Compare commits

...

13 Commits

Author SHA1 Message Date
Deb Mukherjee
6b0c636b96 Cosmetic changes in the supertx expt
Converts most negative !CONFIG_SUPERTX checks to positive ones.

Change-Id: I80b7f8c5d3483a7861f0de7fc7ebc425b9c68766
2014-11-10 17:34:00 -08:00
Yue Chen
b0aa2db2e7 Fixing rd loop bugs in supertx+ext_tx experiment
Change-Id: I891b108e591e01d5c7d588dec0bcc4b323d0b6a8
2014-11-07 16:43:12 -08:00
Yue Chen
95d0f87d6e Fixing sub-optimal rdloop when testing supertx on 8x4/4x8 blocks
Remove early termination in vp9_rd_pick_inter_mode_sub8x8() in
order to complete mode selection for 8x4/4x8 blocks which will
try supertx in a higher level function.

Change-Id: I457505257332f70d9cd8d22db52ad32ff15f7f87
2014-10-20 21:52:55 -07:00
Yue Chen
c741a4fe03 Fixing skip flag bugs in recent experiments
Bugs were in vp9_rdopt.c
Also did minor clean-ups in vp9_encodeframe.c

Change-Id: I6fec18e349cd0b810b0772e506927b423db077b6
2014-10-20 14:51:20 -07:00
Deb Mukherjee
430c389f16 Miscellaneous fixes for recent experiments
Various cleanups for ext-tx, supertx, copy-coding experiments.

Change-Id: I8703d5fee57b1310d8d1aa1f26908e9a427b0502
2014-10-14 15:59:17 -07:00
Yue Chen
d8b0d40bf6 Allow blocks to directly copy motion information from neighbors
A new set of prediction modes, called copy modes, is implemented
to allow blocks to directly copy motion information from a neighbor.
The motivation is to create regions of arbitrary shapes in which
blocks share same motion parameters and hence to save bits spent on
duplicated side information.
Compression gain:
derf: 0.894%; stdhd: 1.513%.

Change-Id: I5e026b12c902bc6985c199ec38f1b3b67ac7d930
2014-09-03 11:22:36 -07:00
Yue Chen
a4dfcd9a2d Implementing transform overlapping multiple blocks
We removed the restriction that transform blocks could not exceed
the size of prediction blocks. Smoothing masks are applied to reduce
discontinuity between prediction blocks in order to realize the
efficiency of large transform.
0.997%/0.895% bit-rate reduction is achieved on derf/stdhd set.

Change-Id: I8db241bab9fe74d864809e95f76b771ee59a2def
2014-08-15 16:56:11 -07:00
Yue Chen
be17f1b338 Merge "Migrating old experiments into new playground branch and speedup" into playground 2014-06-26 15:36:44 -07:00
Yue Chen
ffdad39324 Merge "Squash commits from master to playground" into playground 2014-06-26 15:36:24 -07:00
Yue Chen
07ac101806 Migrating old experiments into new playground branch and speedup
The old interintra experiment is slow (speed is 0.2x original codec
at speed 0).
We use best inter mode to skip some reference frame and NEWMV
search when searching best joint mode.
Quality drop: ~0.1% derf. Speed: 0.36x head.

Change-Id: If10453448284f86c14a0a41f20aeaf9ac838fa32
2014-06-26 14:22:53 -07:00
Yue Chen
a49d80bfc8 Squash commits from master to playground
Moving RD-opt related code from vp9_encoder.h to vp9_rdopt.h.

Squashed-Change-Id: I8fab776c8801e19d3f5027ed55a6aa69eee951de

gen_msvs_proj: fix in tree configure under cygwin

strip trailing '/' from paths, this is later converted to '\' which
causes execution errors for obj_int_extract/yasm. vs10+ wasn't affected
by this issue, but make the same change for consistency.

gen_msvs_proj:
+ add missing '"' to obj_int_extract call
  unlike gen_msvs_vcproj, the block is duplicated
  missed in: 1e3d9b9 build/msvs: fix builds in source dirs with spaces

Squashed-Change-Id: I76208e6cdc66dc5a0a7ffa8aa1edbefe31e4b130

Improve vp9_rb_bytes_read

Squashed-Change-Id: I69eba120eb3d8ec43b5552451c8a9bd009390795

Removing decode_one_iter() function.

When superframe index is available we completely rely on it and use frame
size values from the index.

Squashed-Change-Id: I0011d08b223303a8b912c2bcc8a02b74d0426ee0

iosbuild.sh: Add vpx_config.h and vpx_version.h to VPX.framework.

- Rename build_targets to build_framework
- Add functions for creating the vpx_config shim and obtaining
  preproc symbols.

