (filter_type == NORMAL_LOOPFILTER)
vp8_loop_filter_bv_cl(mbd, post->buffer_mem, y_off, u_off, v_off, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
else
vp8_loop_filter_bvs_cl(mbd, post->buffer_mem, y_off, u_off, v_off, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
}
/* don't apply across umv border */
if (mb_row > 0){
if (filter_type == NORMAL_LOOPFILTER)
vp8_loop_filter_mbh_cl(mbd, post->buffer_mem, y_off, u_off, v_off, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
else
vp8_loop_filter_mbhs_cl(mbd, post->buffer_mem, y_off, u_off, v_off, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
}
if (mbd->mode_info_context->mbmi.dc_diff > 0){
if (filter_type == NORMAL_LOOPFILTER)
vp8_loop_filter_bh_cl(mbd, post->buffer_mem, y_off, u_off, v_off, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
else
vp8_loop_filter_bhs_cl(mbd, post->buffer_mem, y_off, u_off, v_off, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf);
}
}
y_off += 16;
u_off += 8;
v_off += 8;
mbd->mode_info_context++; /* step to next MB */
}
y_off += post->y_stride * 16 - post->y_width;
u_off += post->uv_stride * 8 - post->uv_width;
v_off += post->uv_stride * 8 - post->uv_width;
mbd->mode_info_context++; /* Skip border mb */
}
//Retrieve buffer contents
err = clEnqueueReadBuffer(mbd->cl_commands, post->buffer_mem, CL_FALSE, 0, post->buffer_size, post->buffer_alloc, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS(mbd->cl_commands, err != CL_SUCCESS,
"Error: Failed to read loop filter output!\n",
,
);
VP8_CL_FINISH(mbd->cl_commands);
}

View File

@@ -0,0 +1,48 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef loopfilter_cl_h
#define loopfilter_cl_h
#include "../../../vpx_ports/mem.h"
#include "../onyxc_int.h"
#include "blockd_cl.h"
#include "../loopfilter.h"
#define prototype_loopfilter_cl(sym) \
void sym(MACROBLOCKD*, cl_mem src_base, int src_offset, \
int pitch, const signed char *flimit, \
const signed char *limit, const signed char *thresh, int count, int block_cnt)
#define prototype_loopfilter_block_cl(sym) \
void sym(MACROBLOCKD*, unsigned char *y, unsigned char *u, unsigned char *v,\
int ystride, int uv_stride, loop_filter_info *lfi, int simpler)
extern void vp8_loop_filter_frame_cl
(
VP8_COMMON *cm,
MACROBLOCKD *mbd,
int default_filt_lvl
);
extern prototype_loopfilter_block_cl(vp8_lf_normal_mb_v_cl);
extern prototype_loopfilter_block_cl(vp8_lf_normal_b_v_cl);
extern prototype_loopfilter_block_cl(vp8_lf_normal_mb_h_cl);
extern prototype_loopfilter_block_cl(vp8_lf_normal_b_h_cl);
extern prototype_loopfilter_block_cl(vp8_lf_simple_mb_v_cl);
extern prototype_loopfilter_block_cl(vp8_lf_simple_b_v_cl);
extern prototype_loopfilter_block_cl(vp8_lf_simple_mb_h_cl);
extern prototype_loopfilter_block_cl(vp8_lf_simple_b_h_cl);
typedef prototype_loopfilter_block_cl((*vp8_lf_block_cl_fn_t));
#endif

View File

@@ -0,0 +1,187 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <stdio.h>
#include "vpx_ports/config.h"
#include "vp8_opencl.h"
#include "blockd_cl.h"
//#include "loopfilter_cl.h"
//#include "../onyxc_int.h"
typedef unsigned char uc;
static void vp8_loop_filter_cl_run(
cl_command_queue cq,
cl_kernel kernel,
cl_mem buf_mem,
int s_off,
int p,
const signed char *flimit,
const signed char *limit,
const signed char *thresh,
int count,
int block_cnt
){
size_t global[] = {count,block_cnt};
int err;
cl_mem flimit_mem;
cl_mem limit_mem;
cl_mem thresh_mem;
VP8_CL_CREATE_BUF(cq, flimit_mem, , sizeof(uc)*16, flimit,, );
VP8_CL_CREATE_BUF(cq, limit_mem, , sizeof(uc)*16, limit,, );
VP8_CL_CREATE_BUF(cq, thresh_mem, , sizeof(uc)*16, thresh,, );
err = 0;
err = clSetKernelArg(kernel, 0, sizeof (cl_mem), &buf_mem);
err |= clSetKernelArg(kernel, 1, sizeof (cl_int), &s_off);
err |= clSetKernelArg(kernel, 2, sizeof (cl_int), &p);
err |= clSetKernelArg(kernel, 3, sizeof (cl_mem), &flimit_mem);
err |= clSetKernelArg(kernel, 4, sizeof (cl_mem), &limit_mem);
err |= clSetKernelArg(kernel, 5, sizeof (cl_mem), &thresh_mem);
err |= clSetKernelArg(kernel, 6, sizeof (cl_int), &block_cnt);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",,
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel(cq, kernel, 2, NULL, global, NULL , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);,
);
clReleaseMemObject(flimit_mem);
clReleaseMemObject(limit_mem);
clReleaseMemObject(thresh_mem);
VP8_CL_FINISH(cq);
}
void vp8_loop_filter_horizontal_edge_cl
(
MACROBLOCKD *x,
cl_mem s_base,
int s_off,
int p, /* pitch */
const signed char *flimit,
const signed char *limit,
const signed char *thresh,
int count,
int block_cnt
)
{
vp8_loop_filter_cl_run(x->cl_commands,
cl_data.vp8_loop_filter_horizontal_edge_kernel, s_base, s_off,
p, flimit, limit, thresh, count*8, block_cnt
);
}
void vp8_loop_filter_vertical_edge_cl
(
MACROBLOCKD *x,
cl_mem s_base,
int s_off,
int p,
const signed char *flimit,
const signed char *limit,
const signed char *thresh,
int count,
int block_cnt
)
{
vp8_loop_filter_cl_run(x->cl_commands,
cl_data.vp8_loop_filter_vertical_edge_kernel, s_base, s_off,
p, flimit, limit, thresh, count*8, block_cnt
);
}
void vp8_mbloop_filter_horizontal_edge_cl
(
MACROBLOCKD *x,
cl_mem s_base,
int s_off,
int p,
const signed char *flimit,
const signed char *limit,
const signed char *thresh,
int count,
int block_cnt
)
{
vp8_loop_filter_cl_run(x->cl_commands,
cl_data.vp8_mbloop_filter_horizontal_edge_kernel, s_base, s_off,
p, flimit, limit, thresh, count*8, block_cnt
);
}
void vp8_mbloop_filter_vertical_edge_cl
(
MACROBLOCKD *x,
cl_mem s_base,
int s_off,
int p,
const signed char *flimit,
const signed char *limit,
const signed char *thresh,
int count,
int block_cnt
)
{
vp8_loop_filter_cl_run(x->cl_commands,
cl_data.vp8_mbloop_filter_vertical_edge_kernel, s_base, s_off,
p, flimit, limit, thresh, count*8, block_cnt
);
}
void vp8_loop_filter_simple_horizontal_edge_cl
(
MACROBLOCKD *x,
cl_mem s_base,
int s_off,
int p,
const signed char *flimit,
const signed char *limit,
const signed char *thresh,
int count,
int block_cnt
)
{
vp8_loop_filter_cl_run(x->cl_commands,
cl_data.vp8_loop_filter_simple_horizontal_edge_kernel, s_base, s_off,
p, flimit, limit, thresh, count*8, block_cnt
);
}
void vp8_loop_filter_simple_vertical_edge_cl
(
MACROBLOCKD *x,
cl_mem s_base,
int s_off,
int p,
const signed char *flimit,
const signed char *limit,
const signed char *thresh,
int count,
int block_cnt
)
{
vp8_loop_filter_cl_run(x->cl_commands,
cl_data.vp8_loop_filter_simple_vertical_edge_kernel, s_base, s_off,
p, flimit, limit, thresh, count*8, block_cnt
);
}

View File

@@ -0,0 +1,41 @@
/*
* Copyright (c) 2011 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_ports/config.h"
#include "../subpixel.h"
#include "subpixel_cl.h"
#include "../onyxc_int.h"
#include "vp8_opencl.h"
#if HAVE_DLOPEN
#include "dynamic_cl.h"
#endif
void vp8_arch_opencl_common_init(VP8_COMMON *ctx)
{
#if HAVE_DLOPEN
#if WIN32 //Windows .dll has no lib prefix and no extension
cl_loaded = load_cl("OpenCL");
#else //But *nix needs full name
cl_loaded = load_cl("libOpenCL.so");
#endif
if (cl_loaded == CL_SUCCESS)
cl_initialized = cl_common_init();
else
cl_initialized = VP8_CL_TRIED_BUT_FAILED;
#else //!HAVE_DLOPEN (e.g. Apple)
cl_initialized = cl_common_init();
#endif
}