Squashed-Change-Id: Ieca6938b9779077eefa26bf4cfee64286d1840b0

Implemented vp9_denoiser_{alloc,free}()

Squashed-Change-Id: I79eba79f7c52eec19ef2356278597e06620d5e27

Update running avg for VP9 denoiser

Squashed-Change-Id: I9577d648542064052795bf5770428fbd5c276b7b

Changed buf_2ds in vp9 denoiser to YV12 buffers

Changed alloc, free, and running average code as necessary.

Squashed-Change-Id: Ifc4d9ccca462164214019963b3768a457791b9c1

sse4 regular quantize

Squashed-Change-Id: Ibd95df0adf9cc9143006ee9032b4cb2ebfd5dd1b

Modify non-rd intra mode checking

Speed 6 uses small tx size, namely 8x8. max_intra_bsize needs to
be modified accordingly to ensure valid intra mode checking.
Borg test on RTC set showed an overall PSNR gain of 0.335% in speed
-6.

This also changes speed -5 encoding by allowing DC_PRED checking
for block32x32. Borg test on RTC set showed a slight PSNR gain of
0.145%, and no noticeable speed change.

Squashed-Change-Id: I1502978d8fbe265b3bb235db0f9c35ba0703cd45

Implemented COPY_BLOCK case for vp9 denoiser

Squashed-Change-Id: Ie89ad1e3aebbd474e1a0db69c1961b4d1ddcd33e

Improved vp9 denoiser running avg update.

Squashed-Change-Id: Ie0aa41fb7957755544321897b3bb2dd92f392027

Separate rate-distortion modeling for DC and AC coefficients

This is the first step to rework the rate-distortion modeling used
in rtc coding mode. The overall goal is to make the modeling
customized for the statistics encountered in the rtc coding.

This commit makes encoder to perform rate-distortion modeling for
DC and AC coefficients separately. No speed changes observed.
The coding performance for pedestrian_area_1080p is largely
improved:

speed -5, from 79558 b/f, 37.871 dB -> 79598 b/f, 38.600 dB
speed -6, from 79515 b/f, 37.822 dB -> 79544 b/f, 38.130 dB

Overall performance for rtc set at speed -6 is improved by 0.67%.

Squashed-Change-Id: I9153444567e5f75ccdcaac043c2365992c005c0c

Add superframe support for frame parallel decoding.

A superframe is a bunch of frames that bundled as one frame. It is mostly
used to combine one or more non-displayable frames and one displayable frame.

For frame parallel decoding, libvpx decoder will only support decoding one
normal frame or a super frame with superframe index.

If an application pass a superframe without superframe index or a chunk
of displayable frames without superframe index to libvpx decoder, libvpx
will not decode it in frame parallel mode. But libvpx decoder still could
decode it in serial mode.

Squashed-Change-Id: I04c9f2c828373d64e880a8c7bcade5307015ce35

Fixes in VP9 alloc, free, and COPY_FRAME case

Squashed-Change-Id: I1216f17e2206ef521fe219b6d72d8e41d1ba1147

Remove labels from quantize

Use break instead of goto for early exit. Unbreaks Visual Studio
builds.

Squashed-Change-Id: I96dee43a3c82145d4abe0d6a99af6e6e1a3991b5

Added CFLAG for outputting vp9 denoised signal

Squashed-Change-Id: Iab9b4e11cad927f3282e486c203564e1a658f377

Allow key frame more flexibility in mode search

This commit allows the key frame to search through more prediction
modes and more flexible block sizes. No speed change observed. The
coding performance for rtc set is improved by 1.7% for speed -5 and
3.0% for speed -6.

Squashed-Change-Id: Ifd1bc28558017851b210b4004f2d80838938bcc5

VP9 denoiser bugfixes

s/stdint.h/vpx\/vpx_int.h

Added missing 'break;'s

Also included other minor changes, mostly cosmetic.

Squashed-Change-Id: I852bba3e85e794f1d4af854c45c16a23a787e6a3

Don't return value for void functions

Clears "warning: 'return' with a value, in function returning void"

Squashed-Change-Id: I93972610d67e243ec772a1021d2fdfcfc689c8c2

Include type defines

Clears error: unknown type name 'uint8_t'

Squashed-Change-Id: I9b6eff66a5c69bc24aeaeb5ade29255a164ef0e2

Validate error checking code in decoder.

This patch adds a mechanism for insuring error checking on invalid files
by creating a unit test that runs the decoder and tests that the error
code matches what's expected on each frame in the decoder.

Disabled for now as this unit test will segfault with existing code.

Squashed-Change-Id: I896f9686d9ebcbf027426933adfbea7b8c5d956e

Introduce FrameWorker for decoding.

When decoding in serial mode, there will be only
one FrameWorker doing decoding. When decoding in
parallel mode, there will be several FrameWorkers
doing decoding in parallel.

Squashed-Change-Id: If53fc5c49c7a0bf5e773f1ce7008b8a62fdae257

Add back libmkv ebml writer files.

Another project in ChromeOS is using these files. To make libvpx
rolls simpler, add these files back unitl the other project removes
the dependency.

crbug.com/387246 tracking bug to remove dependency.

Squashed-Change-Id: If9c197081c845c4a4e5c5488d4e0190380bcb1e4

Added Test vector that tests more show existing frames.

Squashed-Change-Id: I0ddd7dd55313ee62d231ed4b9040e08c3761b3fe

fix peek_si to enable 1 byte show existing frames.

The test for this is in test vector code ( show existing frames will
fail ).  I can't check it in disabled as I'm changing the generic
test code to do this:

https://gerrit.chromium.org/gerrit/#/c/70569/

Squashed-Change-Id: I5ab324f0cb7df06316a949af0f7fc089f4a3d466

Fix bug in error handling that causes segfault

See: https://code.google.com/p/chromium/issues/detail?id=362697

The code properly catches an invalid stream but seg faults instead of
returning an error due to a buffer not having been initialized. This
code fixes that.

Squashed-Change-Id: I695595e742cb08807e1dfb2f00bc097b3eae3a9b

Revert 3 patches from Hangyu to get Chrome to build:

Avoids failures:
MSE_ClearKey/EncryptedMediaTest.Playback_VP9Video_WebM/0
MSE_ClearKey_Prefixed/EncryptedMediaTest.Playback_VP9Video_WebM/0
MSE_ExternalClearKey_Prefixed/EncryptedMediaTest.Playback_VP9Video_WebM/0
MSE_ExternalClearKey/EncryptedMediaTest.Playback_VP9Video_WebM/0
MSE_ExternalClearKeyDecryptOnly/EncryptedMediaTest.Playback_VP9Video_WebM/0
MSE_ExternalClearKeyDecryptOnly_Prefixed/EncryptedMediaTest.Playback_VP9Video_WebM/0
SRC_ExternalClearKey/EncryptedMediaTest.Playback_VP9Video_WebM/0
SRC_ExternalClearKey_Prefixed/EncryptedMediaTest.Playback_VP9Video_WebM/0
SRC_ClearKey_Prefixed/EncryptedMediaTest.Playback_VP9Video_WebM/0

Patches are
This reverts commit 9bc040859b
This reverts commit 6f5aba069a
This reverts commit 9bc040859b

I1f250441	Revert "Refactor the vp9_get_frame code for frame parallel."
Ibfdddce5	Revert "Delay decreasing reference count in frame-parallel decoding."
I00ce6771	Revert "Introduce FrameWorker for decoding."

Need better testing in libvpx for these commits

Squashed-Change-Id: Ifa1f279b0cabf4b47c051ec26018f9301c1e130e

error check vp9 superframe parsing

This patch insures that the last byte of a chunk that contains a
valid superframe marker byte,  actually has a proper superframe index.
If not it returns an error.

As part of doing that the file : vp90-2-15-fuzz-flicker.webm now fails
to decode properly and moves to the invalid file test from the test
vector suite.

Squashed-Change-Id: I5f1da7eb37282ec0c6394df5c73251a2df9c1744

Remove unused vp9_init_quant_tables function

This function is not effectively used, hence removed.

Squashed-Change-Id: I2e8e48fa07c7518931690f3b04bae920cb360e49

Actually skip blocks in skip segments in non-rd encoder.

Copy split from macroblock to pick mode context so it doesn't get lost.

Squashed-Change-Id: Ie37aa12558dbe65c4f8076cf808250fffb7f27a8

Add Check for Peek Stream validity to decoder test.

Squashed-Change-Id: I9b745670a9f842582c47e6001dc77480b31fb6a1

Allocate buffers based on correct chroma format

The encoder currently allocates frame buffers before
it establishes what the chroma sub-sampling factor is,
always allocating based on the 4:4:4 format.

This patch detects the chroma format as early as
possible allowing the encoder to allocate buffers of
the correct size.

Future patches will change the encoder to allocate
frame buffers on demand to further reduce the memory
profile of the encoder and rationalize the buffer
management in the encoder and decoder.

Squashed-Change-Id: Ifd41dd96e67d0011719ba40fada0bae74f3a0d57

Fork vp9_rd_pick_inter_mode_sb_seg_skip

Squashed-Change-Id: I549868725b789f0f4f89828005a65972c20df888

Switch active map implementation to segment based.