View File

@@ -0,0 +1,641 @@
/*
* Copyright (c) 2011 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
//for the decoder, all subpixel prediction is done in this file.
//
//Need to determine some sort of mechanism for easily determining SIXTAP/BILINEAR
//and what arguments to feed into the kernels. These kernels SHOULD be 2-pass,
//and ideally there'd be a data structure that determined what static arguments
//to pass in.
//
//Also, the only external functions being called here are the subpixel prediction
//functions. Hopefully this means no worrying about when to copy data back/forth.
#include "../../../vpx_ports/config.h"
//#include "../recon.h"
#include "../subpixel.h"
//#include "../blockd.h"
//#include "../reconinter.h"
#if CONFIG_RUNTIME_CPU_DETECT
//#include "../onyxc_int.h"
#endif
#include "vp8_opencl.h"
#include "filter_cl.h"
#include "reconinter_cl.h"
#include "blockd_cl.h"
#include <stdio.h>
/* use this define on systems where unaligned int reads and writes are
* not allowed, i.e. ARM architectures
*/
/*#define MUST_BE_ALIGNED*/
static const int bbb[4] = {0, 2, 8, 10};
static void vp8_memcpy(
unsigned char *src_base,
int src_offset,
int src_stride,
unsigned char *dst_base,
int dst_offset,
int dst_stride,
int num_bytes,
int num_iter
){
int i,r;
unsigned char *src = &src_base[src_offset];
unsigned char *dst = &dst_base[dst_offset];
src_offset = dst_offset = 0;
for (r = 0; r < num_iter; r++){
for (i = 0; i < num_bytes; i++){
src_offset = r*src_stride + i;
dst_offset = r*dst_stride + i;
dst[dst_offset] = src[src_offset];
}
}
}
static void vp8_copy_mem_cl(
cl_command_queue cq,
cl_mem src_mem,
int *src_offsets,
int src_stride,
cl_mem dst_mem,
int *dst_offsets,
int dst_stride,
int num_bytes,
int num_iter,
int num_blocks
){
int err,block;
#if MEM_COPY_KERNEL
size_t global[3] = {num_bytes, num_iter, num_blocks};
size_t local[3];
local[0] = global[0];
local[1] = global[1];
local[2] = global[2];
err = clSetKernelArg(cl_data.vp8_memcpy_kernel, 0, sizeof (cl_mem), &src_mem);
err |= clSetKernelArg(cl_data.vp8_memcpy_kernel, 2, sizeof (int), &src_stride);
err |= clSetKernelArg(cl_data.vp8_memcpy_kernel, 3, sizeof (cl_mem), &dst_mem);
err |= clSetKernelArg(cl_data.vp8_memcpy_kernel, 5, sizeof (int), &dst_stride);
err |= clSetKernelArg(cl_data.vp8_memcpy_kernel, 6, sizeof (int), &num_bytes);
err |= clSetKernelArg(cl_data.vp8_memcpy_kernel, 7, sizeof (int), &num_iter);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",
return,
);
for (block = 0; block < num_blocks; block++){
/* Set kernel arguments */
err = clSetKernelArg(cl_data.vp8_memcpy_kernel, 1, sizeof (int), &src_offsets[block]);
err |= clSetKernelArg(cl_data.vp8_memcpy_kernel, 4, sizeof (int), &dst_offsets[block]);
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",
return,
);
/* Execute the kernel */
if (num_bytes * num_iter > cl_data.vp8_memcpy_kernel_size){
err = clEnqueueNDRangeKernel( cq, cl_data.vp8_memcpy_kernel, 2, NULL, global, NULL , 0, NULL, NULL);
} else {
err = clEnqueueNDRangeKernel( cq, cl_data.vp8_memcpy_kernel, 2, NULL, global, local , 0, NULL, NULL);
}
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
return,
);
}
#else
int iter;
for (block=0; block < num_blocks; block++){
for (iter = 0; iter < num_iter; iter++){
err = clEnqueueCopyBuffer(cq, src_mem, dst_mem,
src_offsets[block]+iter*src_stride,
dst_offsets[block]+iter*dst_stride,
num_bytes, 0, NULL, NULL
);
VP8_CL_CHECK_SUCCESS(cq, err != CL_SUCCESS, "Error copying between buffers\n",
,
);
}
}
#endif
}
static void vp8_build_inter_predictors_b_cl(MACROBLOCKD *x, BLOCKD *d, int pitch)
{
unsigned char *ptr_base = *(d->base_pre);
int ptr_offset = d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
vp8_subpix_cl_fn_t sppf;
int pre_dist = *d->base_pre - x->pre.buffer_alloc;
cl_mem pre_mem = x->pre.buffer_mem;
int pre_off = pre_dist+ptr_offset;
if (d->sixtap_filter == CL_TRUE)
sppf = vp8_sixtap_predict4x4_cl;
else
sppf = vp8_bilinear_predict4x4_cl;
//ptr_base a.k.a. d->base_pre is the start of the
//Macroblock's y_buffer, u_buffer, or v_buffer
if ( (d->bmi.mv.as_mv.row | d->bmi.mv.as_mv.col) & 7)
{
sppf(d->cl_commands, ptr_base, pre_mem, pre_off, d->pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, d->predictor_base, d->cl_predictor_mem, d->predictor_offset, pitch);
}
else
{
vp8_copy_mem_cl(d->cl_commands, pre_mem, &pre_off, d->pre_stride,d->cl_predictor_mem, &d->predictor_offset,pitch,4,4,1);
}
}
static void vp8_build_inter_predictors4b_cl(MACROBLOCKD *x, BLOCKD *d, int pitch)
{
unsigned char *ptr_base = *(d->base_pre);
int ptr_offset = d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
int pre_dist = *d->base_pre - x->pre.buffer_alloc;
cl_mem pre_mem = x->pre.buffer_mem;
int pre_off = pre_dist + ptr_offset;
//If there's motion in the bottom 8 subpixels, need to do subpixel prediction
if ( (d->bmi.mv.as_mv.row | d->bmi.mv.as_mv.col) & 7)
{
if (d->sixtap_filter == CL_TRUE)
vp8_sixtap_predict8x8_cl(d->cl_commands, ptr_base, pre_mem, pre_off, d->pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, d->predictor_base, d->cl_predictor_mem, d->predictor_offset, pitch);
else
vp8_bilinear_predict8x8_cl(d->cl_commands, ptr_base, pre_mem, pre_off, d->pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, d->predictor_base, d->cl_predictor_mem, d->predictor_offset, pitch);
}
//Otherwise copy memory directly from src to dest
else
{
vp8_copy_mem_cl(d->cl_commands, pre_mem, &pre_off, d->pre_stride, d->cl_predictor_mem, &d->predictor_offset, pitch, 8, 8, 1);
}
}
static void vp8_build_inter_predictors2b_cl(MACROBLOCKD *x, BLOCKD *d, int pitch)
{
unsigned char *ptr_base = *(d->base_pre);
int ptr_offset = d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
int pre_dist = *d->base_pre - x->pre.buffer_alloc;
cl_mem pre_mem = x->pre.buffer_mem;
int pre_off = pre_dist+ptr_offset;
if ( (d->bmi.mv.as_mv.row | d->bmi.mv.as_mv.col) & 7)
{
if (d->sixtap_filter == CL_TRUE)
vp8_sixtap_predict8x4_cl(d->cl_commands,ptr_base,pre_mem,pre_off, d->pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, d->predictor_base, d->cl_predictor_mem, d->predictor_offset, pitch);
else
vp8_bilinear_predict8x4_cl(d->cl_commands,ptr_base,pre_mem,pre_off, d->pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, d->predictor_base, d->cl_predictor_mem, d->predictor_offset, pitch);
}
else
{
vp8_copy_mem_cl(d->cl_commands, pre_mem, &pre_off, d->pre_stride, d->cl_predictor_mem, &d->predictor_offset, pitch, 8, 4, 1);
}
}
void vp8_build_inter_predictors_mbuv_cl(MACROBLOCKD *x)
{
int i;
vp8_cl_mb_prep(x, PREDICTOR|PRE_BUF);
#if !ONE_CQ_PER_MB
VP8_CL_FINISH(x->cl_commands);
#endif
if (x->mode_info_context->mbmi.ref_frame != INTRA_FRAME &&
x->mode_info_context->mbmi.mode != SPLITMV)
{
unsigned char *pred_base = x->predictor;
int upred_offset = 256;
int vpred_offset = 320;
int mv_row = x->block[16].bmi.mv.as_mv.row;
int mv_col = x->block[16].bmi.mv.as_mv.col;
int offset;
unsigned char *pre_base = x->pre.buffer_alloc;
cl_mem pre_mem = x->pre.buffer_mem;
int upre_off = x->pre.u_buffer - pre_base;
int vpre_off = x->pre.v_buffer - pre_base;
int pre_stride = x->block[16].pre_stride;
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
if ((mv_row | mv_col) & 7)
{
if (cl_initialized == CL_SUCCESS && x->sixtap_filter == CL_TRUE){
vp8_sixtap_predict8x8_cl(x->block[16].cl_commands,pre_base, pre_mem, upre_off+offset, pre_stride, mv_col & 7, mv_row & 7, pred_base, x->cl_predictor_mem, upred_offset, 8);
vp8_sixtap_predict8x8_cl(x->block[20].cl_commands,pre_base, pre_mem, vpre_off+offset, pre_stride, mv_col & 7, mv_row & 7, pred_base, x->cl_predictor_mem, vpred_offset, 8);
}
else{
vp8_bilinear_predict8x8_cl(x->block[16].cl_commands,pre_base, pre_mem, upre_off+offset, pre_stride, mv_col & 7, mv_row & 7, pred_base, x->cl_predictor_mem, upred_offset, 8);
vp8_bilinear_predict8x8_cl(x->block[20].cl_commands,pre_base, pre_mem, vpre_off+offset, pre_stride, mv_col & 7, mv_row & 7, pred_base, x->cl_predictor_mem, vpred_offset, 8);
}
}
else
{
int pre_offsets[2] = {upre_off+offset, vpre_off+offset};
int pred_offsets[2] = {upred_offset,vpred_offset};
vp8_copy_mem_cl(x->block[16].cl_commands, pre_mem, pre_offsets, pre_stride, x->cl_predictor_mem, pred_offsets, 8, 8, 8, 2);
}
}
else
{
// Can probably batch these operations as well, but not tested in decoder
// (or at least the test videos I've been using.
for (i = 16; i < 24; i += 2)
{
BLOCKD *d0 = &x->block[i];
BLOCKD *d1 = &x->block[i+1];
if (d0->bmi.mv.as_int == d1->bmi.mv.as_int)
vp8_build_inter_predictors2b_cl(x, d0, 8);
else
{
vp8_build_inter_predictors_b_cl(x, d0, 8);
vp8_build_inter_predictors_b_cl(x, d1, 8);
}
}
}
#if !ONE_CQ_PER_MB
VP8_CL_FINISH(x->block[0].cl_commands);
VP8_CL_FINISH(x->block[16].cl_commands);
VP8_CL_FINISH(x->block[20].cl_commands);
#endif
vp8_cl_mb_finish(x, PREDICTOR);
}
void vp8_build_inter_predictors_mb_cl(MACROBLOCKD *x)
{
//If CL is running in encoder, need to call following before proceeding.
//vp8_cl_mb_prep(x, PRE_BUF);
#if !ONE_CQ_PER_MB
VP8_CL_FINISH(x->cl_commands);
#endif
if (x->mode_info_context->mbmi.ref_frame != INTRA_FRAME &&
x->mode_info_context->mbmi.mode != SPLITMV)
{
int offset;
unsigned char *pred_base = x->predictor;
int upred_offset = 256;
int vpred_offset = 320;
int mv_row = x->mode_info_context->mbmi.mv.as_mv.row;
int mv_col = x->mode_info_context->mbmi.mv.as_mv.col;
int pre_stride = x->block[0].pre_stride;
unsigned char *pre_base = x->pre.buffer_alloc;
cl_mem pre_mem = x->pre.buffer_mem;
int ypre_off = x->pre.y_buffer - pre_base + (mv_row >> 3) * pre_stride + (mv_col >> 3);
int upre_off = x->pre.u_buffer - pre_base;
int vpre_off = x->pre.v_buffer - pre_base;
if ((mv_row | mv_col) & 7)
{
if (cl_initialized == CL_SUCCESS && x->sixtap_filter == CL_TRUE){
vp8_sixtap_predict16x16_cl(x->block[0].cl_commands, pre_base, pre_mem, ypre_off, pre_stride, mv_col & 7, mv_row & 7, pred_base, x->cl_predictor_mem, 0, 16);
}
else
vp8_bilinear_predict16x16_cl(x->block[0].cl_commands, pre_base, pre_mem, ypre_off, pre_stride, mv_col & 7, mv_row & 7, pred_base, x->cl_predictor_mem, 0, 16);
}
else
{
//16x16 copy
int pred_off = 0;
vp8_copy_mem_cl(x->block[0].cl_commands, pre_mem, &ypre_off, pre_stride, x->cl_predictor_mem, &pred_off, 16, 16, 16, 1);
}
mv_row = x->block[16].bmi.mv.as_mv.row;
mv_col = x->block[16].bmi.mv.as_mv.col;
pre_stride >>= 1;
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
if ((mv_row | mv_col) & 7)
{
if (x->sixtap_filter == CL_TRUE){
vp8_sixtap_predict8x8_cl(x->block[16].cl_commands, pre_base, pre_mem, upre_off+offset, pre_stride, mv_col & 7, mv_row & 7, pred_base, x->cl_predictor_mem, upred_offset, 8);
vp8_sixtap_predict8x8_cl(x->block[20].cl_commands, pre_base, pre_mem, vpre_off+offset, pre_stride, mv_col & 7, mv_row & 7, pred_base, x->cl_predictor_mem, vpred_offset, 8);
}
else {
vp8_bilinear_predict8x8_cl(x->block[16].cl_commands, pre_base, pre_mem, upre_off+offset, pre_stride, mv_col & 7, mv_row & 7, pred_base, x->cl_predictor_mem, upred_offset, 8);
vp8_bilinear_predict8x8_cl(x->block[20].cl_commands, pre_base, pre_mem, vpre_off+offset, pre_stride, mv_col & 7, mv_row & 7, pred_base, x->cl_predictor_mem, vpred_offset, 8);
}
}
else
{
int pre_off = upre_off + offset;
vp8_copy_mem_cl(x->block[16].cl_commands, pre_mem, &pre_off, pre_stride, x->cl_predictor_mem, &upred_offset, 8, 8, 8, 1);
pre_off = vpre_off + offset;
vp8_copy_mem_cl(x->block[20].cl_commands, pre_mem, &pre_off, pre_stride, x->cl_predictor_mem, &vpred_offset, 8, 8, 8, 1);
}
}
else
{
int i;
if (x->mode_info_context->mbmi.partitioning < 3)
{
for (i = 0; i < 4; i++)
{
BLOCKD *d = &x->block[bbb[i]];
vp8_build_inter_predictors4b_cl(x, d, 16);
}
}
else
{
/* This loop can be done in any order... No dependencies.*/
/* Also, d0/d1 can be decoded simultaneously */
for (i = 0; i < 16; i += 2)
{
BLOCKD *d0 = &x->block[i];
BLOCKD *d1 = &x->block[i+1];
if (d0->bmi.mv.as_int == d1->bmi.mv.as_int)
vp8_build_inter_predictors2b_cl(x, d0, 16);
else
{
vp8_build_inter_predictors_b_cl(x, d0, 16);
vp8_build_inter_predictors_b_cl(x, d1, 16);
}
}
}
/* Another case of re-orderable/batchable loop */
for (i = 16; i < 24; i += 2)
{
BLOCKD *d0 = &x->block[i];
BLOCKD *d1 = &x->block[i+1];
if (d0->bmi.mv.as_int == d1->bmi.mv.as_int)
vp8_build_inter_predictors2b_cl(x, d0, 8);
else
{
vp8_build_inter_predictors_b_cl(x, d0, 8);
vp8_build_inter_predictors_b_cl(x, d1, 8);
}
}
}
#if !ONE_CQ_PER_MB
VP8_CL_FINISH(x->block[0].cl_commands);
VP8_CL_FINISH(x->block[16].cl_commands);
VP8_CL_FINISH(x->block[20].cl_commands);
#endif
vp8_cl_mb_finish(x, PREDICTOR);
}
/* The following functions are written for skip_recon_mb() to call. Since there is no recon in this
* situation, we can write the result directly to dst buffer instead of writing it to predictor
* buffer and then copying it to dst buffer.
*/
static void vp8_build_inter_predictors_b_s_cl(MACROBLOCKD *x, BLOCKD *d, int dst_offset)
{
unsigned char *ptr_base = *(d->base_pre);
int dst_stride = d->dst_stride;
int pre_stride = d->pre_stride;
int ptr_offset = d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
vp8_subpix_cl_fn_t sppf;
int pre_dist = *d->base_pre - x->pre.buffer_alloc;
cl_mem pre_mem = x->pre.buffer_mem;
cl_mem dst_mem = x->dst.buffer_mem;
if (d->sixtap_filter == CL_TRUE){
sppf = vp8_sixtap_predict4x4_cl;
} else
sppf = vp8_bilinear_predict4x4_cl;
if ( (d->bmi.mv.as_mv.row | d->bmi.mv.as_mv.col) & 7)
{
sppf(d->cl_commands, ptr_base, pre_mem, pre_dist+ptr_offset, pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, NULL, dst_mem, dst_offset, dst_stride);
}
else
{
int pre_off = pre_dist+ptr_offset;
vp8_copy_mem_cl(d->cl_commands, pre_mem,&pre_off,pre_stride, dst_mem, &dst_offset,dst_stride,4,4,1);
}
}
void vp8_build_inter_predictors_mb_s_cl(MACROBLOCKD *x)
{
cl_mem dst_mem = NULL;
cl_mem pre_mem = x->pre.buffer_mem;
unsigned char *dst_base = x->dst.buffer_alloc;
int ydst_off = x->dst.y_buffer - dst_base;
int udst_off = x->dst.u_buffer - dst_base;
int vdst_off = x->dst.v_buffer - dst_base;
dst_mem = x->dst.buffer_mem;
vp8_cl_mb_prep(x, DST_BUF);
#if !ONE_CQ_PER_MB
VP8_CL_FINISH(x->cl_commands);
#endif
if (x->mode_info_context->mbmi.mode != SPLITMV)
{
int offset;
unsigned char *pre_base = x->pre.buffer_alloc;
int ypre_off = x->pre.y_buffer - pre_base;
int upre_off = x->pre.u_buffer - pre_base;
int vpre_off = x->pre.v_buffer - pre_base;
int mv_row = x->mode_info_context->mbmi.mv.as_mv.row;
int mv_col = x->mode_info_context->mbmi.mv.as_mv.col;
int pre_stride = x->dst.y_stride;
int ptr_offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
if ((mv_row | mv_col) & 7)
{
if (x->sixtap_filter == CL_TRUE){
vp8_sixtap_predict16x16_cl(x->block[0].cl_commands, pre_base, pre_mem, ypre_off+ptr_offset, pre_stride, mv_col & 7, mv_row & 7, dst_base, dst_mem, ydst_off, x->dst.y_stride);
}
else
vp8_bilinear_predict16x16_cl(x->block[0].cl_commands, pre_base, pre_mem, ypre_off+ptr_offset, pre_stride, mv_col & 7, mv_row & 7, dst_base, dst_mem, ydst_off, x->dst.y_stride);
}
else
{
int pre_off = ypre_off+ptr_offset;
vp8_copy_mem_cl(x->block[0].cl_commands, pre_mem, &pre_off, pre_stride, dst_mem, &ydst_off, x->dst.y_stride, 16, 16, 1);
}
mv_row = x->block[16].bmi.mv.as_mv.row;
mv_col = x->block[16].bmi.mv.as_mv.col;
pre_stride >>= 1;
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
if ((mv_row | mv_col) & 7)
{
if (x->sixtap_filter == CL_TRUE){
vp8_sixtap_predict8x8_cl(x->block[16].cl_commands, pre_base, pre_mem, upre_off+offset, pre_stride, mv_col & 7, mv_row & 7, dst_base, dst_mem, udst_off, x->dst.uv_stride);
vp8_sixtap_predict8x8_cl(x->block[20].cl_commands, pre_base, pre_mem, vpre_off+offset, pre_stride, mv_col & 7, mv_row & 7, dst_base, dst_mem, vdst_off, x->dst.uv_stride);
} else {
vp8_bilinear_predict8x8_cl(x->block[16].cl_commands, pre_base, pre_mem, upre_off+offset, pre_stride, mv_col & 7, mv_row & 7, dst_base, dst_mem, udst_off, x->dst.uv_stride);
vp8_bilinear_predict8x8_cl(x->block[20].cl_commands, pre_base, pre_mem, vpre_off+offset, pre_stride, mv_col & 7, mv_row & 7, dst_base, dst_mem, vdst_off, x->dst.uv_stride);
}
}
else
{
int pre_offsets[2] = {upre_off+offset, vpre_off+offset};
int dst_offsets[2] = {udst_off,vdst_off};
vp8_copy_mem_cl(x->block[16].cl_commands, pre_mem, pre_offsets, pre_stride, dst_mem, dst_offsets, x->dst.uv_stride, 8, 8, 2);
}
}
else
{
/* note: this whole ELSE part is not executed at all. So, no way to test the correctness of my modification. Later,
* if sth is wrong, go back to what it is in build_inter_predictors_mb.
*
* ACW: Not sure who the above comment belongs to, but it is
* accurate for the decoder. Verified by reverse trace of source
*/
int i;
if (x->mode_info_context->mbmi.partitioning < 3)
{
for (i = 0; i < 4; i++)
{
BLOCKD *d = &x->block[bbb[i]];
{
unsigned char *ptr_base = *(d->base_pre);
int pre_off = ptr_base - x->pre.buffer_alloc;
int ptr_offset = d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
pre_off += ptr_offset;
if ( (d->bmi.mv.as_mv.row | d->bmi.mv.as_mv.col) & 7)
{
if (x->sixtap_filter == CL_TRUE)
vp8_sixtap_predict8x8_cl(d->cl_commands, ptr_base, pre_mem, pre_off, d->pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, dst_base, dst_mem, ydst_off, x->dst.y_stride);
else
vp8_bilinear_predict8x8_cl(d->cl_commands, ptr_base, pre_mem, pre_off, d->pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, dst_base, dst_mem, ydst_off, x->dst.y_stride);
}
else
{
vp8_copy_mem_cl(x->block[0].cl_commands, pre_mem, &pre_off, d->pre_stride, dst_mem, &ydst_off, x->dst.y_stride, 8, 8, 1);
}
}
}
}
else
{
for (i = 0; i < 16; i += 2)
{
BLOCKD *d0 = &x->block[i];
BLOCKD *d1 = &x->block[i+1];
if (d0->bmi.mv.as_int == d1->bmi.mv.as_int)
{
/*vp8_build_inter_predictors2b(x, d0, 16);*/
unsigned char *ptr_base = *(d0->base_pre);
int pre_off = ptr_base - x->pre.buffer_alloc;
int ptr_offset = d0->pre + (d0->bmi.mv.as_mv.row >> 3) * d0->pre_stride + (d0->bmi.mv.as_mv.col >> 3);
pre_off += ptr_offset;
if ( (d0->bmi.mv.as_mv.row | d0->bmi.mv.as_mv.col) & 7)
{
if (d0->sixtap_filter == CL_TRUE)
vp8_sixtap_predict8x4_cl(d0->cl_commands, ptr_base, pre_mem, pre_off, d0->pre_stride, d0->bmi.mv.as_mv.col & 7, d0->bmi.mv.as_mv.row & 7, dst_base, dst_mem, ydst_off, x->dst.y_stride);
else
vp8_bilinear_predict8x4_cl(d0->cl_commands, ptr_base, pre_mem,pre_off, d0->pre_stride, d0->bmi.mv.as_mv.col & 7, d0->bmi.mv.as_mv.row & 7, dst_base, dst_mem, ydst_off, x->dst.y_stride);
}
else
{
vp8_copy_mem_cl(x->block[0].cl_commands, pre_mem, &pre_off, d0->pre_stride, dst_mem, &ydst_off, x->dst.y_stride, 8, 4, 1);
}
}
else
{
vp8_build_inter_predictors_b_s_cl(x,d0, ydst_off);
vp8_build_inter_predictors_b_s_cl(x,d1, ydst_off);
}
}
}
for (i = 16; i < 24; i += 2)
{
BLOCKD *d0 = &x->block[i];
BLOCKD *d1 = &x->block[i+1];
if (d0->bmi.mv.as_int == d1->bmi.mv.as_int)
{
/*vp8_build_inter_predictors2b(x, d0, 8);*/
unsigned char *ptr_base = *(d0->base_pre);
int ptr_offset = d0->pre + (d0->bmi.mv.as_mv.row >> 3) * d0->pre_stride + (d0->bmi.mv.as_mv.col >> 3);
int pre_off = ptr_base - x->pre.buffer_alloc + ptr_offset;
if ( (d0->bmi.mv.as_mv.row | d0->bmi.mv.as_mv.col) & 7)
{
if (d0->sixtap_filter || CL_TRUE)
vp8_sixtap_predict8x4_cl(d0->cl_commands, ptr_base, pre_mem, pre_off, d0->pre_stride,
d0->bmi.mv.as_mv.col & 7, d0->bmi.mv.as_mv.row & 7,
dst_base, dst_mem, ydst_off, x->dst.uv_stride);
else
vp8_bilinear_predict8x4_cl(d0->cl_commands, ptr_base, pre_mem, pre_off, d0->pre_stride,
d0->bmi.mv.as_mv.col & 7, d0->bmi.mv.as_mv.row & 7,
dst_base, dst_mem, ydst_off, x->dst.uv_stride);
}
else
{
vp8_copy_mem_cl(x->block[0].cl_commands, pre_mem, &pre_off,
d0->pre_stride, dst_mem, &ydst_off, x->dst.uv_stride, 8, 4, 1);
}
}
else
{
vp8_build_inter_predictors_b_s_cl(x,d0, ydst_off);
vp8_build_inter_predictors_b_s_cl(x,d1, ydst_off);
}
} //end for
}
#if !ONE_CQ_PER_MB
VP8_CL_FINISH(x->block[0].cl_commands);
VP8_CL_FINISH(x->block[16].cl_commands);
VP8_CL_FINISH(x->block[20].cl_commands);
#endif
vp8_cl_mb_finish(x, DST_BUF);
}

View File

@@ -0,0 +1,25 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef __INC_RECONINTER_CL_H
#define __INC_RECONINTER_CL_H
#include "blockd_cl.h"
#include "subpixel_cl.h"
#include "filter_cl.h"
extern void vp8_build_inter_predictors_mb_cl(MACROBLOCKD *x);
extern void vp8_build_inter_predictors_mbuv_cl(MACROBLOCKD *x);
extern void vp8_build_inter_predictors_mb_s_cl(MACROBLOCKD *x);
//extern void vp8_build_inter_predictors_b_cl(BLOCKD *d, int pitch);
#endif

View File

@@ -0,0 +1,46 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef SUBPIXEL_CL_H
#define SUBPIXEL_CL_H
#include "../blockd.h"
/* Note:
*
* This platform is commonly built for runtime CPU detection. If you modify
* any of the function mappings present in this file, be sure to also update
* them in the function pointer initialization code
*/
#define prototype_subpixel_predict_cl(sym) \
void sym(cl_command_queue cq, unsigned char *src_base, cl_mem src_mem, int src_offset, \
int src_pitch, int xofst, int yofst, \
unsigned char *dst_base, cl_mem dst_mem, int dst_offset, int dst_pitch)
extern prototype_subpixel_predict_cl(vp8_sixtap_predict16x16_cl);
extern prototype_subpixel_predict_cl(vp8_sixtap_predict8x8_cl);
extern prototype_subpixel_predict_cl(vp8_sixtap_predict8x4_cl);
extern prototype_subpixel_predict_cl(vp8_sixtap_predict4x4_cl);
extern prototype_subpixel_predict_cl(vp8_bilinear_predict16x16_cl);
extern prototype_subpixel_predict_cl(vp8_bilinear_predict8x8_cl);
extern prototype_subpixel_predict_cl(vp8_bilinear_predict8x4_cl);
extern prototype_subpixel_predict_cl(vp8_bilinear_predict4x4_cl);
typedef prototype_subpixel_predict_cl((*vp8_subpix_cl_fn_t));
//typedef enum
//{
// SIXTAP = 0,
// BILINEAR = 1
//} SUBPIX_TYPE;
#endif

View File

@@ -0,0 +1,342 @@
/*
* Copyright (c) 2011 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "vp8_opencl.h"
int cl_initialized = VP8_CL_NOT_INITIALIZED;
VP8_COMMON_CL cl_data;
//Initialization functions for various CL programs.
extern int cl_init_filter();
extern int cl_init_idct();
extern int cl_init_loop_filter();
//Common CL destructors
extern void cl_destroy_loop_filter();
extern void cl_destroy_filter();
extern void cl_destroy_idct();
//Destructors for encoder/decoder-specific bits
extern void cl_decode_destroy();
extern void cl_encode_destroy();
/**
*
* @param cq
* @param new_status
*/
void cl_destroy(cl_command_queue cq, int new_status) {
if (cl_initialized != CL_SUCCESS)
return;
//Wait on any pending operations to complete... frees up all of our pointers
if (cq != NULL)
clFinish(cq);
#if ENABLE_CL_SUBPIXEL
//Release the objects that we've allocated on the GPU
cl_destroy_filter();
#endif
#if ENABLE_CL_IDCT_DEQUANT
cl_destroy_idct();
#if CONFIG_VP8_DECODER
if (cl_data.cl_decode_initialized == CL_SUCCESS)
cl_decode_destroy();
#endif
#endif
#if ENABLE_CL_LOOPFILTER
cl_destroy_loop_filter();
#endif
#if CONFIG_VP8_ENCODER
//placeholder for if/when encoder CL gets implemented
#endif
if (cq){
clReleaseCommandQueue(cq);
}
if (cl_data.context){
clReleaseContext(cl_data.context);
cl_data.context = NULL;
}
cl_initialized = new_status;
return;
}
/**
*
* @param dev
* @return
*/
cl_device_type device_type(cl_device_id dev){
cl_device_type type;
int err;
err = clGetDeviceInfo(dev, CL_DEVICE_TYPE, sizeof(type),&type,NULL);
if (err != CL_SUCCESS)
return CL_INVALID_DEVICE;
return type;
}
/**
*
* @return
*/
int cl_common_init() {
int err,i,dev;
cl_platform_id platform_ids[MAX_NUM_PLATFORMS];
cl_uint num_found, num_devices;
cl_device_id devices[MAX_NUM_DEVICES];
//Don't allow multiple CL contexts..
if (cl_initialized != VP8_CL_NOT_INITIALIZED)
return cl_initialized;
// Connect to a compute device
err = clGetPlatformIDs(MAX_NUM_PLATFORMS, platform_ids, &num_found);
if (err != CL_SUCCESS) {
fprintf(stderr, "Couldn't query platform IDs\n");
return VP8_CL_TRIED_BUT_FAILED;
}
if (num_found == 0) {
fprintf(stderr, "No platforms found\n");
return VP8_CL_TRIED_BUT_FAILED;
}
//printf("Enumerating %d platform(s)\n", num_found);
//Enumerate the platforms found
for (i = 0; i < num_found; i++){
char buf[2048];
size_t len;
err = clGetPlatformInfo( platform_ids[i], CL_PLATFORM_VENDOR, sizeof(buf), buf, &len);
if (err != CL_SUCCESS){
fprintf(stderr, "Error retrieving platform vendor for platform %d",i);
continue;
}
//printf("Platform %d: %s\n",i,buf);
//If you need to force a platform (e.g. CPU-only testing), uncomment this
//if (strstr(buf,"NVIDIA"))
// continue;
//Try to find a valid compute device
//Favor the GPU, but fall back to any other available device if necessary
#ifdef __APPLE__
printf("Apple system. Running CL as CPU-only for now...\n");
err = clGetDeviceIDs(platform_ids[i], CL_DEVICE_TYPE_CPU, MAX_NUM_DEVICES, devices, &num_devices);
#else
err = clGetDeviceIDs(platform_ids[i], CL_DEVICE_TYPE_ALL, MAX_NUM_DEVICES, devices, &num_devices);
#endif //__APPLE__
//printf("found %d devices\n", num_devices);
cl_data.device_id = NULL;
for( dev = 0; dev < num_devices; dev++ ){
char ext[2048];
//Get info for this device.
err = clGetDeviceInfo(devices[dev], CL_DEVICE_EXTENSIONS,
sizeof(ext),ext,NULL);
VP8_CL_CHECK_SUCCESS(NULL,err != CL_SUCCESS,
"Error retrieving device extension list",continue, 0);
//printf("Device %d supports: %s\n",dev,ext);
//The kernels in VP8 require byte-addressable stores, which is an
//extension. It's required in OpenCL 1.1, but not all devices
//support it.
if (strstr(ext,"cl_khr_byte_addressable_store")){
//We found a valid device, so use it. But if we find a GPU
//(maybe this is one), prefer that.
cl_data.device_id = devices[dev];
if ( device_type(devices[dev]) == CL_DEVICE_TYPE_GPU ){
//printf("Device %d is a GPU\n",dev);
break;
}
}
}
//If we've found a usable GPU, stop looking.
if (cl_data.device_id != NULL && device_type(cl_data.device_id) == CL_DEVICE_TYPE_GPU )
break;
}
if (cl_data.device_id == NULL){
printf("Error: Failed to find a valid OpenCL device. Using CPU paths\n");
return VP8_CL_TRIED_BUT_FAILED;
}
// Create the compute context
cl_data.context = clCreateContext(0, 1, &cl_data.device_id, NULL, NULL, &err);
if (!cl_data.context) {
printf("Error: Failed to create a compute context!\n");
return VP8_CL_TRIED_BUT_FAILED;
}
//Initialize programs to null value
//Enables detection of if they've been initialized as well.
cl_data.filter_program = NULL;
cl_data.idct_program = NULL;
cl_data.loop_filter_program = NULL;
#if ENABLE_CL_SUBPIXEL
err = cl_init_filter();
if (err != CL_SUCCESS)
return err;
#endif
#if ENABLE_CL_IDCT_DEQUANT
err = cl_init_idct();
if (err != CL_SUCCESS)
return err;
#endif
#if ENABLE_CL_LOOPFILTER
err = cl_init_loop_filter();
if (err != CL_SUCCESS)
return err;
#endif
return CL_SUCCESS;
}
char *cl_read_file(const char* file_name) {
long pos;
char *bytes;
size_t amt_read;
FILE *f;
f = fopen(file_name, "rb");
if (f == NULL) {
char *fullpath;
//printf("Couldn't find %s\n", file_name);
//Generate a file path for the CL sources using the library install dir
fullpath = malloc(strlen(vpx_codec_lib_dir()) + strlen(file_name) + 2);
if (fullpath == NULL) {
return NULL;
}
strcpy(fullpath, vpx_codec_lib_dir());
strcat(fullpath, "/"); //Will need to be changed for MSVS
strcat(fullpath, file_name);
//printf("Looking in %s\n", fullpath);
f = fopen(fullpath, "rb");
if (f == NULL) {
fprintf(stderr,"Couldn't find CL source at %s or %s\n", file_name, fullpath);
free(fullpath);
return NULL;
}
//printf("Found cl source at %s\n", fullpath);
free(fullpath);
} else {
//printf("Found cl source at %s\n", file_name);
}
fseek(f, 0, SEEK_END);
pos = ftell(f);
fseek(f, 0, SEEK_SET);
bytes = malloc(pos+1);
if (bytes == NULL) {
fclose(f);
return NULL;
}
amt_read = fread(bytes, pos, 1, f);
if (amt_read != 1) {
free(bytes);
fclose(f);
return NULL;
}
bytes[pos] = '\0'; //null terminate the source string
fclose(f);
return bytes;
}
void show_build_log(cl_program *prog_ref){
size_t len;
char *buffer;
int err = clGetProgramBuildInfo(*prog_ref, cl_data.device_id, CL_PROGRAM_BUILD_LOG, 0, NULL, &len);
if (err != CL_SUCCESS){
printf("Error: Could not get length of CL build log\n");
}
buffer = (char*) malloc(len);
if (buffer == NULL) {
printf("Error: Couldn't allocate compile output buffer memory\n");
}
err = clGetProgramBuildInfo(*prog_ref, cl_data.device_id, CL_PROGRAM_BUILD_LOG, len, buffer, NULL);
if (err != CL_SUCCESS) {
printf("Error: Could not get CL build log\n");
} else {
printf("Compile output: %s\n", buffer);
}
free(buffer);
}
int cl_load_program(cl_program *prog_ref, const char *file_name, const char *opts) {
int err;
char *kernel_src = cl_read_file(file_name);
*prog_ref = NULL;
if (kernel_src != NULL) {
*prog_ref = clCreateProgramWithSource(cl_data.context, 1, (const char**)&kernel_src, NULL, &err);
free(kernel_src);
} else {
cl_destroy(NULL, VP8_CL_TRIED_BUT_FAILED);
printf("Couldn't find OpenCL source files. \nUsing software path.\n");
return VP8_CL_TRIED_BUT_FAILED;
}
if (*prog_ref == NULL) {
printf("Error: Couldn't create program\n");
return VP8_CL_TRIED_BUT_FAILED;
}
if (err != CL_SUCCESS) {
printf("Error creating program: %d\n", err);
}
/* Build the program executable */
err = clBuildProgram(*prog_ref, 0, NULL, opts, NULL, NULL);
if (err != CL_SUCCESS) {
printf("Error: Failed to build program executable for %s!\n", file_name);
show_build_log(prog_ref);
return VP8_CL_TRIED_BUT_FAILED;
}
return CL_SUCCESS;
}

View File

@@ -0,0 +1,192 @@
/*
* Copyright (c) 2011 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP8_OPENCL_H
#define VP8_OPENCL_H
#ifdef __cplusplus
extern "C" {
#endif
#include "../../../vpx_config.h"
#ifdef __APPLE__
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif
#if HAVE_DLOPEN
#include "dynamic_cl.h"
#endif
#define ENABLE_CL_IDCT_DEQUANT 0
#define ENABLE_CL_SUBPIXEL 1
#define TWO_PASS_SIXTAP 0
#define MEM_COPY_KERNEL 1
#define ONE_CQ_PER_MB 1 //Value of 0 is racey... still experimental.
#define ENABLE_CL_LOOPFILTER 0
extern char *cl_read_file(const char* file_name);
extern int cl_common_init();
extern void cl_destroy(cl_command_queue cq, int new_status);
extern int cl_load_program(cl_program *prog_ref, const char *file_name, const char *opts);
#define MAX_NUM_PLATFORMS 4
#define MAX_NUM_DEVICES 10
#define VP8_CL_TRIED_BUT_FAILED 1
#define VP8_CL_NOT_INITIALIZED -1
extern int cl_initialized;
extern const char *vpx_codec_lib_dir(void);
#define VP8_CL_FINISH(cq) \
if (cl_initialized == CL_SUCCESS){ \
/* Wait for kernels to finish. */ \
clFinish(cq); \
}
#define VP8_CL_BARRIER(cq) \
if (cl_initialized == CL_SUCCESS){ \
/* Insert a barrier into the command queue. */ \
clEnqueueBarrier(cq); \
}
#define VP8_CL_CHECK_SUCCESS(cq,cond,msg,alt,retCode) \
if ( cond ){ \
fprintf(stderr, msg); \
cl_destroy(cq, VP8_CL_TRIED_BUT_FAILED); \
alt; \
return retCode; \
}
#define VP8_CL_CALC_LOCAL_SIZE(kernel, kernel_size) \
err = clGetKernelWorkGroupInfo( cl_data.kernel, \
cl_data.device_id, \
CL_KERNEL_WORK_GROUP_SIZE, \
sizeof(size_t), \
&cl_data.kernel_size, \
NULL);\
VP8_CL_CHECK_SUCCESS(NULL, err != CL_SUCCESS, \
"Error: Failed to calculate local size of kernel!\n", \
,\
VP8_CL_TRIED_BUT_FAILED \
); \
#define VP8_CL_CREATE_KERNEL(data,program,name,str_name) \
data.name = clCreateKernel(data.program, str_name , &err); \
VP8_CL_CHECK_SUCCESS(NULL, err != CL_SUCCESS || !data.name, \
"Error: Failed to create compute kernel "#str_name"!\n", \
,\
VP8_CL_TRIED_BUT_FAILED \
);
#define VP8_CL_READ_BUF(cq, bufRef, bufSize, dstPtr) \
err = clEnqueueReadBuffer(cq, bufRef, CL_FALSE, 0, bufSize , dstPtr, 0, NULL, NULL); \
VP8_CL_CHECK_SUCCESS( cq, err != CL_SUCCESS, \
"Error: Failed to read from GPU!\n",, err \
); \
#define VP8_CL_SET_BUF(cq, bufRef, bufSize, dataPtr, altPath, retCode) \
{ \
err = clEnqueueWriteBuffer(cq, bufRef, CL_FALSE, 0, \
bufSize, dataPtr, 0, NULL, NULL); \
\
VP8_CL_CHECK_SUCCESS(cq, err != CL_SUCCESS, \
"Error: Failed to write to buffer!\n", \
altPath, retCode\
); \
} \
#define VP8_CL_CREATE_BUF(cq, bufRef, bufType, bufSize, dataPtr, altPath, retCode) \
bufRef = clCreateBuffer(cl_data.context, CL_MEM_READ_WRITE, bufSize, NULL, NULL); \
if (dataPtr != NULL && bufRef != NULL){ \
VP8_CL_SET_BUF(cq, bufRef, bufSize, dataPtr, altPath, retCode)\
} \
VP8_CL_CHECK_SUCCESS(cq, !bufRef, \
"Error: Failed to allocate buffer. Using CPU path!\n", \
altPath, retCode\
); \
#define VP8_CL_RELEASE_KERNEL(kernel) \
if (kernel) \
clReleaseKernel(kernel); \
kernel = NULL;
typedef struct VP8_COMMON_CL {
cl_device_id device_id; // compute device id
cl_context context; // compute context
//cl_command_queue commands; // compute command queue
cl_program filter_program; // compute program for subpixel/bilinear filters
cl_kernel vp8_sixtap_predict_kernel;
size_t vp8_sixtap_predict_kernel_size;
cl_kernel vp8_sixtap_predict8x4_kernel;
size_t vp8_sixtap_predict8x4_kernel_size;
cl_kernel vp8_sixtap_predict8x8_kernel;
size_t vp8_sixtap_predict8x8_kernel_size;
cl_kernel vp8_sixtap_predict16x16_kernel;
size_t vp8_sixtap_predict16x16_kernel_size;
cl_kernel vp8_bilinear_predict4x4_kernel;
cl_kernel vp8_bilinear_predict8x4_kernel;
cl_kernel vp8_bilinear_predict8x8_kernel;
cl_kernel vp8_bilinear_predict16x16_kernel;
cl_kernel vp8_filter_block2d_first_pass_kernel;
size_t vp8_filter_block2d_first_pass_kernel_size;
cl_kernel vp8_filter_block2d_second_pass_kernel;
size_t vp8_filter_block2d_second_pass_kernel_size;
cl_kernel vp8_filter_block2d_bil_first_pass_kernel;
size_t vp8_filter_block2d_bil_first_pass_kernel_size;
cl_kernel vp8_filter_block2d_bil_second_pass_kernel;
size_t vp8_filter_block2d_bil_second_pass_kernel_size;
cl_kernel vp8_memcpy_kernel;
size_t vp8_memcpy_kernel_size;
cl_kernel vp8_memset_short_kernel;
cl_program idct_program;
cl_kernel vp8_short_inv_walsh4x4_1_kernel;
cl_kernel vp8_short_inv_walsh4x4_1st_pass_kernel;
cl_kernel vp8_short_inv_walsh4x4_2nd_pass_kernel;
cl_kernel vp8_dc_only_idct_add_kernel;
//Note that the following 2 kernels are encoder-only. Not used in decoder.
cl_kernel vp8_short_idct4x4llm_1_kernel;
cl_kernel vp8_short_idct4x4llm_kernel;
cl_program loop_filter_program;
cl_kernel vp8_loop_filter_horizontal_edge_kernel;
cl_kernel vp8_loop_filter_vertical_edge_kernel;
cl_kernel vp8_mbloop_filter_horizontal_edge_kernel;
cl_kernel vp8_mbloop_filter_vertical_edge_kernel;
cl_kernel vp8_loop_filter_simple_horizontal_edge_kernel;
cl_kernel vp8_loop_filter_simple_vertical_edge_kernel;
cl_program dequant_program;
cl_kernel vp8_dequant_dc_idct_add_kernel;
cl_kernel vp8_dequant_idct_add_kernel;
cl_kernel vp8_dequantize_b_kernel;
cl_int cl_decode_initialized;
cl_int cl_encode_initialized;
} VP8_COMMON_CL;
extern VP8_COMMON_CL cl_data;
#ifdef __cplusplus
}
#endif
#endif /* VP8_OPENCL_H */

View File

@@ -66,6 +66,7 @@ int vp8_dc2quant(int QIndex, int Delta)
return retval;
}
int vp8_dc_uv_quant(int QIndex, int Delta)
{
int retval;
@@ -116,6 +117,7 @@ int vp8_ac2quant(int QIndex, int Delta)
return retval;
}
int vp8_ac_uv_quant(int QIndex, int Delta)
{
int retval;

View File

@@ -110,19 +110,19 @@ void vp8_recon_mby_c(const vp8_recon_rtcd_vtable_t *rtcd, MACROBLOCKD *x)
{
#if ARCH_ARM
BLOCKD *b = &x->block[0];
RECON_INVOKE(rtcd, recon4)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon4)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
/*b = &x->block[4];*/
b += 4;
RECON_INVOKE(rtcd, recon4)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon4)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
/*b = &x->block[8];*/
b += 4;
RECON_INVOKE(rtcd, recon4)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon4)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
/*b = &x->block[12];*/
b += 4;
RECON_INVOKE(rtcd, recon4)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon4)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
#else
int i;
@@ -130,7 +130,7 @@ void vp8_recon_mby_c(const vp8_recon_rtcd_vtable_t *rtcd, MACROBLOCKD *x)
{
BLOCKD *b = &x->block[i];
RECON_INVOKE(rtcd, recon4)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon4)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
}
#endif
}
@@ -140,27 +140,27 @@ void vp8_recon_mb_c(const vp8_recon_rtcd_vtable_t *rtcd, MACROBLOCKD *x)
#if ARCH_ARM
BLOCKD *b = &x->block[0];
RECON_INVOKE(rtcd, recon4)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon4)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
b += 4;
RECON_INVOKE(rtcd, recon4)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon4)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
b += 4;
RECON_INVOKE(rtcd, recon4)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon4)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
b += 4;
RECON_INVOKE(rtcd, recon4)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon4)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
b += 4;
/*b = &x->block[16];*/
RECON_INVOKE(rtcd, recon2)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon2)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
b++;
b++;
RECON_INVOKE(rtcd, recon2)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon2)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
b++;
b++;
RECON_INVOKE(rtcd, recon2)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon2)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
b++;
b++;
RECON_INVOKE(rtcd, recon2)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon2)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
#else
int i;
@@ -168,14 +168,14 @@ void vp8_recon_mb_c(const vp8_recon_rtcd_vtable_t *rtcd, MACROBLOCKD *x)
{
BLOCKD *b = &x->block[i];
RECON_INVOKE(rtcd, recon4)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon4)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
}
for (i = 16; i < 24; i += 2)
{
BLOCKD *b = &x->block[i];
RECON_INVOKE(rtcd, recon2)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon2)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
}
#endif
}

View File

@@ -8,7 +8,6 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_ports/config.h"
#include "recon.h"
#include "subpixel.h"
@@ -18,6 +17,12 @@
#include "onyxc_int.h"
#endif
#if CONFIG_OPENCL
#include "opencl/vp8_opencl.h"
#include "opencl/filter_cl.h"
#include "opencl/reconinter_cl.h"
#endif
/* use this define on systems where unaligned int reads and writes are
* not allowed, i.e. ARM architectures
*/
@@ -27,7 +32,7 @@
static const int bbb[4] = {0, 2, 8, 10};
//Copy 16 x 16-bytes from src to dst.
void vp8_copy_mem16x16_c(
unsigned char *src,
int src_stride,
@@ -37,6 +42,9 @@ void vp8_copy_mem16x16_c(
int r;
//Set this up as a 2D kernel. Each loop iteration is X, each byte/int within
//is the Y address.
for (r = 0; r < 16; r++)
{
#ifdef MUST_BE_ALIGNED
@@ -71,6 +79,7 @@ void vp8_copy_mem16x16_c(
}
//Copy 8 x 8-bytes
void vp8_copy_mem8x8_c(
unsigned char *src,
int src_stride,
@@ -136,34 +145,32 @@ void vp8_copy_mem8x4_c(
void vp8_build_inter_predictors_b(BLOCKD *d, int pitch, vp8_subpix_fn_t sppf)
{
int r;
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d->predictor;
ptr_base = *(d->base_pre);
//d->base_pre is the start of the previous frame's y_buffer, u_buffer, or v_buffer
unsigned char *ptr_base = *(d->base_pre);
int ptr_offset = d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
unsigned char *pred_ptr = d->predictor_base + d->predictor_offset;
if (d->bmi.mv.as_mv.row & 7 || d->bmi.mv.as_mv.col & 7)
{
ptr = ptr_base + d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
sppf(ptr, d->pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, pred_ptr, pitch);
sppf(ptr_base+ptr_offset, d->pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, pred_ptr, pitch);
}
else
{
ptr_base += d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
ptr = ptr_base;
for (r = 0; r < 4; r++)
{
#ifdef MUST_BE_ALIGNED
pred_ptr[0] = ptr[0];
pred_ptr[1] = ptr[1];
pred_ptr[2] = ptr[2];
pred_ptr[3] = ptr[3];
pred_ptr[0] = ptr_base[ptr_offset];
pred_ptr[1] = ptr_base[ptr_offset+1];
pred_ptr[2] = ptr_base[ptr_offset+2];
pred_ptr[3] = ptr_base[ptr_offset+3];
#else
*(int *)pred_ptr = *(int *)ptr ;
*(int *)pred_ptr = *(int *)(ptr_base+ptr_offset) ;
#endif
pred_ptr += pitch;
ptr += d->pre_stride;
ptr_offset += d->pre_stride;
}
}
}
@@ -172,7 +179,7 @@ static void build_inter_predictors4b(MACROBLOCKD *x, BLOCKD *d, int pitch)
{
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d->predictor;
unsigned char *pred_ptr = d->predictor_base + d->predictor_offset;
ptr_base = *(d->base_pre);
ptr = ptr_base + d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
@@ -191,7 +198,7 @@ static void build_inter_predictors2b(MACROBLOCKD *x, BLOCKD *d, int pitch)
{
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d->predictor;
unsigned char *pred_ptr = d->predictor_base + d->predictor_offset;
ptr_base = *(d->base_pre);
ptr = ptr_base + d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
@@ -206,11 +213,22 @@ static void build_inter_predictors2b(MACROBLOCKD *x, BLOCKD *d, int pitch)
}
}
/* Encoder only */
void vp8_build_inter_predictors_mbuv(MACROBLOCKD *x)
{
int i;
#if CONFIG_OPENCL
if ( 0 && cl_initialized == CL_SUCCESS ){
vp8_build_inter_predictors_mbuv_cl(x);
VP8_CL_FINISH(x->cl_commands);
VP8_CL_FINISH(x->block[0].cl_commands);
VP8_CL_FINISH(x->block[16].cl_commands);
VP8_CL_FINISH(x->block[20].cl_commands);
return;
}
#endif
if (x->mode_info_context->mbmi.ref_frame != INTRA_FRAME &&
x->mode_info_context->mbmi.mode != SPLITMV)
{
@@ -229,8 +247,8 @@ void vp8_build_inter_predictors_mbuv(MACROBLOCKD *x)
if ((mv_row | mv_col) & 7)
{
x->subpixel_predict8x8(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, 8);
x->subpixel_predict8x8(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, 8);
x->subpixel_predict8x8(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, 8);
x->subpixel_predict8x8(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, 8);
}
else
{
@@ -260,8 +278,8 @@ void vp8_build_inter_predictors_mbuv(MACROBLOCKD *x)
void vp8_build_inter_predictors_mby(MACROBLOCKD *x)
{
if (x->mode_info_context->mbmi.ref_frame != INTRA_FRAME &&
x->mode_info_context->mbmi.mode != SPLITMV)
if (x->mode_info_context->mbmi.ref_frame != INTRA_FRAME &&
x->mode_info_context->mbmi.mode != SPLITMV)
{
unsigned char *ptr_base;
unsigned char *ptr;
@@ -275,7 +293,7 @@ void vp8_build_inter_predictors_mby(MACROBLOCKD *x)
if ((mv_row | mv_col) & 7)
{
x->subpixel_predict16x16(ptr, pre_stride, mv_col & 7, mv_row & 7, pred_ptr, 16);
x->subpixel_predict16x16(ptr, pre_stride, mv_col & 7, mv_row & 7, pred_ptr, 16);
}
else
{
@@ -354,8 +372,8 @@ void vp8_build_inter_predictors_mb(MACROBLOCKD *x)
if ((mv_row | mv_col) & 7)
{
x->subpixel_predict8x8(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, 8);
x->subpixel_predict8x8(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, 8);
x->subpixel_predict8x8(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, 8);
x->subpixel_predict8x8(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, 8);
}
else
{
@@ -492,7 +510,7 @@ void vp8_build_uvmvs(MACROBLOCKD *x, int fullpixel)
}
/* The following functions are wriiten for skip_recon_mb() to call. Since there is no recon in this
/* The following functions are written for skip_recon_mb() to call. Since there is no recon in this
* situation, we can write the result directly to dst buffer instead of writing it to predictor
* buffer and then copying it to dst buffer.
*/
@@ -501,22 +519,20 @@ static void vp8_build_inter_predictors_b_s(BLOCKD *d, unsigned char *dst_ptr, vp
int r;
unsigned char *ptr_base;
unsigned char *ptr;
/*unsigned char *pred_ptr = d->predictor;*/
/*unsigned char *pred_ptr = d->predictor_base + d->predictor_offset;*/
int dst_stride = d->dst_stride;
int pre_stride = d->pre_stride;
int ptr_offset = d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
ptr_base = *(d->base_pre);
ptr = ptr_base + ptr_offset;
if (d->bmi.mv.as_mv.row & 7 || d->bmi.mv.as_mv.col & 7)
{
ptr = ptr_base + d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
sppf(ptr, pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, dst_ptr, dst_stride);
}
else
{
ptr_base += d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
ptr = ptr_base;
for (r = 0; r < 4; r++)
{
#ifdef MUST_BE_ALIGNED
@@ -534,14 +550,17 @@ static void vp8_build_inter_predictors_b_s(BLOCKD *d, unsigned char *dst_ptr, vp
}
void vp8_build_inter_predictors_mb_s(MACROBLOCKD *x)
{
/*unsigned char *pred_ptr = x->block[0].predictor;
unsigned char *dst_ptr = *(x->block[0].base_dst) + x->block[0].dst;*/
unsigned char *pred_ptr = x->predictor;
unsigned char *dst_ptr = x->dst.y_buffer;
#if CONFIG_OPENCL && ENABLE_CL_SUBPIXEL
if (cl_initialized == CL_SUCCESS){
vp8_build_inter_predictors_mb_s_cl(x);
return;
}
#endif
if (x->mode_info_context->mbmi.mode != SPLITMV)
{
int offset;
@@ -563,7 +582,7 @@ void vp8_build_inter_predictors_mb_s(MACROBLOCKD *x)
if ((mv_row | mv_col) & 7)
{
x->subpixel_predict16x16(ptr, pre_stride, mv_col & 7, mv_row & 7, dst_ptr, x->dst.y_stride); /*x->block[0].dst_stride);*/
x->subpixel_predict16x16(ptr, pre_stride, mv_col & 7, mv_row & 7, dst_ptr, x->dst.y_stride); /*x->block[0].dst_stride);*/
}
else
{
@@ -579,8 +598,8 @@ void vp8_build_inter_predictors_mb_s(MACROBLOCKD *x)
if ((mv_row | mv_col) & 7)
{
x->subpixel_predict8x8(uptr, pre_stride, mv_col & 7, mv_row & 7, udst_ptr, x->dst.uv_stride);
x->subpixel_predict8x8(vptr, pre_stride, mv_col & 7, mv_row & 7, vdst_ptr, x->dst.uv_stride);
x->subpixel_predict8x8(uptr, pre_stride, mv_col & 7, mv_row & 7, udst_ptr, x->dst.uv_stride);
x->subpixel_predict8x8(vptr, pre_stride, mv_col & 7, mv_row & 7, vdst_ptr, x->dst.uv_stride);
}
else
{
@@ -592,6 +611,8 @@ void vp8_build_inter_predictors_mb_s(MACROBLOCKD *x)
{
/* note: this whole ELSE part is not executed at all. So, no way to test the correctness of my modification. Later,
* if sth is wrong, go back to what it is in build_inter_predictors_mb.
*
* ACW: note: Not sure who the above comment belongs to.
*/
int i;
@@ -605,7 +626,6 @@ void vp8_build_inter_predictors_mb_s(MACROBLOCKD *x)
{
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d->predictor;
ptr_base = *(d->base_pre);
ptr = ptr_base + d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
@@ -621,7 +641,7 @@ void vp8_build_inter_predictors_mb_s(MACROBLOCKD *x)
}
}
}
else
else
{
for (i = 0; i < 16; i += 2)
{
@@ -633,7 +653,6 @@ void vp8_build_inter_predictors_mb_s(MACROBLOCKD *x)
/*build_inter_predictors2b(x, d0, 16);*/
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d0->predictor;
ptr_base = *(d0->base_pre);
ptr = ptr_base + d0->pre + (d0->bmi.mv.as_mv.row >> 3) * d0->pre_stride + (d0->bmi.mv.as_mv.col >> 3);
@@ -665,7 +684,6 @@ void vp8_build_inter_predictors_mb_s(MACROBLOCKD *x)
/*build_inter_predictors2b(x, d0, 8);*/
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d0->predictor;
ptr_base = *(d0->base_pre);
ptr = ptr_base + d0->pre + (d0->bmi.mv.as_mv.row >> 3) * d0->pre_stride + (d0->bmi.mv.as_mv.col >> 3);

View File

@@ -24,7 +24,7 @@ void vp8_recon_intra_mbuv(const vp8_recon_rtcd_vtable_t *rtcd, MACROBLOCKD *x)
for (i = 16; i < 24; i += 2)
{
BLOCKD *b = &x->block[i];
RECON_INVOKE(rtcd, recon2)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(rtcd, recon2)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
}
}

View File

@@ -124,6 +124,18 @@ void vp8_predict_intra4x4(BLOCKD *x,
case B_LD_PRED:
{
unsigned char *ptr = Above;
#if 0
//More readable version of the unrolled loop
int stride = 16, r=0, c=0;
for (r=0; r < 4; r++){
for (c=0; c < 4; c++){
int off = r+c;
int off2 = off > 5 ? 5: off; //Clamp so [3,3] has max off2 of 7
predictor[r*stride+c] = (ptr[off] + ptr[off+1]*2 + ptr[off2+2] + 2)>>2;
}
}
#else
predictor[0 * 16 + 0] = (ptr[0] + ptr[1] * 2 + ptr[2] + 2) >> 2;
predictor[0 * 16 + 1] =
predictor[1 * 16 + 0] = (ptr[1] + ptr[2] * 2 + ptr[3] + 2) >> 2;
@@ -140,7 +152,8 @@ void vp8_predict_intra4x4(BLOCKD *x,
predictor[2 * 16 + 3] =
predictor[3 * 16 + 2] = (ptr[5] + ptr[6] * 2 + ptr[7] + 2) >> 2;
predictor[3 * 16 + 3] = (ptr[6] + ptr[7] * 2 + ptr[7] + 2) >> 2;
#endif
}
break;
case B_RD_PRED:
@@ -311,5 +324,3 @@ void vp8_intra_prediction_down_copy(MACROBLOCKD *x)
*dst_ptr1 = *src_ptr;
*dst_ptr2 = *src_ptr;
}

View File

@@ -11,10 +11,16 @@
#include "swapyv12buffer.h"
void vp8_swap_yv12_buffer(YV12_BUFFER_CONFIG *new_frame, YV12_BUFFER_CONFIG *last_frame)
{
unsigned char *temp;
#if CONFIG_OPENCL
cl_mem temp_mem;
#endif
int temp_size;
temp = last_frame->buffer_alloc;
last_frame->buffer_alloc = new_frame->buffer_alloc;
new_frame->buffer_alloc = temp;
@@ -31,4 +37,14 @@ void vp8_swap_yv12_buffer(YV12_BUFFER_CONFIG *new_frame, YV12_BUFFER_CONFIG *las
last_frame->v_buffer = new_frame->v_buffer;
new_frame->v_buffer = temp;
temp_size = last_frame->buffer_size;
last_frame->buffer_size = new_frame->buffer_size;
new_frame->buffer_size = temp_size;
#if CONFIG_OPENCL
temp_mem = last_frame->buffer_mem;
last_frame->buffer_mem = new_frame->buffer_mem;
new_frame->buffer_mem = temp_mem;
#endif
}

View File

@@ -27,8 +27,8 @@ extern void vp8_dequantize_b_loop_v6(short *Q, short *DQC, short *DQ);
void vp8_dequantize_b_neon(BLOCKD *d)
{
int i;
short *DQ = d->dqcoeff;
short *Q = d->qcoeff;
short *DQ = d->dqcoeff_base + d->dqcoeff_offset;
short *Q = d->qcoeff_base + d->qcoeff_offset;
short *DQC = d->dequant;
vp8_dequantize_b_loop_neon(Q, DQC, DQ);
@@ -39,8 +39,8 @@ void vp8_dequantize_b_neon(BLOCKD *d)
void vp8_dequantize_b_v6(BLOCKD *d)
{
int i;
short *DQ = d->dqcoeff;
short *Q = d->qcoeff;
short *DQ = d->dqcoeff_base + d->dqcoeff_offset;
short *Q = d->qcoeff_base + d->qcoeff_offset;
short *DQC = d->dequant;
vp8_dequantize_b_loop_v6(Q, DQC, DQ);

View File

@@ -17,7 +17,6 @@
#include "vp8/common/reconinter.h"
#include "dequantize.h"
#include "detokenize.h"
#include "vp8/common/invtrans.h"
#include "vp8/common/alloccommon.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/quant_common.h"
@@ -33,10 +32,21 @@
#include "vp8/common/threading.h"
#include "decoderthreading.h"
#include "dboolhuff.h"
#include "vp8/common/blockd.h"
#include <assert.h>
#include <stdio.h>
#include "vpx_config.h"
#if CONFIG_OPENCL
#include "vp8/common/opencl/vp8_opencl.h"
#include "vp8/common/opencl/blockd_cl.h"
#include "opencl/dequantize_cl.h"
#include "opencl/decodframe_cl.h"
#endif
#define PROFILE_OUTPUT 0
void vp8cx_init_de_quantizer(VP8D_COMP *pbi)
{
int i;
@@ -98,6 +108,10 @@ void mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd)
xd->block[24].dequant = pc->Y2dequant[QIndex];
#if CONFIG_OPENCL && ENABLE_CL_IDCT_DEQUANT
mb_init_dequantizer_cl(xd);
#endif
}
#if CONFIG_RUNTIME_CPU_DETECT
@@ -121,6 +135,14 @@ static void skip_recon_mb(VP8D_COMP *pbi, MACROBLOCKD *xd)
else
{
vp8_build_inter_predictors_mb_s(xd);
#if CONFIG_OPENCL
VP8_CL_FINISH(xd->cl_commands);
#if !ONE_CQ_PER_MB
VP8_CL_FINISH(xd->block[0].cl_commands);
VP8_CL_FINISH(xd->block[16].cl_commands);
VP8_CL_FINISH(xd->block[20].cl_commands);
#endif
#endif
}
}
@@ -177,6 +199,7 @@ void clamp_mvs(MACROBLOCKD *xd)
static void decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd)
{
int eobtotal = 0;
int i, do_clamp = xd->mode_info_context->mbmi.need_to_clamp_mvs;
@@ -197,6 +220,27 @@ static void decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd)
xd->mode_info_context->mbmi.dc_diff = 1;
#if PROFILE_OUTPUT
if (xd->frame_type == KEY_FRAME)
printf("Intra-Coded MB\n");
else{
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME){
printf("Intra-Coded Inter-Frame MB\n");
} else {
printf("Inter-Coded MB\n");
}
}
#endif
#if CONFIG_OPENCL
//If OpenCL is enabled and initialized, use CL-specific decoder for remains
//of MB decoding.
if (cl_initialized == CL_SUCCESS){
vp8_decode_macroblock_cl(pbi, xd, eobtotal);
return;
}
#endif
if (xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != SPLITMV && eobtotal == 0)
{
xd->mode_info_context->mbmi.dc_diff = 0;
@@ -229,68 +273,68 @@ static void decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd)
if (xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != SPLITMV)
{
BLOCKD *b = &xd->block[24];
short *qcoeff = b->qcoeff_base + b->qcoeff_offset;
vp8_second_order_fn_t second_order;
DEQUANT_INVOKE(&pbi->dequant, block)(b);
/* do 2nd order transform on the dc block */
if (xd->eobs[24] > 1)
{
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
if (xd->eobs[24] > 1){
second_order = IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16);
((int *)qcoeff)[0] = 0;
((int *)qcoeff)[1] = 0;
((int *)qcoeff)[2] = 0;
((int *)qcoeff)[3] = 0;
((int *)qcoeff)[4] = 0;
((int *)qcoeff)[5] = 0;
((int *)qcoeff)[6] = 0;
((int *)qcoeff)[7] = 0;
} else {
second_order = IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1);
((int *)qcoeff)[0] = 0;
}
second_order(b->dqcoeff_base + b->dqcoeff_offset, &b->diff_base[b->diff_offset]);
DEQUANT_INVOKE (&pbi->dequant, dc_idct_add_y_block)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs, xd->block[24].diff);
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs, &xd->block[24].diff_base[xd->block[24].diff_offset]);
}
else if ((xd->frame_type == KEY_FRAME || xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) && xd->mode_info_context->mbmi.mode == B_PRED)
{
for (i = 0; i < 16; i++)
{
BLOCKD *b = &xd->block[i];
vp8_predict_intra4x4(b, b->bmi.mode, b->predictor);
short *qcoeff = b->qcoeff_base + b->qcoeff_offset;
vp8_predict_intra4x4(b, b->bmi.mode, b->predictor_base + b->predictor_offset);
if (xd->eobs[i] > 1)
{
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
(qcoeff, b->dequant, b->predictor_base + b->predictor_offset,
*(b->base_dst) + b->dst, 16, b->dst_stride);
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)
(b->qcoeff[0] * b->dequant[0], b->predictor,
(qcoeff[0] * b->dequant[0], b->predictor_base + b->predictor_offset,
*(b->base_dst) + b->dst, 16, b->dst_stride);
((int *)b->qcoeff)[0] = 0;
((int *)qcoeff)[0] = 0;
}
}
}
else
{
DEQUANT_INVOKE (&pbi->dequant, idct_add_y_block)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs);
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs);
}
DEQUANT_INVOKE (&pbi->dequant, idct_add_uv_block)
(xd->qcoeff+16*16, xd->block[16].dequant,
xd->predictor+16*16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs+16);
(xd->qcoeff+16*16, xd->block[16].dequant,
xd->predictor+16*16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs+16);
}
@@ -343,6 +387,13 @@ decode_mb_row(VP8D_COMP *pbi, VP8_COMMON *pc, int mb_row, MACROBLOCKD *xd)
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
xd->dst.buffer_alloc = pc->yv12_fb[dst_fb_idx].buffer_alloc;
xd->dst.buffer_size = pc->yv12_fb[dst_fb_idx].buffer_size;
#if CONFIG_OPENCL
xd->dst.buffer_mem = pc->yv12_fb[dst_fb_idx].buffer_mem;
#endif
for (mb_col = 0; mb_col < pc->mb_cols; mb_col++)
{
@@ -378,6 +429,11 @@ decode_mb_row(VP8D_COMP *pbi, VP8_COMMON *pc, int mb_row, MACROBLOCKD *xd)
xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
xd->pre.buffer_alloc = pc->yv12_fb[ref_fb_idx].buffer_alloc;
xd->pre.buffer_size = pc->yv12_fb[ref_fb_idx].buffer_size;
#if CONFIG_OPENCL
xd->pre.buffer_mem = pc->yv12_fb[ref_fb_idx].buffer_mem;
#endif
if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME)
{
@@ -517,7 +573,7 @@ static void init_frame(VP8D_COMP *pbi)
vpx_memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data));
xd->mb_segement_abs_delta = SEGMENT_DELTADATA;
/* reset the mode ref deltasa for loop filter */
/* reset the mode ref deltas for loop filter */
vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
@@ -535,14 +591,13 @@ static void init_frame(VP8D_COMP *pbi)
}
else
{
if (!pc->use_bilinear_mc_filter)
pc->mcomp_filter_type = SIXTAP;
else
pc->mcomp_filter_type = BILINEAR;
/* To enable choice of different interploation filters */
/* To enable choice of different interpolation filters */
if (pc->mcomp_filter_type == SIXTAP)
{
#if CONFIG_OPENCL
xd->sixtap_filter = CL_TRUE;
#endif
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x8);
@@ -550,6 +605,9 @@ static void init_frame(VP8D_COMP *pbi)
}
else
{
#if CONFIG_OPENCL
xd->sixtap_filter = CL_FALSE;
#endif
xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear4x4);
xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x4);
xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x8);
@@ -565,6 +623,7 @@ static void init_frame(VP8D_COMP *pbi)
xd->corrupted = 0; /* init without corruption */
}
int vp8_decode_frame(VP8D_COMP *pbi)
{
vp8_reader *const bc = & pbi->bc;
@@ -614,9 +673,12 @@ int vp8_decode_frame(VP8D_COMP *pbi)
pc->vert_scale = data[6] >> 6;
data += 7;
//Allow resolution changes on key frames.
if (Width != pc->Width || Height != pc->Height)
{
#if CONFIG_MULTITHREAD
int prev_mb_rows = pc->mb_rows;
#endif
if (pc->Width <= 0)
{
@@ -807,19 +869,17 @@ int vp8_decode_frame(VP8D_COMP *pbi)
pc->refresh_last_frame = pc->frame_type == KEY_FRAME || vp8_read_bit(bc);
if (0)
{
FILE *z = fopen("decodestats.stt", "a");
fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n",
pc->current_video_frame,
pc->frame_type,
pc->refresh_golden_frame,
pc->refresh_alt_ref_frame,
pc->refresh_last_frame,
pc->base_qindex);
fclose(z);
}
#if 0
FILE *z = fopen("decodestats.stt", "a");
fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n",
pc->current_video_frame,
pc->frame_type,
pc->refresh_golden_frame,
pc->refresh_alt_ref_frame,
pc->refresh_last_frame,
pc->base_qindex);
fclose(z);
#endif
{
/* read coef probability tree */
@@ -840,6 +900,7 @@ int vp8_decode_frame(VP8D_COMP *pbi)
}
}
//Set up the macroblock's previous/destination buffers
vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->lst_fb_idx], sizeof(YV12_BUFFER_CONFIG));
vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx], sizeof(YV12_BUFFER_CONFIG));
@@ -849,13 +910,13 @@ int vp8_decode_frame(VP8D_COMP *pbi)
#endif
vp8_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]);
/* clear out the coeff buffer */
vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff));
vp8_setup_block_dptrs(xd);
vp8_build_block_doffsets(xd);
/* clear out the coeff buffer */
vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff));
/* Read the mb_no_coeff_skip flag */
pc->mb_no_coeff_skip = (int)vp8_read_bit(bc);
@@ -866,6 +927,13 @@ int vp8_decode_frame(VP8D_COMP *pbi)
vpx_memcpy(&xd->block[0].bmi, &xd->mode_info_context->bmi[0], sizeof(B_MODE_INFO));
#if PROFILE_OUTPUT
if (pc->frame_type == KEY_FRAME)
printf("Key Frame\n");
else
printf("Inter-Frame\n");
#endif
#if CONFIG_MULTITHREAD
if (pbi->b_multithreaded_rd && pc->multi_token_partition != ONE_PARTITION)
{
@@ -886,7 +954,7 @@ int vp8_decode_frame(VP8D_COMP *pbi)
int ibc = 0;
int num_part = 1 << pc->multi_token_partition;
/* Decode the individual macro block */
/* Decode the individual macro blocks */
for (mb_row = 0; mb_row < pc->mb_rows; mb_row++)
{
@@ -903,7 +971,10 @@ int vp8_decode_frame(VP8D_COMP *pbi)
}
}
#if CONFIG_OPENCL
vp8_decode_frame_cl_finish(pbi);
#endif
stop_token_decoder(pbi);
/* Collect information about decoder corruption. */

View File

@@ -21,8 +21,8 @@ extern void vp8_short_idct4x4llm_1_c(short *input, short *output, int pitch);
void vp8_dequantize_b_c(BLOCKD *d)
{
int i;
short *DQ = d->dqcoeff;
short *Q = d->qcoeff;
short *DQ = d->dqcoeff_base + d->dqcoeff_offset;
short *Q = d->qcoeff_base + d->qcoeff_offset;
short *DQC = d->dequant;
for (i = 0; i < 16; i++)

View File

@@ -155,8 +155,8 @@ DECLARE_ALIGNED(16, extern const unsigned char, vp8dx_bitreader_norm[256]);
Prob = coef_probs + (ENTROPY_NODES*2); \
if(c < 15){\
qcoeff_ptr [ scan[c] ] = (INT16) v; \
++c; \
goto DO_WHILE; }\
continue; \
}\
qcoeff_ptr [ scan[15] ] = (INT16) v; \
goto BLOCK_FINISHED;
@@ -249,7 +249,8 @@ BLOCK_LOOP:
Prob = coef_probs;
Prob += v * ENTROPY_NODES;
DO_WHILE:
do{
Prob += coef_bands_x[c];
DECODE_AND_BRANCH_IF_ZERO(Prob[EOB_CONTEXT_NODE], BLOCK_FINISHED);
@@ -328,9 +329,8 @@ ONE_CONTEXT_NODE_0_:
if (c < 15)
{
qcoeff_ptr [ scan[c] ] = (INT16) v;
++c;
goto DO_WHILE;
}
} while (c++ < 15);
qcoeff_ptr [ scan[15] ] = (INT16) v;
BLOCK_FINISHED:

View File

@@ -15,6 +15,7 @@
extern void vp8_arch_x86_decode_init(VP8D_COMP *pbi);
extern void vp8_arch_arm_decode_init(VP8D_COMP *pbi);
extern void vp8_arch_opencl_decode_init(VP8D_COMP *pbi);
void vp8_dmachine_specific_config(VP8D_COMP *pbi)
{
@@ -36,4 +37,8 @@ void vp8_dmachine_specific_config(VP8D_COMP *pbi)
#if ARCH_ARM
vp8_arch_arm_decode_init(pbi);
#endif
#if CONFIG_OPENCL && (ENABLE_CL_IDCT_DEQUANT)
vp8_arch_opencl_decode_init(pbi);
#endif
}

View File

@@ -34,9 +34,22 @@
#include "vpx_ports/arm.h"
#endif
#include "vpx_config.h"
#if CONFIG_OPENCL
#include "vp8/common/opencl/blockd_cl.h"
#include "vp8/common/opencl/vp8_opencl.h"
#endif
extern void vp8_init_loop_filter(VP8_COMMON *cm);
extern void vp8cx_init_de_quantizer(VP8D_COMP *pbi);
#define PROFILE_OUTPUT 0
#if PROFILE_OUTPUT
struct vpx_usec_timer frame_timer;
struct vpx_usec_timer loop_filter_timer;
unsigned int total_mb = 0;
unsigned int total_loop_filter = 0;
#endif
void vp8dx_initialize()
{
@@ -113,6 +126,7 @@ void vp8dx_remove_decompressor(VP8D_PTR ptr)
vp8_decoder_remove_threads(pbi);
#endif
vp8_remove_common(&pbi->common);
vpx_free(pbi);
}
@@ -319,8 +333,83 @@ int vp8dx_receive_compressed_data(VP8D_PTR ptr, unsigned long size, const unsign
pbi->Source = source;
pbi->source_sz = size;
#if CONFIG_OPENCL
pbi->mb.cl_commands = NULL;
if (cl_initialized == CL_SUCCESS){
int err;
//Create command queue for macroblock.
pbi->mb.cl_commands = clCreateCommandQueue(cl_data.context, cl_data.device_id, 0, &err);
if (!pbi->mb.cl_commands || err != CL_SUCCESS) {
printf("Error: Failed to create a command queue!\n");
cl_destroy(NULL, VP8_CL_TRIED_BUT_FAILED);
}
pbi->mb.cl_diff_mem = NULL;
pbi->mb.cl_predictor_mem = NULL;
pbi->mb.cl_qcoeff_mem = NULL;
pbi->mb.cl_dqcoeff_mem = NULL;
pbi->mb.cl_eobs_mem = NULL;
#define SET_ON_ALLOC 0
#if SET_ON_ALLOC
#if ENABLE_CL_SUBPIXEL || ENABLE_CL_IDCT_DEQUANT
VP8_CL_CREATE_BUF(pbi->mb.cl_commands, pbi->mb.cl_predictor_mem, CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
sizeof(cl_uchar)*384, pbi->mb.predictor, goto BUF_DONE, -1);
#endif
#if ENABLE_CL_IDCT_DEQUANT
VP8_CL_CREATE_BUF(pbi->mb.cl_commands, pbi->mb.cl_diff_mem, CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
sizeof(cl_short)*400, pbi->mb.diff, goto BUF_DONE, -1);
VP8_CL_CREATE_BUF(pbi->mb.cl_commands, pbi->mb.cl_qcoeff_mem, CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
sizeof(cl_short)*400, pbi->mb.qcoeff, goto BUF_DONE,-1);
VP8_CL_CREATE_BUF(pbi->mb.cl_commands, pbi->mb.cl_dqcoeff_mem, CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
sizeof(cl_short)*400, pbi->mb.dqcoeff, goto BUF_DONE,-1);
VP8_CL_CREATE_BUF(pbi->mb.cl_commands, pbi->mb.cl_eobs_mem, CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
sizeof(cl_char)*25, pbi->mb.eobs, goto BUF_DONE,-1);
#endif
#else
#if ENABLE_CL_IDCT_DEQUANT || ENABLE_CL_SUBPIXEL
VP8_CL_CREATE_BUF(pbi->mb.cl_commands, pbi->mb.cl_predictor_mem, CL_MEM_READ_WRITE,
sizeof(cl_uchar)*384, NULL, goto BUF_DONE,-1);
#endif
#if ENABLE_CL_IDCT_DEQUANT
VP8_CL_CREATE_BUF(pbi->mb.cl_commands, pbi->mb.cl_diff_mem, CL_MEM_READ_WRITE,
sizeof(cl_short)*400, NULL, goto BUF_DONE,-1);
VP8_CL_CREATE_BUF(pbi->mb.cl_commands, pbi->mb.cl_qcoeff_mem, CL_MEM_READ_WRITE,
sizeof(cl_short)*400, NULL, goto BUF_DONE,-1);
VP8_CL_CREATE_BUF(pbi->mb.cl_commands, pbi->mb.cl_dqcoeff_mem, CL_MEM_READ_WRITE,
sizeof(cl_short)*400, NULL, goto BUF_DONE,-1);
VP8_CL_CREATE_BUF(pbi->mb.cl_commands, pbi->mb.cl_eobs_mem, CL_MEM_READ_WRITE,
sizeof(cl_char) * 25, NULL, goto BUF_DONE,-1);
#endif
#endif
}
#if ENABLE_CL_IDCT_DEQUANT || ENABLE_CL_SUBPIXEL
BUF_DONE:
#endif
#endif
#if PROFILE_OUTPUT
printf("Frame size = %d * %d\n", cm->Height, cm->Width);
printf("Macroblocks = %d * %d\n", cm->mb_rows, cm->mb_cols);
vpx_usec_timer_start(&frame_timer);
#endif
retcode = vp8_decode_frame(pbi);
#if PROFILE_OUTPUT
vpx_usec_timer_mark(&frame_timer);
total_mb += vpx_usec_timer_elapsed(&frame_timer);
#endif
if (retcode < 0)
{
#if HAVE_ARMV7
@@ -375,16 +464,53 @@ int vp8dx_receive_compressed_data(VP8D_PTR ptr, unsigned long size, const unsign
if(pbi->common.filter_level)
{
#if PROFILE_OUTPUT
struct vpx_usec_timer lpftimer;
vpx_usec_timer_start(&lpftimer);
#endif
/* Apply the loop filter if appropriate. */
vp8_loop_filter_frame(cm, &pbi->mb, cm->filter_level);
#if PROFILE_OUTPUT
vpx_usec_timer_mark(&lpftimer);
pbi->time_loop_filtering += vpx_usec_timer_elapsed(&lpftimer);
printf("Loop Filter\n");
total_loop_filter += vpx_usec_timer_elapsed(&lpftimer);
#if 0
if (pbi->common.filter_type == NORMAL_LOOPFILTER){
printf("Normal LF Time (us): %d\n", vpx_usec_timer_elapsed(&lpftimer));
} else {
printf("Simple LF Time (us): %d\n", vpx_usec_timer_elapsed(&lpftimer));
}
#endif
#endif
cm->last_frame_type = cm->frame_type;
cm->last_filter_type = cm->filter_type;
cm->last_sharpness_level = cm->sharpness_level;
}
#if PROFILE_OUTPUT
else {
printf("No Loop Filter\n");
}
#endif
vp8_yv12_extend_frame_borders_ptr(cm->frame_to_show);
}
#if CONFIG_OPENCL
if (cl_initialized == CL_SUCCESS){
//Copy buffer_alloc to buffer_mem so YV12_BUFFER_CONFIG can be used as
//a reference frame (e.g. YV12..buffer_mem contains same as buffer_alloc).
vp8_cl_mb_prep(&pbi->mb, DST_BUF);
if (pbi->mb.cl_commands != NULL)
clReleaseCommandQueue(pbi->mb.cl_commands);
pbi->mb.cl_commands = NULL;
}
#endif
vp8_clear_system_state();
@@ -439,8 +565,18 @@ int vp8dx_receive_compressed_data(VP8D_PTR ptr, unsigned long size, const unsign
}
#endif
pbi->common.error.setjmp = 0;
#if PROFILE_OUTPUT
//Dump the total MB/Loop Filter processing times.
//This is cumulative between frames, so only use the last output value.
printf("MB Time (us): %d, LF Time (us): %d\n", total_mb, total_loop_filter);
#endif
return retcode;
}
int vp8dx_get_raw_frame(VP8D_PTR ptr, YV12_BUFFER_CONFIG *sd, INT64 *time_stamp, INT64 *time_end_stamp, vp8_ppflags_t *flags)
{
int ret = -1;

View File

@@ -0,0 +1,357 @@
/*
* Copyright (c) 2011 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "../onyxd_int.h"
#include "vp8/common/header.h"
#include "vp8/common/reconintra.h"
#include "vp8/common/reconintra4x4.h"
#include "vp8/common/recon.h"
#include "vp8/common/reconinter.h"
//#include "../dequantize.h"
//#include "../detokenize.h"
//#include "vp8/common/alloccommon.h"
//#include "vp8/common/entropymode.h"
//#include "vp8/common/quant_common.h"
//#include "vpx_scale/vpxscale.h"
//#include "vpx_scale/yv12extend.h"
//#include "vp8/common/setupintrarecon.h"
//#include "../decodemv.h"
//#include "vp8/common/extend.h"
//#include "vpx_mem/vpx_mem.h"
//#include "vp8/common/idct.h"
//#include "../dequantize.h"
//#include "vp8/common/predictdc.h"
//#include "vp8/common/threading.h"
//#include "../decoderthreading.h"
//#include "../dboolhuff.h"
//#include "vp8/common/blockd.h"
#include <assert.h>
#include <stdio.h>
#include "vpx_config.h"
#if CONFIG_OPENCL
#include "vp8/common/opencl/vp8_opencl.h"
#include "vp8/common/opencl/blockd_cl.h"
#include "vp8/common/opencl/reconinter_cl.h"
#include "dequantize_cl.h"
#endif
#define PROFILE_OUTPUT 0
//Implemented in ../decodframe.c
extern void mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd);
void mb_init_dequantizer_cl(MACROBLOCKD *xd){
int i, err;
//Set up per-block dequant CL memory. Eventually, might be able to set up
//one large buffer containing the entire large dequant buffer.
if (cl_initialized == CL_SUCCESS){
for (i=0; i < 25; i++){
#if 1 //Initialize CL memory on allocation?
VP8_CL_CREATE_BUF(xd->cl_commands, xd->block[i].cl_dequant_mem,
,
16*sizeof(cl_short),
xd->block[i].dequant,,
);
#else
VP8_CL_CREATE_BUF(xd->cl_commands, xd->block[i].cl_dequant_mem,
,
16*sizeof(cl_short),
NULL,,
);
#endif
}
}
}
#if CONFIG_RUNTIME_CPU_DETECT
#define RTCD_VTABLE(x) (&(pbi)->common.rtcd.x)
#else
#define RTCD_VTABLE(x) NULL
#endif
/* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it
* to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy.
*/
static void skip_recon_mb_cl(VP8D_COMP *pbi, MACROBLOCKD *xd)
{
if (xd->frame_type == KEY_FRAME || xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
{
vp8_build_intra_predictors_mbuv_s(xd);
RECON_INVOKE(&pbi->common.rtcd.recon,
build_intra_predictors_mby_s)(xd);
}
else
{
#if ENABLE_CL_SUBPIXEL
if (cl_initialized == CL_SUCCESS)
{
vp8_build_inter_predictors_mb_s_cl(xd);
} else
#endif
{
vp8_build_inter_predictors_mb_s(xd);
}
VP8_CL_FINISH(xd->cl_commands);
#if !ONE_CQ_PER_MB
VP8_CL_FINISH(xd->block[0].cl_commands);
VP8_CL_FINISH(xd->block[16].cl_commands);
VP8_CL_FINISH(xd->block[20].cl_commands);
#endif
}
}
void vp8_decode_macroblock_cl(VP8D_COMP *pbi, MACROBLOCKD *xd, int eobtotal)
{
int i;
if (xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != SPLITMV && eobtotal == 0)
{
xd->mode_info_context->mbmi.dc_diff = 0;
skip_recon_mb_cl(pbi, xd);
return;
}
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
/* do prediction */
if (xd->frame_type == KEY_FRAME || xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME)
{
vp8_build_intra_predictors_mbuv(xd);
if (xd->mode_info_context->mbmi.mode != B_PRED)
{
RECON_INVOKE(&pbi->common.rtcd.recon,
build_intra_predictors_mby)(xd);
} else {
vp8_intra_prediction_down_copy(xd);
}
}
else
{
#if ENABLE_CL_SUBPIXEL
vp8_build_inter_predictors_mb_cl(xd);
#else
vp8_build_inter_predictors_mb(xd);
#endif
#if !ENABLE_CL_IDCT_DEQUANT
//Wait for inter-predict if dequant/IDCT is being done on the CPU
VP8_CL_FINISH(xd->cl_commands);
#endif
}
/* dequantization and idct */
if (xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != SPLITMV)
{
BLOCKD *b = &xd->block[24];
short *qcoeff = b->qcoeff_base + b->qcoeff_offset;
vp8_second_order_fn_t second_order;
#if ENABLE_CL_IDCT_DEQUANT
if (cl_initialized == CL_SUCCESS){
vp8_cl_block_prep(b, DEQUANT|QCOEFF);
vp8_dequantize_b_cl(b);
vp8_cl_block_finish(b, DQCOEFF);
VP8_CL_FINISH(b->cl_commands); //Keep until qcoeff memset below is CL
}
else
#endif
{
DEQUANT_INVOKE(&pbi->dequant, block)(b);
}
/* do 2nd order transform on the dc block */
if (xd->eobs[24] > 1){
second_order = IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16);
((int *)qcoeff)[0] = 0;
((int *)qcoeff)[1] = 0;
((int *)qcoeff)[2] = 0;
((int *)qcoeff)[3] = 0;
((int *)qcoeff)[4] = 0;
((int *)qcoeff)[5] = 0;
((int *)qcoeff)[6] = 0;
((int *)qcoeff)[7] = 0;
} else {
second_order = IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1);
((int *)qcoeff)[0] = 0;
}
#if ENABLE_CL_IDCT_DEQUANT
if (cl_initialized == CL_SUCCESS){
int y_off = xd->dst.y_buffer - xd->dst.buffer_alloc;
vp8_cl_block_prep(b, DQCOEFF|DIFF);
if (xd->eobs[24] > 1)
{
vp8_short_inv_walsh4x4_cl(b);
} else {
vp8_short_inv_walsh4x4_1_cl(b);
}
vp8_cl_block_finish(b, DIFF);
vp8_dequant_dc_idct_add_y_block_cl(&xd->block[0],
xd->dst.buffer_alloc, xd->dst.buffer_mem, y_off, xd->dst.y_stride, xd->eobs,
xd->block[24].diff_offset);
}
else
#endif
{
second_order(b->dqcoeff_base + b->dqcoeff_offset, &b->diff_base[b->diff_offset]);
DEQUANT_INVOKE (&pbi->dequant, dc_idct_add_y_block)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs, &xd->block[24].diff_base[xd->block[24].diff_offset]);
}
}
else if ((xd->frame_type == KEY_FRAME || xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) && xd->mode_info_context->mbmi.mode == B_PRED)
{
#if ENABLE_CL_IDCT_DEQUANT
if (cl_initialized == CL_SUCCESS)
vp8_cl_mb_prep(xd, DST_BUF);
#endif
for (i = 0; i < 16; i++)
{
BLOCKD *b = &xd->block[i];
short *qcoeff = b->qcoeff_base + b->qcoeff_offset;
#if ENABLE_CL_IDCT_DEQUANT
VP8_CL_FINISH(b->cl_commands);
#endif
vp8_predict_intra4x4(b, b->bmi.mode, b->predictor_base + b->predictor_offset);
#if ENABLE_CL_IDCT_DEQUANT
if (cl_initialized == CL_SUCCESS){
size_t dst_size = (4*b->dst_stride + b->dst + 4);
cl_mem dst_mem = xd->dst.buffer_mem;
int dst_off = *(b->base_dst) - xd->dst.buffer_alloc;
if (xd->eobs[i] > 1)
{
vp8_cl_block_prep(b, QCOEFF|DEQUANT|PREDICTOR);
vp8_dequant_idct_add_cl(b, *(b->base_dst), dst_mem, dst_off+b->dst, dst_size, b->qcoeff_offset, b->predictor_offset, 16, b->dst_stride, DEQUANT_INVOKE(&pbi->dequant, idct_add));
vp8_cl_block_finish(b, QCOEFF);
}
else
{
vp8_cl_block_prep(b, PREDICTOR|DIFF|QCOEFF|DEQUANT);
vp8_dc_only_idct_add_cl(b, CL_FALSE, 0, b->qcoeff_offset, b->predictor_offset,
*(b->base_dst), dst_mem, dst_off+b->dst, dst_size, 16, b->dst_stride);
VP8_CL_FINISH(b->cl_commands);
((int *)(b->qcoeff_base + b->qcoeff_offset))[0] = 0; //Move into follow-up kernel?
}
vp8_cl_mb_finish(xd,DST_BUF);
}
else
#endif
{
if (xd->eobs[i] > 1)
{
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(qcoeff, b->dequant, b->predictor_base + b->predictor_offset,
*(b->base_dst) + b->dst, 16, b->dst_stride);
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)
(qcoeff[0] * b->dequant[0], b->predictor_base + b->predictor_offset,
*(b->base_dst) + b->dst, 16, b->dst_stride);
((int *)qcoeff)[0] = 0;
}
}
}
}
else
{
#if ENABLE_CL_IDCT_DEQUANT
if (cl_initialized == CL_SUCCESS){
vp8_cl_mb_prep(xd,DST_BUF);
vp8_dequant_idct_add_y_block_cl(pbi, xd);
vp8_cl_mb_finish(xd,DST_BUF);
}
else
#endif
{
DEQUANT_INVOKE (&pbi->dequant, idct_add_y_block)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs);
}
}
#if ENABLE_CL_IDCT_DEQUANT
if (cl_initialized == CL_SUCCESS){
vp8_cl_mb_prep(xd,DST_BUF);
vp8_dequant_idct_add_uv_block_cl(pbi, xd, DEQUANT_INVOKE (&pbi->dequant, idct_add_uv_block));
vp8_cl_mb_finish(xd,DST_BUF);
VP8_CL_FINISH(xd->cl_commands);
} else
#endif
{
DEQUANT_INVOKE (&pbi->dequant, idct_add_uv_block)
(xd->qcoeff+16*16, xd->block[16].dequant,
xd->predictor+16*16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs+16);
}
}
void vp8_decode_frame_cl_finish(VP8D_COMP *pbi){
//If using OpenCL, free all of the GPU buffers we've allocated.
if (cl_initialized == CL_SUCCESS){
#if ENABLE_CL_IDCT_DEQUANT
int i;
#endif
//Wait for stuff to finish, just in case
clFinish(pbi->mb.cl_commands);
#if !ONE_CQ_PER_MB
clFinish(pbi->mb.block[0].cl_commands);
clFinish(pbi->mb.block[16].cl_commands);
clFinish(pbi->mb.block[20].cl_commands);
clReleaseCommandQueue(pbi->mb.block[0].cl_commands);
clReleaseCommandQueue(pbi->mb.block[16].cl_commands);
clReleaseCommandQueue(pbi->mb.block[20].cl_commands);
#endif
#if ENABLE_CL_IDCT_DEQUANT || ENABLE_CL_SUBPIXEL
//Free Predictor CL buffer
if (pbi->mb.cl_predictor_mem != NULL)
clReleaseMemObject(pbi->mb.cl_predictor_mem);
#endif
#if ENABLE_CL_IDCT_DEQUANT
//Free other CL Block/MBlock buffers
if (pbi->mb.cl_diff_mem != NULL)
clReleaseMemObject(pbi->mb.cl_diff_mem);
if (pbi->mb.cl_qcoeff_mem != NULL)
clReleaseMemObject(pbi->mb.cl_qcoeff_mem);
if (pbi->mb.cl_dqcoeff_mem != NULL)
clReleaseMemObject(pbi->mb.cl_dqcoeff_mem);
if (pbi->mb.cl_eobs_mem != NULL)
clReleaseMemObject(pbi->mb.cl_eobs_mem);
for (i = 0; i < 25; i++){
clReleaseMemObject(pbi->mb.block[i].cl_dequant_mem);
pbi->mb.block[i].cl_dequant_mem = NULL;
}
#endif
}
}

View File

@@ -0,0 +1,31 @@
/*
* Copyright (c) 2011 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP8_DECODFRAME_CL_H
#define VP8_DECODFRAME_CL_H
#ifdef __cplusplus
extern "C" {
#endif
#include "../onyxd_int.h"
#include "vp8/common/blockd.h"
//Implemented in decodframe_cl.c
extern void mb_init_dequantizer_cl(MACROBLOCKD *xd);
extern void vp8_decode_frame_cl_finish(VP8D_COMP *pbi);
extern void vp8_decode_macroblock_cl(VP8D_COMP *pbi, MACROBLOCKD *xd, int eobtotal);
#ifdef __cplusplus
}
#endif
#endif /* VP8_DECODFRAME_CL_H */

View File

@@ -0,0 +1,214 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
//ACW: Remove me after debugging.
#include <stdio.h>
#include <string.h>
#include "vp8/common/opencl/blockd_cl.h"
#include "vp8/common/opencl/idct_cl.h"
#include "dequantize_cl.h"
const char *dequantCompileOptions = "";
const char *dequant_cl_file_name = "vp8/decoder/opencl/dequantize_cl.cl";
void cl_memset_short(short *s, int c, size_t n) {
for (n /= sizeof(short); n > 0; --n)
*s++ = c;
}
void vp8_memset_short_cl(cl_mem mem, int offset, short val){
}
int cl_destroy_dequant(){
printf("Freeing dequant decoder resources\n");
VP8_CL_RELEASE_KERNEL(cl_data.vp8_dequant_dc_idct_add_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_dequant_idct_add_kernel);
VP8_CL_RELEASE_KERNEL(cl_data.vp8_dequantize_b_kernel);
if (cl_data.dequant_program)
clReleaseProgram(cl_data.dequant_program);
cl_data.dequant_program = NULL;
return CL_SUCCESS;
}
int cl_init_dequant() {
int err;
//printf("Initializing dequant program/kernels\n");
// Create the compute program from the file-defined source code
if (cl_load_program(&cl_data.dequant_program, dequant_cl_file_name,
dequantCompileOptions) != CL_SUCCESS)
return VP8_CL_TRIED_BUT_FAILED;
// Create the compute kernels in the program we wish to run
VP8_CL_CREATE_KERNEL(cl_data,dequant_program,vp8_dequant_dc_idct_add_kernel,"vp8_dequant_dc_idct_add_kernel");
VP8_CL_CREATE_KERNEL(cl_data,dequant_program,vp8_dequant_idct_add_kernel,"vp8_dequant_idct_add_kernel");
VP8_CL_CREATE_KERNEL(cl_data,dequant_program,vp8_dequantize_b_kernel,"vp8_dequantize_b_kernel");
//printf("Created dequant kernels\n");
return CL_SUCCESS;
}
void vp8_dequantize_b_cl(BLOCKD *d)
{
int err;
size_t global = 16;
/* Set kernel arguments */
err = 0;
err = clSetKernelArg(cl_data.vp8_dequantize_b_kernel, 0, sizeof (cl_mem), &d->cl_dqcoeff_mem);
err |= clSetKernelArg(cl_data.vp8_dequantize_b_kernel, 1, sizeof (cl_int), &d->dqcoeff_offset);
err |= clSetKernelArg(cl_data.vp8_dequantize_b_kernel, 2, sizeof (cl_mem), &d->cl_qcoeff_mem);
err |= clSetKernelArg(cl_data.vp8_dequantize_b_kernel, 3, sizeof (cl_int), &d->qcoeff_offset);
err |= clSetKernelArg(cl_data.vp8_dequantize_b_kernel, 4, sizeof (cl_mem), &d->cl_dequant_mem);
VP8_CL_CHECK_SUCCESS( d->cl_commands, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",
vp8_dequantize_b_c(d),
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel( d->cl_commands, cl_data.vp8_dequantize_b_kernel, 1, NULL, &global, NULL , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( d->cl_commands, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);\
vp8_dequantize_b_c(d),
);
}
void vp8_dequant_idct_add_cl(BLOCKD *b, unsigned char *dest_base, cl_mem dest_mem, int dest_offset, size_t dst_size, int q_offset, int pred_offset, int pitch, int stride, vp8_dequant_idct_add_fn_t idct_add)
{
int err;
size_t global = 1;
//cl_mem dest_mem = NULL;
int free_mem = 0;
if (dest_mem == NULL){
//Initialize destination memory
VP8_CL_CREATE_BUF(b->cl_commands, dest_mem, CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
dst_size, dest_base,,
);
free_mem = 1;
}
/* Set kernel arguments */
err = 0;
err = clSetKernelArg(cl_data.vp8_dequant_idct_add_kernel, 0, sizeof (cl_mem), &b->cl_qcoeff_mem);
err |= clSetKernelArg(cl_data.vp8_dequant_idct_add_kernel, 1, sizeof (int), &q_offset);
err |= clSetKernelArg(cl_data.vp8_dequant_idct_add_kernel, 2, sizeof (cl_mem), &b->cl_dequant_mem);
err |= clSetKernelArg(cl_data.vp8_dequant_idct_add_kernel, 3, sizeof (cl_mem), &b->cl_predictor_mem);
err |= clSetKernelArg(cl_data.vp8_dequant_idct_add_kernel, 4, sizeof (int), &pred_offset);
err |= clSetKernelArg(cl_data.vp8_dequant_idct_add_kernel, 5, sizeof (cl_mem), &dest_mem);
err |= clSetKernelArg(cl_data.vp8_dequant_idct_add_kernel, 6, sizeof (int), &dest_offset);
err |= clSetKernelArg(cl_data.vp8_dequant_idct_add_kernel, 7, sizeof (int), &pitch);
err |= clSetKernelArg(cl_data.vp8_dequant_idct_add_kernel, 8, sizeof (int), &stride);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",
idct_add(b->qcoeff_base+q_offset, b->dequant, b->predictor_base + pred_offset,
dest_base + dest_offset, pitch, stride),
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel( b->cl_commands, cl_data.vp8_dequant_idct_add_kernel, 1, NULL, &global, NULL , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);\
idct_add(b->qcoeff_base+q_offset, b->dequant, b->predictor_base + pred_offset,
dest_base + dest_offset, pitch, stride),
);
if (free_mem == 1){
/* Read back the result data from the device */
err = clEnqueueReadBuffer(b->cl_commands, dest_mem, CL_FALSE, 0, dst_size, dest_base, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to read output array!\n",
idct_add(b->qcoeff_base+q_offset, b->dequant, b->predictor_base + pred_offset,
dest_base + dest_offset, pitch, stride),
);
//CL Spec says this can be freed without clFinish first
clReleaseMemObject(dest_mem);
}
return;
}
//Can modify arguments. Only called from vp8_dequant_dc_idct_add_y_block_cl.
void vp8_dequant_dc_idct_add_cl(
BLOCKD *b,
int qcoeff_offset,
int pred_offset,
unsigned char *dest_base,
int dest_off,
int pitch,
int stride,
int Dc_offset)
{
int err;
int dq_offset = 0;
unsigned char *dest = dest_base + dest_off;
cl_mem dest_mem = NULL;
size_t dest_size;
size_t global = 1;
int dest_offset=0;
//Initialize dest_mem
dest_size = sizeof(cl_uchar)*(4*stride + dest_offset + 4);
VP8_CL_CREATE_BUF(b->cl_commands, dest_mem, CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR,
dest_size, dest,,
);
//Assuming that all input cl_mem has been initialized outside of this Fn.
/* Set kernel arguments */
err = 0;
err = clSetKernelArg(cl_data.vp8_dequant_dc_idct_add_kernel, 0, sizeof (cl_mem), &b->cl_qcoeff_mem);
err |= clSetKernelArg(cl_data.vp8_dequant_dc_idct_add_kernel, 1, sizeof (int), &qcoeff_offset);
err |= clSetKernelArg(cl_data.vp8_dequant_dc_idct_add_kernel, 2, sizeof (cl_mem), &b->cl_dequant_mem);
err |= clSetKernelArg(cl_data.vp8_dequant_dc_idct_add_kernel, 3, sizeof(int), &dq_offset);
err |= clSetKernelArg(cl_data.vp8_dequant_dc_idct_add_kernel, 4, sizeof (cl_mem), &b->cl_predictor_mem);
err |= clSetKernelArg(cl_data.vp8_dequant_dc_idct_add_kernel, 5, sizeof (int), &pred_offset);
err |= clSetKernelArg(cl_data.vp8_dequant_dc_idct_add_kernel, 6, sizeof (cl_mem), &b->cl_diff_mem);
err |= clSetKernelArg(cl_data.vp8_dequant_dc_idct_add_kernel, 7, sizeof (int), &Dc_offset);
err |= clSetKernelArg(cl_data.vp8_dequant_dc_idct_add_kernel, 8, sizeof (cl_mem), &dest_mem);
err |= clSetKernelArg(cl_data.vp8_dequant_dc_idct_add_kernel, 9, sizeof (int), &pitch);
err |= clSetKernelArg(cl_data.vp8_dequant_dc_idct_add_kernel, 10, sizeof (int), &stride);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to set kernel arguments!\n",,
);
/* Execute the kernel */
err = clEnqueueNDRangeKernel( b->cl_commands, cl_data.vp8_dequant_dc_idct_add_kernel, 1, NULL, &global, NULL , 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to execute kernel!\n",
printf("err = %d\n",err);,
);
/* Read back the result data from the device */
err = clEnqueueReadBuffer(b->cl_commands, dest_mem, CL_FALSE, 0, dest_size, dest, 0, NULL, NULL);
VP8_CL_CHECK_SUCCESS( b->cl_commands, err != CL_SUCCESS,
"Error: Failed to read output array!\n",,
);
//CL Spec says this can be freed without clFinish first
clReleaseMemObject(dest_mem);
dest_mem = NULL;
return;
}

View File

@@ -0,0 +1,272 @@
#pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable
#pragma OPENCL EXTENSION cl_amd_printf : enable
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
__constant int cospi8sqrt2minus1 = 20091;
__constant int sinpi8sqrt2 = 35468;
__constant int rounding = 0;
void vp8_short_idct4x4llm(__global short*, short*, int);
void cl_memset_short(__global short*, int, size_t);
#define USE_VECTORS 0
__kernel void vp8_dequantize_b_kernel(
__global short *dqcoeff_base,
int dqcoeff_offset,
__global short *qcoeff_base,
int qcoeff_offset,
__global short *dequant
)
{
__global short *DQ = dqcoeff_base + dqcoeff_offset;
__global short *Q = qcoeff_base + qcoeff_offset;
#if USE_VECTORS
vstore16(vload16(0,Q) * vload16(0,dequant), 0, DQ);
#else
int tid = get_global_id(0);
if (tid < 16)
{
DQ[tid] = Q[tid] * dequant[tid];
}
#endif
}
__kernel void vp8_dequant_idct_add_kernel(
__global short *input_base,
int input_offset,
__global short *dq,
__global unsigned char *pred_base,
int pred_offset,
__global unsigned char *dest_base,
int dest_offset,
int pitch,
int stride
)
{
short output[16];
short *diff_ptr = output;
int r, c;
int i;
__global unsigned char *dest = dest_base + dest_offset;
__global short *input = input_base + input_offset;
__global unsigned char *pred = pred_base + pred_offset;
#if USE_VECTORS
vstore16( (short16)vload16(0,dq) * (short16)vload16(0,input) , 0, input);
#else
for (i = 0; i < 16; i++)
{
input[i] = dq[i] * input[i];
}
#endif
/* the idct halves ( >> 1) the pitch */
vp8_short_idct4x4llm(input, output, 4 << 1);
//Note, remember to copy back the input buffer (qcoeff) to system memory.
cl_memset_short(input, 0, 32);
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
int a = diff_ptr[c] + pred[c];
if (a < 0)
a = 0;
if (a > 255)
a = 255;
dest[c] = (unsigned char) a;
}
dest += stride;
diff_ptr += 4;
pred += pitch;
}
}
__kernel void vp8_dequant_dc_idct_add_kernel(
__global short *qcoeff_base,
int qcoeff_offset,
__global short *dequant_base,
int dequant_offset,
__global unsigned char *pred_base,
int pred_offset,
__global short *diff_base,
int diff_offset,
__global unsigned char *dest,
int pitch,
int stride
)
{
int i;
short output[16];
short *diff_ptr = output;
int r, c;
global short *input = &qcoeff_base[qcoeff_offset];
global short *dq = &dequant_base[dequant_offset];
global unsigned char *pred = pred_base + pred_offset;
//A modified input buffer... copy back to System memory when done!
input[0] = diff_base[diff_offset];
#if USE_VECTORS
vstore16( (short16)vload16(0,dq) * (short16)vload16(0,input) , 0, input);
#else
for (i = 1; i < 16; i++)
{
input[i] = dq[i] * input[i];
}
#endif
/* the idct halves ( >> 1) the pitch */
vp8_short_idct4x4llm(input, output, 4 << 1);
cl_memset_short(input, 0, 32);
for (r = 0; r < 4; r++)
{
for (c = 0; c < 4; c++)
{
int a = diff_ptr[c] + pred[c];
if (a < 0)
a = 0;
if (a > 255)
a = 255;
dest[c] = (unsigned char) a;
}
dest += stride;
diff_ptr += 4;
pred += pitch;
}
}
//Note that this kernel has been copied from common/opencl/idctllm_cl.cl
void vp8_short_idct4x4llm(
__global short *input,
short *output,
int pitch
)
{
int i;
int a1, b1, c1, d1;
__global short *ip = input;
short *op = output;
int temp1, temp2;
int shortpitch = pitch >> 1;
for (i = 0; i < 4; i++)
{
a1 = ip[0] + ip[8];
b1 = ip[0] - ip[8];
temp1 = (ip[4] * sinpi8sqrt2 + rounding) >> 16;
temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1 + rounding) >> 16);
c1 = temp1 - temp2;
temp1 = ip[4] + ((ip[4] * cospi8sqrt2minus1 + rounding) >> 16);
temp2 = (ip[12] * sinpi8sqrt2 + rounding) >> 16;
d1 = temp1 + temp2;
op[shortpitch*0] = a1 + d1;
op[shortpitch*3] = a1 - d1;
op[shortpitch*1] = b1 + c1;
op[shortpitch*2] = b1 - c1;
ip++;
op++;
}
op = output;
for (i = 0; i < 4; i++)
{
a1 = op[0] + op[2];
b1 = op[0] - op[2];
temp1 = (op[1] * sinpi8sqrt2 + rounding) >> 16;
temp2 = op[3] + ((op[3] * cospi8sqrt2minus1 + rounding) >> 16);
c1 = temp1 - temp2;
temp1 = op[1] + ((op[1] * cospi8sqrt2minus1 + rounding) >> 16);
temp2 = (op[3] * sinpi8sqrt2 + rounding) >> 16;
d1 = temp1 + temp2;
op[0] = (a1 + d1 + 4) >> 3;
op[3] = (a1 - d1 + 4) >> 3;
op[1] = (b1 + c1 + 4) >> 3;
op[2] = (b1 - c1 + 4) >> 3;
op += shortpitch;
}
}
void vp8_dc_only_idct_add_kernel(
short input_dc,
__global unsigned char *pred_ptr,
__global unsigned char *dst_ptr,
int pitch,
int stride
)
{
int a1 = ((input_dc + 4) >> 3);
int r, c;
int pred_offset,dst_offset;
int tid = get_global_id(0);
if (tid < 16){
r = tid / 4;
c = tid % 4;
pred_offset = r * pitch;
dst_offset = r * stride;
int a = a1 + pred_ptr[pred_offset + c] ;
if (a < 0)
a = 0;
else if (a > 255)
a = 255;
dst_ptr[dst_offset + c] = (unsigned char) a ;
}
}
void cl_memset_short(__global short *s, int c, size_t n) {
int i;
for (i = 0; i < n/2; i++)
*s++ = c;
}

View File

@@ -0,0 +1,74 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef DEQUANTIZE_CL_H
#define DEQUANTIZE_CL_H
#ifdef __cplusplus
extern "C" {
#endif
#include "vp8/decoder/onyxd_int.h"
#include "vp8/decoder/dequantize.h"
#include "vp8/common/opencl/vp8_opencl.h"
#define prototype_dequant_block_cl(sym) \
void sym(BLOCKD *x)
#define prototype_dequant_idct_add_cl(sym) \
void sym(BLOCKD *b, unsigned char *dest_base,cl_mem dest_mem, int dest_offset, size_t dest_size, int q_offset, \
int pred_offset, int pitch, int stride, \
vp8_dequant_idct_add_fn_t idct_add)
#define prototype_dequant_dc_idct_add_cl(sym) \
void sym(BLOCKD* b, int qcoeff_offset, \
int pred_offset, unsigned char *dest_base, int dst_offset, \
int pitch, int stride, \
int dc)
#define prototype_dequant_dc_idct_add_y_block_cl(sym) \
void sym(BLOCKD *b, \
unsigned char *dst_base, cl_mem dst_mem, int dst_off,\
int stride, char *eobs, int dc_offset)
#define prototype_dequant_idct_add_y_block_cl(sym) \
void sym(VP8D_COMP *pbi, MACROBLOCKD *xd)
#define prototype_dequant_idct_add_uv_block_cl(sym) \
void sym(VP8D_COMP *pbi, MACROBLOCKD *xd, \
vp8_dequant_idct_add_uv_block_fn_t idct_add_uv_block)
extern prototype_dequant_block_cl(vp8_dequantize_b_cl);
//CL functions
extern prototype_dequant_idct_add_cl(vp8_dequant_idct_add_cl);
//C functions
extern prototype_dequant_dc_idct_add_cl(vp8_dequant_dc_idct_add_cl);
//Might be CL... check implementation.
extern prototype_dequant_dc_idct_add_y_block_cl(vp8_dequant_dc_idct_add_y_block_cl);
extern prototype_dequant_idct_add_y_block_cl(vp8_dequant_idct_add_y_block_cl);
extern prototype_dequant_idct_add_uv_block_cl(vp8_dequant_idct_add_uv_block_cl);
extern const char *dequantCompileOptions;
extern const char *dequant_cl_file_name;
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,196 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp8/decoder/onyxd_int.h"
#include "vpx_ports/config.h"
#include "../../common/idct.h"
#include "vp8/common/opencl/blockd_cl.h"
#include "dequantize_cl.h"
//change q/dq/pre/eobs/dc to offsets
void vp8_dequant_dc_idct_add_y_block_cl(
BLOCKD *b,
unsigned char *dst_base, //xd->dst.buffer_alloc
cl_mem dst_mem,
int dst_off,
int stride, //xd->dst.y_stride
char *eobs, //xd->eobs
int dc_offset //xd->block[24].diff_offset
)
{
int i, j;
int q_offset = 0;
int pre_offset = 0;
int dst_offset = 0;
unsigned char *dst = dst_base+dst_off;
size_t dst_size = 16*(stride+1);
vp8_cl_block_prep(b, QCOEFF|DEQUANT|DIFF|PREDICTOR);
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
if (*eobs++ > 1){
vp8_dequant_dc_idct_add_cl (b, q_offset, pre_offset, dst, dst_offset, 16, stride, dc_offset);
}
else{
vp8_dc_only_idct_add_cl(b, CL_TRUE, dc_offset, 0, pre_offset, dst, NULL, dst_offset, dst_size, 16, stride);
}
q_offset += 16;
pre_offset += 4;
dst_offset += 4;
dc_offset++;
}
pre_offset += 64 - 16;
dst_offset += 4*stride - 16;
}
vp8_cl_block_finish(b, QCOEFF);
}
void vp8_dequant_idct_add_y_block_cl (VP8D_COMP *pbi, MACROBLOCKD *xd)
{
int i, j;
short *q = xd->qcoeff;
int q_offset = 0;
int pre_offset = 0;
cl_mem dst_mem = xd->dst.buffer_mem;
unsigned char *dst = xd->dst.buffer_alloc;
int dst_offset = xd->dst.y_buffer - dst;
int stride = xd->dst.y_stride;
char *eobs = xd->eobs;
int dst_size = 16 * (stride + 1);
vp8_cl_mb_prep(xd,PREDICTOR|DIFF|QCOEFF);
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
if (*eobs++ > 1){
vp8_cl_block_prep(&xd->block[0], DEQUANT);
vp8_dequant_idct_add_cl(&xd->block[0], dst, dst_mem, dst_offset, dst_size+dst_offset, q_offset, pre_offset, 16, stride, pbi->dequant.idct_add);
vp8_cl_block_finish(&xd->block[0], QCOEFF);
}
else
{
vp8_cl_block_prep(&xd->block[0], DEQUANT);
vp8_dc_only_idct_add_cl(&xd->block[0], CL_FALSE, 0, q_offset, pre_offset, dst, dst_mem, dst_offset, dst_size+dst_offset, 16, stride);
VP8_CL_FINISH(xd->cl_commands);
((int *)(q+q_offset))[0] = 0;
vp8_cl_mb_prep(xd,QCOEFF);
}
q_offset += 16;
pre_offset += 4;
dst_offset += 4;
}
pre_offset += 64 - 16;
dst_offset += 4*stride - 16;
}
}
void vp8_dequant_idct_add_uv_block_cl(VP8D_COMP *pbi, MACROBLOCKD *xd,
vp8_dequant_idct_add_uv_block_fn_t idct_add_uv_block
)
{
int i, j;
int block_num = 16;
BLOCKD b = xd->block[block_num];
short *q = xd->qcoeff;
cl_mem dst_mem = xd->dst.buffer_mem;
unsigned char *dst = xd->dst.buffer_alloc;
int u_off = xd->dst.u_buffer - dst;
int v_off = xd->dst.v_buffer - dst;
int stride = xd->dst.uv_stride;
size_t dst_size = 8*(stride+1);
char *eobs = xd->eobs+16;
int pre_offset = block_num*16;
int q_offset = block_num*16;
int dst_offset = 0;
vp8_cl_mb_prep(xd, DIFF|QCOEFF|PREDICTOR);
for (i = 0; i < 2; i++)
{
for (j = 0; j < 2; j++)
{
if (*eobs++ > 1){
vp8_cl_block_prep(&xd->block[0], DEQUANT);
vp8_dequant_idct_add_cl(&b, dst, dst_mem, u_off+dst_offset, u_off+dst_size, q_offset, pre_offset, 8, stride, DEQUANT_INVOKE (&pbi->dequant, idct_add));
}
else
{
vp8_cl_block_prep(&xd->block[block_num], DEQUANT);
vp8_dc_only_idct_add_cl (&b, CL_FALSE, 0, q_offset, pre_offset, dst, dst_mem, u_off+dst_offset, u_off+dst_size, 8, stride);
//Need round trip + finish until qcoeff set in CL
vp8_cl_block_finish(&xd->block[0], QCOEFF);
VP8_CL_FINISH(xd->cl_commands);
((int *)(q+q_offset))[0] = 0;
vp8_cl_mb_prep(xd,QCOEFF);
}
q_offset += 16;
pre_offset += 4;
dst_offset += 4;
}
pre_offset += 32 - 8;
dst_offset += 4*stride - 8;
}
//Swap dstu out of cl_mem and dstv into it
dst_offset = 0;
for (i = 0; i < 2; i++)
{
for (j = 0; j < 2; j++)
{
if (*eobs++ > 1){
vp8_cl_block_prep(&b, DEQUANT);
vp8_dequant_idct_add_cl (&b, dst, dst_mem, v_off+dst_offset, v_off+dst_size, q_offset,
pre_offset, 8, stride, DEQUANT_INVOKE (&pbi->dequant, idct_add));
}
else
{
vp8_cl_block_prep(&b, DEQUANT);
vp8_dc_only_idct_add_cl (&b, CL_FALSE, 0, q_offset, pre_offset,
dst, dst_mem, v_off+dst_offset, v_off+dst_size, 8, stride);
//Eventually replace with memset kernel call to prevent round trip
vp8_cl_mb_finish(xd,QCOEFF);
VP8_CL_FINISH(xd->cl_commands);
((int *)(q+q_offset))[0] = 0;
vp8_cl_mb_prep(xd,QCOEFF);
}
q_offset += 16;
pre_offset += 4;
dst_offset += 4;
}
pre_offset += 32 - 8;
dst_offset += 4*stride - 8;
}
vp8_cl_mb_finish(xd,QCOEFF);
}

View File

@@ -0,0 +1,25 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_ports/config.h"
#include "vp8/decoder/onyxd_int.h"
#include "vp8/common/opencl/vp8_opencl.h"
#include "vp8_decode_cl.h"
void vp8_arch_opencl_decode_init(VP8D_COMP *pbi)
{
if (cl_initialized == CL_SUCCESS){
cl_decode_init();
}
}

View File

@@ -0,0 +1,38 @@
#include "vpx_ports/config.h"
#include "../../common/opencl/vp8_opencl.h"
#include "vp8_decode_cl.h"
#include <stdio.h>
extern int cl_init_dequant();
extern int cl_destroy_dequant();
int cl_decode_destroy(){
#if ENABLE_CL_IDCT_DEQUANT
int err;
err = cl_destroy_dequant();
#endif
return CL_SUCCESS;
}
int cl_decode_init()
{
#if ENABLE_CL_IDCT_DEQUANT
int err;
#endif
//Initialize programs to null value
//Enables detection of if they've been initialized as well.
cl_data.dequant_program = NULL;
#if ENABLE_CL_IDCT_DEQUANT
err = cl_init_dequant();
if (err != CL_SUCCESS)
return err;
#endif
return CL_SUCCESS;
}

View File

@@ -0,0 +1,24 @@
/*
* Copyright (c) 2011 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP8_OPENCL_DECODE_H
#define VP8_OPENCL_DECODE_H
#ifdef __cplusplus
extern "C" {
#endif
int cl_decode_init();
#ifdef __cplusplus
}
#endif
#endif /* VP8_OPENCL_H */

View File

@@ -151,51 +151,53 @@ static void decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int m
if (xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != SPLITMV)
{
BLOCKD *b = &xd->block[24];
short *qcoeff = b->qcoeff_base + b->qcoeff_offset;
DEQUANT_INVOKE(&pbi->dequant, block)(b);
/* do 2nd order transform on the dc block */
if (xd->eobs[24] > 1)
{
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(b->dqcoeff_base + b->dqcoeff_offset, &b->diff_base[b->diff_offset]);
((int *)qcoeff)[0] = 0;
((int *)qcoeff)[1] = 0;
((int *)qcoeff)[2] = 0;
((int *)qcoeff)[3] = 0;
((int *)qcoeff)[4] = 0;
((int *)qcoeff)[5] = 0;
((int *)qcoeff)[6] = 0;
((int *)qcoeff)[7] = 0;
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(b->dqcoeff_base + b->dqcoeff_offset, &b->diff_base[b->diff_offset]);
((int *)qcoeff)[0] = 0;
}
DEQUANT_INVOKE (&pbi->dequant, dc_idct_add_y_block)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs, xd->block[24].diff);
xd->dst.y_stride, xd->eobs, &xd->block[24].diff_base[xd->block[24].diff_offset]);
}
else if ((xd->frame_type == KEY_FRAME || xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) && xd->mode_info_context->mbmi.mode == B_PRED)
{
for (i = 0; i < 16; i++)
{
BLOCKD *b = &xd->block[i];
vp8mt_predict_intra4x4(pbi, xd, b->bmi.mode, b->predictor, mb_row, mb_col, i);
short *qcoeff = b->qcoeff_base + b->qcoeff_offset;
vp8mt_predict_intra4x4(pbi, xd, b->bmi.mode, b->predictor_base + b->predictor_offset, mb_row, mb_col, i);
if (xd->eobs[i] > 1)
{
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
(qcoeff, b->dequant, b->predictor_base + b->predictor_offset,
*(b->base_dst) + b->dst, 16, b->dst_stride);
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)
(b->qcoeff[0] * b->dequant[0], b->predictor,
(qcoeff[0] * b->dequant[0], b->predictor_base + b->predictor_offset,
*(b->base_dst) + b->dst, 16, b->dst_stride);
((int *)b->qcoeff)[0] = 0;
((int *)qcoeff)[0] = 0;
}
}
}

View File

@@ -19,8 +19,8 @@ void vp8_dequantize_b_impl_mmx(short *sq, short *dq, short *q);
static void dequantize_b_mmx(BLOCKD *d)
{
short *sq = (short *) d->qcoeff;
short *dq = (short *) d->dqcoeff;
short *sq = (short *) d->qcoeff_base + d->qcoeff_offset;
short *dq = (short *) d->dqcoeff_base + d->dqcoeff_offset;
short *q = (short *) d->dequant;
vp8_dequantize_b_impl_mmx(sq, dq, q);
}

View File

@@ -28,7 +28,7 @@ extern int vp8_fast_quantize_b_neon_func(short *coeff_ptr, short *zbin_ptr, shor
void vp8_fast_quantize_b_neon(BLOCK *b, BLOCKD *d)
{
d->eob = vp8_fast_quantize_b_neon_func(b->coeff, b->zbin, d->qcoeff, d->dqcoeff, d->dequant, vp8_rvsplus1_default_zig_zag1d, b->round, b->quant_fast);
d->eob = vp8_fast_quantize_b_neon_func(b->coeff, b->zbin, d->qcoeff_base + d->qcoeff_offset, d->dqcoeff_base + d->dqcoeff_offset, d->dequant, vp8_rvsplus1_default_zig_zag1d, b->round, b->quant_fast);
}
/*
@@ -42,8 +42,8 @@ void vp8_fast_quantize_b_neon(BLOCK *b,BLOCKD *d)
short *zbin_ptr = &b->Zbin[0][0];
short *round_ptr = &b->Round[0][0];
short *quant_ptr = &b->Quant[0][0];
short *qcoeff_ptr = d->qcoeff;
short *dqcoeff_ptr= d->dqcoeff;
short *qcoeff_ptr = d->qcoeff_base + d->qcoeff_offset;
short *dqcoeff_ptr= d->dqcoeff_base + d->dqcoeff_offset;
short *dequant_ptr= &d->Dequant[0][0];
eob = 0;

View File

@@ -43,9 +43,11 @@ DEFINE(vp8_block_zbin_extra, offsetof(BLOCK, zbin_extra));
DEFINE(vp8_block_zrun_zbin_boost, offsetof(BLOCK, zrun_zbin_boost));
DEFINE(vp8_block_quant_shift, offsetof(BLOCK, quant_shift));
DEFINE(vp8_blockd_qcoeff, offsetof(BLOCKD, qcoeff));
DEFINE(vp8_blockd_qcoeff_base, offsetof(BLOCKD, qcoeff_base));
DEFINE(vp8_blockd_qcoeff_offset, offsetof(BLOCKD, qcoeff_offset));
DEFINE(vp8_blockd_dequant, offsetof(BLOCKD, dequant));
DEFINE(vp8_blockd_dqcoeff, offsetof(BLOCKD, dqcoeff));
DEFINE(vp8_blockd_dqcoeff_base, offsetof(BLOCKD, dqcoeff_base));
DEFINE(vp8_blockd_dqcoeff_offset, offsetof(BLOCKD, dqcoeff_offset));
DEFINE(vp8_blockd_eob, offsetof(BLOCKD, eob));
// subtract
@@ -54,7 +56,8 @@ DEFINE(vp8_block_src, offsetof(BLOCK, src));
DEFINE(vp8_block_src_diff, offsetof(BLOCK, src_diff));
DEFINE(vp8_block_src_stride, offsetof(BLOCK, src_stride));
DEFINE(vp8_blockd_predictor, offsetof(BLOCKD, predictor));
DEFINE(vp8_blockd_predictor_base, offsetof(BLOCKD, predictor_base));
DEFINE(vp8_blockd_predictor_offset, offsetof(BLOCKD, predictor_offset));
//pack tokens
DEFINE(vp8_writer_lowvalue, offsetof(vp8_writer, lowvalue));

View File

@@ -15,7 +15,7 @@
#include "vp8/common/reconintra.h"
#include "vp8/common/reconintra4x4.h"
#include "encodemb.h"
#include "vp8/common/invtrans.h"
#include "invtrans.h"
#include "vp8/common/recon.h"
#include "dct.h"
#include "vp8/common/g_common.h"
@@ -30,9 +30,10 @@
#else
#define IF_RTCD(x) NULL
#endif
void vp8_encode_intra4x4block(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x, BLOCK *be, BLOCKD *b, int best_mode)
{
vp8_predict_intra4x4(b, best_mode, b->predictor);
vp8_predict_intra4x4(b, best_mode, b->predictor_base + b->predictor_offset);
ENCODEMB_INVOKE(&rtcd->encodemb, subb)(be, b, 16);
@@ -42,7 +43,7 @@ void vp8_encode_intra4x4block(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x, BLOCK
vp8_inverse_transform_b(IF_RTCD(&rtcd->common->idct), b, 32);
RECON_INVOKE(&rtcd->common->recon, recon)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
RECON_INVOKE(&rtcd->common->recon, recon)(b->predictor_base + b->predictor_offset, &b->diff_base[b->diff_offset], *(b->base_dst) + b->dst, b->dst_stride);
}
void vp8_encode_intra4x4mby(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *mb)

View File

@@ -14,7 +14,7 @@
#include "vp8/common/reconinter.h"
#include "quantize.h"
#include "tokenize.h"
#include "vp8/common/invtrans.h"
#include "invtrans.h"
#include "vp8/common/recon.h"
#include "vp8/common/reconintra.h"
#include "dct.h"
@@ -30,7 +30,7 @@ void vp8_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch)
{
unsigned char *src_ptr = (*(be->base_src) + be->src);
short *diff_ptr = be->src_diff;
unsigned char *pred_ptr = bd->predictor;
unsigned char *pred_ptr = bd->predictor_base + bd->predictor_offset;
int src_stride = be->src_stride;
int r, c;
@@ -203,7 +203,7 @@ void vp8_stuff_inter16x16(MACROBLOCK *x)
// recon = copy from predictors to destination
{
BLOCKD *b = &x->e_mbd.block[0];
unsigned char *pred_ptr = b->predictor;
unsigned char *pred_ptr = b->predictor_base + b->predictor_offset;
unsigned char *dst_ptr = *(b->base_dst) + b->dst;
int stride = b->dst_stride;
@@ -212,7 +212,7 @@ void vp8_stuff_inter16x16(MACROBLOCK *x)
vpx_memcpy(dst_ptr+i*stride,pred_ptr+16*i,16);
b = &x->e_mbd.block[16];
pred_ptr = b->predictor;
pred_ptr = b->predictor_base + b->predictor_offset;
dst_ptr = *(b->base_dst) + b->dst;
stride = b->dst_stride;
@@ -220,7 +220,7 @@ void vp8_stuff_inter16x16(MACROBLOCK *x)
vpx_memcpy(dst_ptr+i*stride,pred_ptr+8*i,8);
b = &x->e_mbd.block[20];
pred_ptr = b->predictor;
pred_ptr = b->predictor_base + b->predictor_offset;
dst_ptr = *(b->base_dst) + b->dst;
stride = b->dst_stride;
@@ -302,8 +302,8 @@ static void optimize_b(MACROBLOCK *mb, int ib, int type,
dequant_ptr = d->dequant;
coeff_ptr = b->coeff;
qcoeff_ptr = d->qcoeff;
dqcoeff_ptr = d->dqcoeff;
qcoeff_ptr = d->qcoeff_base + d->qcoeff_offset;
dqcoeff_ptr = d->dqcoeff_base + d->qcoeff_offset;
i0 = !type;
eob = d->eob;

View File

@@ -11,8 +11,6 @@
#include "invtrans.h"
static void recon_dcblock(MACROBLOCKD *x)
{
BLOCKD *b = &x->block[24];
@@ -20,7 +18,7 @@ static void recon_dcblock(MACROBLOCKD *x)
for (i = 0; i < 16; i++)
{
x->block[i].dqcoeff[0] = b->diff[i];
*(x->block[i].dqcoeff_base+x->block[i].dqcoeff_offset) = b->diff_base[b->diff_offset+i];
}
}
@@ -28,18 +26,18 @@ static void recon_dcblock(MACROBLOCKD *x)
void vp8_inverse_transform_b(const vp8_idct_rtcd_vtable_t *rtcd, BLOCKD *b, int pitch)
{
if (b->eob > 1)
IDCT_INVOKE(rtcd, idct16)(b->dqcoeff, b->diff, pitch);
IDCT_INVOKE(rtcd, idct16)(b->dqcoeff_base + b->dqcoeff_offset, &b->diff_base[b->diff_offset], pitch);
else
IDCT_INVOKE(rtcd, idct1)(b->dqcoeff, b->diff, pitch);
IDCT_INVOKE(rtcd, idct1)(b->dqcoeff_base + b->dqcoeff_offset, &b->diff_base[b->diff_offset], pitch);
}
/* Only used in the encoder */
void vp8_inverse_transform_mby(const vp8_idct_rtcd_vtable_t *rtcd, MACROBLOCKD *x)
{
int i;
/* do 2nd order transform on the dc block */
IDCT_INVOKE(rtcd, iwalsh16)(x->block[24].dqcoeff, x->block[24].diff);
IDCT_INVOKE(rtcd, iwalsh16)(x->block[24].dqcoeff_base + x->block[23].dqcoeff_offset, &x->block[24].diff_base[x->block[24].diff_offset]);
recon_dcblock(x);
@@ -49,6 +47,8 @@ void vp8_inverse_transform_mby(const vp8_idct_rtcd_vtable_t *rtcd, MACROBLOCKD *
}
}
/* Only used in encoder */
void vp8_inverse_transform_mbuv(const vp8_idct_rtcd_vtable_t *rtcd, MACROBLOCKD *x)
{
int i;
@@ -57,7 +57,6 @@ void vp8_inverse_transform_mbuv(const vp8_idct_rtcd_vtable_t *rtcd, MACROBLOCKD
{
vp8_inverse_transform_b(rtcd, &x->block[i], 16);
}
}
@@ -69,8 +68,10 @@ void vp8_inverse_transform_mb(const vp8_idct_rtcd_vtable_t *rtcd, MACROBLOCKD *x
x->mode_info_context->mbmi.mode != SPLITMV)
{
/* do 2nd order transform on the dc block */
BLOCKD b = x->block[24];
IDCT_INVOKE(rtcd, iwalsh16)(b.dqcoeff_base+b.dqcoeff_offset, &b.diff_base[b.diff_offset]);
IDCT_INVOKE(rtcd, iwalsh16)(&x->block[24].dqcoeff[0], x->block[24].diff);
recon_dcblock(x);
}

View File

@@ -13,8 +13,8 @@
#define __INC_INVTRANS_H
#include "vpx_ports/config.h"
#include "idct.h"
#include "blockd.h"
#include "vp8/common/idct.h"
#include "vp8/common/blockd.h"
extern void vp8_inverse_transform_b(const vp8_idct_rtcd_vtable_t *rtcd, BLOCKD *b, int pitch);
extern void vp8_inverse_transform_mb(const vp8_idct_rtcd_vtable_t *rtcd, MACROBLOCKD *x);
extern void vp8_inverse_transform_mby(const vp8_idct_rtcd_vtable_t *rtcd, MACROBLOCKD *x);

View File

@@ -1686,11 +1686,6 @@ void vp8_change_config(VP8_PTR ptr, VP8_CONFIG *oxcf)
cm->filter_type = (LOOPFILTERTYPE) cpi->filter_type;
if (!cm->use_bilinear_mc_filter)
cm->mcomp_filter_type = SIXTAP;
else
cm->mcomp_filter_type = BILINEAR;
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
cm->Width = cpi->oxcf.Width ;

View File

@@ -155,7 +155,7 @@ static int get_prediction_error(BLOCK *be, BLOCKD *b, const vp8_variance_rtcd_vt
unsigned char *sptr;
unsigned char *dptr;
sptr = (*(be->base_src) + be->src);
dptr = b->predictor;
dptr = b->predictor_base + b->predictor_offset;
return VARIANCE_INVOKE(rtcd, get4x4sse_cs)(sptr, be->src_stride, dptr, 16, 0x7fffffff);
@@ -193,7 +193,7 @@ static int pick_intra4x4block(
int this_rd;
rate = mode_costs[mode];
vp8_predict_intra4x4(b, mode, b->predictor);
vp8_predict_intra4x4(b, mode, b->predictor_base + b->predictor_offset);
distortion = get_prediction_error(be, b, &rtcd->variance);
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);

View File

@@ -28,8 +28,8 @@ void vp8_fast_quantize_b_c(BLOCK *b, BLOCKD *d)
short *round_ptr = b->round;
short *quant_ptr = b->quant_fast;
unsigned char *quant_shift_ptr = b->quant_shift;
short *qcoeff_ptr = d->qcoeff;
short *dqcoeff_ptr = d->dqcoeff;
short *qcoeff_ptr = d->qcoeff_base + d->qcoeff_offset;
short *dqcoeff_ptr = d->dqcoeff_base + d->dqcoeff_offset;
short *dequant_ptr = d->dequant;
vpx_memset(qcoeff_ptr, 0, 32);
@@ -73,8 +73,8 @@ void vp8_fast_quantize_b_c(BLOCK *b, BLOCKD *d)
short *coeff_ptr = b->coeff;
short *round_ptr = b->round;
short *quant_ptr = b->quant_fast;
short *qcoeff_ptr = d->qcoeff;
short *dqcoeff_ptr = d->dqcoeff;
short *qcoeff_ptr = d->qcoeff_base + d->qcoeff_offset;
short *dqcoeff_ptr = d->dqcoeff_base + d->dqcoeff_offset;
short *dequant_ptr = d->dequant;
eob = -1;
@@ -113,8 +113,8 @@ void vp8_regular_quantize_b(BLOCK *b, BLOCKD *d)
short *round_ptr = b->round;
short *quant_ptr = b->quant;
unsigned char *quant_shift_ptr = b->quant_shift;
short *qcoeff_ptr = d->qcoeff;
short *dqcoeff_ptr = d->dqcoeff;
short *qcoeff_ptr = d->qcoeff_base + d->qcoeff_offset;
short *dqcoeff_ptr = d->dqcoeff_base + d->dqcoeff_offset;
short *dequant_ptr = d->dequant;
short zbin_oq_value = b->zbin_extra;
@@ -174,8 +174,8 @@ void vp8_strict_quantize_b(BLOCK *b, BLOCKD *d)
coeff_ptr = b->coeff;
quant_ptr = b->quant;
quant_shift_ptr = b->quant_shift;
qcoeff_ptr = d->qcoeff;
dqcoeff_ptr = d->dqcoeff;
qcoeff_ptr = d->qcoeff_base + d->qcoeff_offset;
dqcoeff_ptr = d->dqcoeff_base + d->dqcoeff_offset;
dequant_ptr = d->dequant;
eob = - 1;
vpx_memset(qcoeff_ptr, 0, 32);
@@ -224,8 +224,8 @@ void vp8_regular_quantize_b(BLOCK *b, BLOCKD *d)
short *zbin_ptr = b->zbin;
short *round_ptr = b->round;
short *quant_ptr = b->quant;
short *qcoeff_ptr = d->qcoeff;
short *dqcoeff_ptr = d->dqcoeff;
short *qcoeff_ptr = d->qcoeff_base + d->qcoeff_offset;
short *dqcoeff_ptr = d->dqcoeff_base + d->dqcoeff_offset;
short *dequant_ptr = d->dequant;
short zbin_oq_value = b->zbin_extra;

View File

@@ -300,7 +300,7 @@ void vp8_initialize_rd_consts(VP8_COMP *cpi, int Qvalue)
void vp8_auto_select_speed(VP8_COMP *cpi)
{
int used = cpi->oxcf.cpu_used;
//int used = cpi->oxcf.cpu_used;
int milliseconds_for_compress = (int)(1000000 / cpi->oxcf.frame_rate);
@@ -405,7 +405,8 @@ int vp8_mbblock_error_c(MACROBLOCK *mb, int dc)
for (j = dc; j < 16; j++)
{
int this_diff = be->coeff[j] - bd->dqcoeff[j];
short *dqcoeff = bd->dqcoeff_base + bd->dqcoeff_offset;
int this_diff = be->coeff[j] - dqcoeff[j];
berror += this_diff * this_diff;
}
@@ -427,10 +428,13 @@ int vp8_mbuverror_c(MACROBLOCK *mb)
for (i = 16; i < 24; i++)
{
short *dqcoeff;
be = &mb->block[i];
bd = &mb->e_mbd.block[i];
error += vp8_block_error_c(be->coeff, bd->dqcoeff);
dqcoeff = bd->dqcoeff_base + bd->dqcoeff_offset;
error += vp8_block_error_c(be->coeff, dqcoeff);
}
return error;
@@ -481,7 +485,7 @@ static int cost_coeffs(MACROBLOCK *mb, BLOCKD *b, int type, ENTROPY_CONTEXT *a,
int eob = b->eob;
int pt ; /* surrounding block/prev coef predictor */
int cost = 0;
short *qcoeff_ptr = b->qcoeff;
short *qcoeff_ptr = b->qcoeff_base + b->qcoeff_offset;;
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
@@ -570,7 +574,7 @@ static void macro_block_yrd( MACROBLOCK *mb,
// Distortion
d = ENCODEMB_INVOKE(rtcd, mberr)(mb, 1) << 2;
d += ENCODEMB_INVOKE(rtcd, berr)(mb_y2->coeff, x_y2->dqcoeff);
d += ENCODEMB_INVOKE(rtcd, berr)(mb_y2->coeff, x_y2->dqcoeff_base + x_y2->dqcoeff_offset);
*Distortion = (d >> 4);
@@ -623,7 +627,7 @@ static int rd_pick_intra4x4block(
rate = bmode_costs[mode];
vp8_predict_intra4x4(b, mode, b->predictor);
vp8_predict_intra4x4(b, mode, b->predictor_base + b->predictor_offset);
ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), subb)(be, b, 16);
x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32);
x->quantize_b(be, b);
@@ -633,7 +637,7 @@ static int rd_pick_intra4x4block(
ratey = cost_coeffs(x, b, PLANE_TYPE_Y_WITH_DC, &tempa, &templ);
rate += ratey;
distortion = ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr)(be->coeff, b->dqcoeff) >> 2;
distortion = ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr)(be->coeff, b->dqcoeff_base + b->dqcoeff_offset) >> 2;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
@@ -646,15 +650,15 @@ static int rd_pick_intra4x4block(
*best_mode = mode;
*a = tempa;
*l = templ;
copy_predictor(best_predictor, b->predictor);
vpx_memcpy(best_dqcoeff, b->dqcoeff, 32);
copy_predictor(best_predictor, b->predictor_base + b->predictor_offset);
vpx_memcpy(best_dqcoeff, b->dqcoeff_base + b->dqcoeff_offset, 32);
}
}
b->bmi.mode = (B_PREDICTION_MODE)(*best_mode);
IDCT_INVOKE(IF_RTCD(&cpi->rtcd.common->idct), idct16)(best_dqcoeff, b->diff, 32);
RECON_INVOKE(IF_RTCD(&cpi->rtcd.common->recon), recon)(best_predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride);
IDCT_INVOKE(IF_RTCD(&cpi->rtcd.common->idct), idct16)(best_dqcoeff, b->diff_base + b->diff_offset, 32);
RECON_INVOKE(IF_RTCD(&cpi->rtcd.common->recon), recon)(best_predictor, b->diff_base + b->diff_offset, *(b->base_dst) + b->dst, b->dst_stride);
return best_rd;
}
@@ -984,7 +988,7 @@ static unsigned int vp8_encode_inter_mb_segment(MACROBLOCK *x, int const *labels
//be->coeff[0] = 0;
x->quantize_b(be, bd);
distortion += ENCODEMB_INVOKE(rtcd, berr)(be->coeff, bd->dqcoeff);
distortion += ENCODEMB_INVOKE(rtcd, berr)(be->coeff, bd->dqcoeff_base + bd->dqcoeff_offset);
}
}

View File

@@ -109,7 +109,7 @@ static void tokenize2nd_order_b
const int eob = b->eob; /* one beyond last nonzero coeff */
TOKENEXTRA *t = *tp; /* store tokens starting here */
int x;
const short *qcoeff_ptr = b->qcoeff;
const short *qcoeff_ptr = b->qcoeff_base + b->qcoeff_offset;
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
do
@@ -160,7 +160,7 @@ static void tokenize1st_order_b
const int eob = b->eob; /* one beyond last nonzero coeff */
TOKENEXTRA *t = *tp; /* store tokens starting here */
int x;
const short *qcoeff_ptr = b->qcoeff;
const short *qcoeff_ptr = b->qcoeff_base + b->qcoeff_offset;
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
do
@@ -224,8 +224,8 @@ void vp8_tokenize_mb(VP8_COMP *cpi, MACROBLOCKD *x, TOKENEXTRA **t)
int plane_type;
int b;
TOKENEXTRA *start = *t;
TOKENEXTRA *tp = *t;
//TOKENEXTRA *start = *t;
//TOKENEXTRA *tp = *t;
x->mode_info_context->mbmi.dc_diff = 1;

View File

@@ -171,7 +171,7 @@ ZIGZAG_LOOP 15
movdqa xmm3, [rsp + qcoeff + 16]
mov rcx, [rsi + vp8_blockd_dequant] ; dequant_ptr
mov rdi, [rsi + vp8_blockd_dqcoeff] ; dqcoeff_ptr
mov rdi, [rsi + vp8_blockd_dqcoeff_base + vp8_blockd_dqcoeff_offset] ; dqcoeff_ptr
; y ^ sz
pxor xmm2, xmm0
@@ -184,7 +184,7 @@ ZIGZAG_LOOP 15
movdqa xmm0, [rcx]
movdqa xmm1, [rcx + 16]
mov rcx, [rsi + vp8_blockd_qcoeff] ; qcoeff_ptr
mov rcx, [rsi + vp8_blockd_qcoeff_base + vp8_blockd_dqcoeff_offset] ; qcoeff_ptr
pmullw xmm0, xmm2
pmullw xmm1, xmm3
@@ -296,9 +296,9 @@ sym(vp8_fast_quantize_b_sse2):
paddw xmm1, [rcx]
paddw xmm5, [rcx + 16]
mov rax, [rsi + vp8_blockd_qcoeff]
mov rax, [rsi + vp8_blockd_qcoeff_base + vp8_blockd_qcoeff_offset]
mov rcx, [rsi + vp8_blockd_dequant]
mov rdi, [rsi + vp8_blockd_dqcoeff]
mov rdi, [rsi + vp8_blockd_dqcoeff_base + vp8_blockd_dqcoeff_offset]
; y = x * quant >> 16
pmulhw xmm1, [rdx]

View File

@@ -76,9 +76,9 @@ sym(vp8_fast_quantize_b_ssse3):
pmulhw xmm1, [rdx]
pmulhw xmm5, [rdx + 16]
mov rax, [rsi + vp8_blockd_qcoeff]
mov rax, [rsi + vp8_blockd_qcoeff_base + vp8_blockd_qcoeff_offset]
mov rdi, [rsi + vp8_blockd_dequant]
mov rcx, [rsi + vp8_blockd_dqcoeff]
mov rcx, [rsi + vp8_blockd_dqcoeff_base + vp8_blockd_dqcoeff_offset]
pxor xmm1, xmm0
pxor xmm5, xmm4

View File

@@ -33,8 +33,8 @@ static void fast_quantize_b_mmx(BLOCK *b, BLOCKD *d)
short *zbin_ptr = b->zbin;
short *round_ptr = b->round;
short *quant_ptr = b->quant_fast;
short *qcoeff_ptr = d->qcoeff;
short *dqcoeff_ptr = d->dqcoeff;
short *qcoeff_ptr = d->qcoeff_base + d->qcoeff_offset;
short *dqcoeff_ptr = d->dqcoeff_base + d->dqcoeff_offset;
short *dequant_ptr = d->dequant;
d->eob = vp8_fast_quantize_b_impl_mmx(
@@ -54,7 +54,7 @@ int vp8_mbblock_error_mmx_impl(short *coeff_ptr, short *dcoef_ptr, int dc);
static int mbblock_error_mmx(MACROBLOCK *mb, int dc)
{
short *coeff_ptr = mb->block[0].coeff;
short *dcoef_ptr = mb->e_mbd.block[0].dqcoeff;
short *dcoef_ptr = mb->e_mbd.block[0].dqcoeff_base + mb->e_mbd.block[0].dqcoeff_offset;
return vp8_mbblock_error_mmx_impl(coeff_ptr, dcoef_ptr, dc);
}
@@ -74,18 +74,19 @@ static void subtract_b_mmx(BLOCK *be, BLOCKD *bd, int pitch)
unsigned char *z = *(be->base_src) + be->src;
unsigned int src_stride = be->src_stride;
short *diff = &be->src_diff[0];
unsigned char *predictor = &bd->predictor[0];
unsigned char *predictor = bd->predictor_base + bd->predictor_offset;
vp8_subtract_b_mmx_impl(z, src_stride, diff, predictor, pitch);
}
#endif
#if HAVE_SSE2
int vp8_mbblock_error_xmm_impl(short *coeff_ptr, short *dcoef_ptr, int dc);
static int mbblock_error_xmm(MACROBLOCK *mb, int dc)
{
short *coeff_ptr = mb->block[0].coeff;
short *dcoef_ptr = mb->e_mbd.block[0].dqcoeff;
short *dcoef_ptr = mb->e_mbd.block[0].dqcoeff_base + mb->e_mbd.block[0].dqcoeff_offset;
return vp8_mbblock_error_xmm_impl(coeff_ptr, dcoef_ptr, dc);
}
@@ -105,7 +106,7 @@ static void subtract_b_sse2(BLOCK *be, BLOCKD *bd, int pitch)
unsigned char *z = *(be->base_src) + be->src;
unsigned int src_stride = be->src_stride;
short *diff = &be->src_diff[0];
unsigned char *predictor = &bd->predictor[0];
unsigned char *predictor = bd->predictor_base + bd->predictor_offset;
vp8_subtract_b_sse2_impl(z, src_stride, diff, predictor, pitch);
}

View File

@@ -40,7 +40,6 @@ VP8_COMMON_SRCS-yes += common/findnearmv.h
VP8_COMMON_SRCS-yes += common/g_common.h
VP8_COMMON_SRCS-yes += common/header.h
VP8_COMMON_SRCS-yes += common/idct.h
VP8_COMMON_SRCS-yes += common/invtrans.h
VP8_COMMON_SRCS-yes += common/loopfilter.h
VP8_COMMON_SRCS-yes += common/modecont.h
VP8_COMMON_SRCS-yes += common/mv.h
@@ -56,7 +55,6 @@ VP8_COMMON_SRCS-yes += common/swapyv12buffer.h
VP8_COMMON_SRCS-yes += common/systemdependent.h
VP8_COMMON_SRCS-yes += common/threading.h
VP8_COMMON_SRCS-yes += common/treecoder.h
VP8_COMMON_SRCS-yes += common/invtrans.c
VP8_COMMON_SRCS-yes += common/loopfilter.c
VP8_COMMON_SRCS-yes += common/loopfilter_filters.c
VP8_COMMON_SRCS-yes += common/mbpitch.c
@@ -149,3 +147,33 @@ VP8_COMMON_SRCS-$(HAVE_ARMV7) += common/arm/neon/recon16x16mb_neon$(ASM)
VP8_COMMON_SRCS-$(HAVE_ARMV7) += common/arm/neon/buildintrapredictorsmby_neon$(ASM)
VP8_COMMON_SRCS-$(HAVE_ARMV7) += common/arm/neon/save_neon_reg$(ASM)
VP8_COMMON_SRCS-$(HAVE_ARMV7) += common/arm/neon/recon_neon.c
#Append OpenCL source files to source listing if needed
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/vp8_opencl.c
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/vp8_opencl.h
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/blockd_cl.h
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/blockd_cl.c
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/filter_cl.h
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/filter_cl.c
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/filter_cl.cl
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/subpixel_cl.h
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/reconinter_cl.h
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/reconinter_cl.c
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/idctllm_cl.h
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/idctllm_cl.c
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/idctllm_cl.cl
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/idct_cl.h
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/loopfilter_cl.h
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/loopfilter_cl.c
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/loopfilter_cl.cl
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/loopfilter_filters_cl.c
VP8_COMMON_SRCS-$(CONFIG_OPENCL) += common/opencl/opencl_systemdependent.c
VP8_COMMON_SRCS-$(HAVE_DLOPEN) += common/opencl/dynamic_cl.c
VP8_COMMON_SRCS-$(HAVE_DLOPEN) += common/opencl/dynamic_cl.h

View File

@@ -18,6 +18,10 @@
#include "common/onyxd.h"
#include "decoder/onyxd_int.h"
#if CONFIG_OPENCL
#include "common/opencl/vp8_opencl.h"
#endif
#define VP8_CAP_POSTPROC (CONFIG_POSTPROC ? VPX_CODEC_CAP_POSTPROC : 0)
typedef vpx_codec_stream_info_t vp8_stream_info_t;
@@ -222,6 +226,15 @@ static vpx_codec_err_t vp8_destroy(vpx_codec_alg_priv_t *ctx)
ctx->mmaps[i].dtor(&ctx->mmaps[i]);
}
#if CONFIG_OPENCL
if (cl_initialized == CL_SUCCESS){
cl_destroy(NULL, VP8_CL_NOT_INITIALIZED);
#if HAVE_DLOPEN
close_cl();
#endif
}
#endif
return VPX_CODEC_OK;
}

View File

@@ -39,6 +39,8 @@ VP8_CX_SRCS-yes += encoder/boolhuff.c
VP8_CX_SRCS-yes += encoder/dct.c
VP8_CX_SRCS-yes += encoder/encodeframe.c
VP8_CX_SRCS-yes += encoder/encodeintra.c
VP8_CX_SRCS-yes += encoder/invtrans.h
VP8_CX_SRCS-yes += encoder/invtrans.c
VP8_CX_SRCS-yes += encoder/encodemb.c
VP8_CX_SRCS-yes += encoder/encodemv.c
VP8_CX_SRCS-$(CONFIG_MULTITHREAD) += encoder/ethreading.c

View File

@@ -74,3 +74,14 @@ VP8_DX_SRCS-$(ARCH_X86)$(ARCH_X86_64) += decoder/x86/x86_dsystemdependent.c
VP8_DX_SRCS-$(HAVE_MMX) += decoder/x86/dequantize_mmx.asm
VP8_DX_SRCS-$(HAVE_MMX) += decoder/x86/idct_blk_mmx.c
VP8_DX_SRCS-$(HAVE_SSE2) += decoder/x86/idct_blk_sse2.c
VP8_DX_SRCS-$(CONFIG_OPENCL) += decoder/opencl/vp8_decode_cl.c
VP8_DX_SRCS-$(CONFIG_OPENCL) += decoder/opencl/vp8_decode_cl.h
VP8_DX_SRCS-$(CONFIG_OPENCL) += decoder/opencl/opencl_systemdependent.c
VP8_DX_SRCS-$(CONFIG_OPENCL) += decoder/opencl/dequantize_cl.c
VP8_DX_SRCS-$(CONFIG_OPENCL) += decoder/opencl/dequantize_cl.h
VP8_DX_SRCS-$(CONFIG_OPENCL) += decoder/opencl/dequantize_cl.cl
VP8_DX_SRCS-$(CONFIG_OPENCL) += decoder/opencl/idct_blk_cl.c
VP8_DX_SRCS-$(CONFIG_OPENCL) += decoder/opencl/decodframe_cl.c
VP8_DX_SRCS-$(CONFIG_OPENCL) += decoder/opencl/decodframe_cl.h

View File

@@ -7,4 +7,4 @@
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "../vpx_config.h"

View File

@@ -11,7 +11,7 @@
#ifndef VPX_PORTS_MEM_H
#define VPX_PORTS_MEM_H
#include "vpx_config.h"
#include "../vpx_config.h"
#include "vpx/vpx_integer.h"
#if defined(__GNUC__) && __GNUC__

View File

@@ -26,7 +26,22 @@ vp8_yv12_de_alloc_frame_buffer(YV12_BUFFER_CONFIG *ybf)
{
duck_free(ybf->buffer_alloc);
ybf->buffer_alloc = 0;
ybf->buffer_alloc = NULL;
ybf->buffer_size = -1;
ybf->y_buffer = NULL;
ybf->u_buffer = NULL;
ybf->v_buffer = NULL;
#if CONFIG_OPENCL
if (cl_initialized == CL_SUCCESS){
if (ybf->buffer_mem){
clReleaseMemObject(ybf->buffer_mem);
ybf->buffer_mem = NULL;
}
}
#endif
}
else
{
@@ -66,18 +81,31 @@ vp8_yv12_alloc_frame_buffer(YV12_BUFFER_CONFIG *ybf, int width, int height, int
* when we have a large motion vector in V on the last v block.
* Note : We never use these pixels anyway so this doesn't hurt.
*/
ybf->buffer_alloc = (unsigned char *) duck_memalign(32, ybf->frame_size + (ybf->y_stride * 2) + 32, 0);
if (ybf->buffer_alloc == NULL)
return -1;
ybf->buffer_size = ybf->frame_size + (ybf->y_stride * 2) + 32;
#if CONFIG_OPENCL
ybf->buffer_mem = NULL;
if (cl_initialized == CL_SUCCESS){
ybf->buffer_mem = clCreateBuffer(cl_data.context, CL_MEM_READ_WRITE, ybf->buffer_size, NULL, NULL);
if (ybf->buffer_mem == NULL){
cl_destroy(NULL, VP8_CL_TRIED_BUT_FAILED);
}
}
#endif
ybf->y_buffer = ybf->buffer_alloc + (border * ybf->y_stride) + border;
if (yplane_size & 0xf)
yplane_size += 16 - (yplane_size & 0xf);
ybf->u_buffer = ybf->buffer_alloc + yplane_size + (border / 2 * ybf->uv_stride) + border / 2;
ybf->v_buffer = ybf->buffer_alloc + yplane_size + uvplane_size + (border / 2 * ybf->uv_stride) + border / 2;
ybf->v_buffer = ybf->buffer_alloc + yplane_size + (border / 2 * ybf->uv_stride) + border / 2 + uvplane_size;
ybf->corrupted = 0; /* assume not currupted by errors */
}

View File

@@ -19,6 +19,12 @@ extern "C"
#define VP7BORDERINPIXELS 48
#define VP8BORDERINPIXELS 32
#include "../vpx_config.h"
#if CONFIG_OPENCL
#include "../vp8/common/opencl/vp8_opencl.h"
#endif
/*************************************
For INT_YUV:
@@ -54,6 +60,11 @@ extern "C"
unsigned char *v_buffer;
unsigned char *buffer_alloc;
int buffer_size;
#if CONFIG_OPENCL
cl_mem buffer_mem;
#endif
int border;
int frame_size;
YUV_TYPE clrtype;