Squashed-Change-Id: Ibb841a1fa4d08d164cf5461246ec290f582b1f80

Experiment for mid group second arf.

This patch implements a mechanism for inserting a second
arf at the mid position of arf groups.

It is currently disabled by default using the flag multi_arf_enabled.

Results are currently down somewhat in initial testing if
multi-arf is enabled. Most of the loss is attributable to the
fact that code to preserve the previous golden frame
(in the arf buffer) in cases where we are coding an overlay
frame, is currently disabled in the multi-arf case.

Squashed-Change-Id: I1d777318ca09f147db2e8c86d7315fe86168c865

Clean out old CONFIG_MULTIPLE_ARF code.

Remove the old experimental multi arf code that was under
the flag CONFIG_MULTIPLE_ARF.

Squashed-Change-Id: Ib24865abc11691d6ac8cb0434ada1da674368a61

Fix some bugs in multi-arf

Fix some bugs relating to the use of buffers
in the overlay frames.

Fix bug where a mid sequence overlay was
propagating large partition and transform sizes into
the subsequent frame because of :-
  sf->last_partitioning_redo_frequency  > 1 and
  sf->tx_size_search_method == USE_LARGESTALL

Squashed-Change-Id: Ibf9ef39a5a5150f8cbdd2c9275abb0316c67873a

Further dual arf changes: multi_arf_allowed.

Add multi_arf_allowed flag.
Re-initialize buffer indices every kf.
Add some const indicators.

Squashed-Change-Id: If86c39153517c427182691d2d4d4b7e90594be71

Fixed VP9 denoiser COPY_BLOCK case

Now copies the src to the correct location in the running average buffer.

Squashed-Change-Id: I9c83c96dc7a97f42c8df16ab4a9f18b733181f34

Fix test on maximum downscaling limits

There is a normative scaling range of (x1/2, x16)
for VP9. This patch fixes the maximum downscaling
tests that are applied in the convolve function.

The code used a maximum downscaling limit of x1/5
for historic reasons related to the scalable
coding work. Since the downsampling in this
application is non-normative it will revert to
using a separate non-normative scaler.

Squashed-Change-Id: Ide80ed712cee82fe5cb3c55076ac428295a6019f

Add unit test to test user_priv parameter.

Squashed-Change-Id: I6ba6171e43e0a43331ee0a7b698590b143979c44

vp9: check tile column count

the max is 6. there are assumptions throughout the decode regarding
this; fixes a crash with a fuzzed bitstream

$ zzuf -s 5861 -r 0.01:0.05 -b 6- \
  < vp90-2-00-quantizer-00.webm.ivf \
  | dd of=invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.ivf \
    bs=1 count=81883

Squashed-Change-Id: I6af41bb34252e88bc156a4c27c80d505d45f5642

Adjust arf Q limits with multi-arf.

Adjust enforced minimum arf Q deltas for non primary arfs
in the middle of an arf/gf group.

Squashed-Change-Id: Ie8034ffb3ac00f887d74ae1586d4cac91d6cace2

Dual ARF changes: Buffer index selection.

Add indirection to the section of buffer indices.
This is to help simplify things in the future if we
have other codec features that switch indices.

Limit the max GF interval for static sections to fit
the gf_group structures.

Squashed-Change-Id: I38310daaf23fd906004c0e8ee3e99e15570f84cb

Reuse inter prediction result in real-time speed 6

In real-time speed 6, no partition search is done. The inter
prediction results got from picking mode can be reused in the
following encoding process. A speed feature reuse_inter_pred_sby
is added to only enable the resue in speed 6.

This patch doesn't change encoding result. RTC set tests showed
that the encoding speed gain is 2% - 5%.

Squashed-Change-Id: I3884780f64ef95dd8be10562926542528713b92c

Add vp9_ prefix to mv_pred and setup_pred_block functions

Make these two functions accessible by both RD and non-RD coding
modes.

Squashed-Change-Id: Iecb39dbf3d65436286ea3c7ffaa9920d0b3aff85

Replace cpi->common with preset variable cm

This commit replaces a few use cases of cpi->common with preset
variable cm, to avoid unnecessary pointer fetch in the non-RD
coding mode.

Squashed-Change-Id: I4038f1c1a47373b8fd7bc5d69af61346103702f6

[spatial svc]Implement lag in frames for spatial svc

Squashed-Change-Id: I930dced169c9d53f8044d2754a04332138347409

[spatial svc]Don't skip motion search in first pass encoding

Squashed-Change-Id: Ia6bcdaf5a5b80e68176f60d8d00e9b5cf3f9bfe3

decode_test_driver: fix type size warning

like vpx_codec_decode(), vpx_codec_peek_stream_info() takes an unsigned
int, not size_t, parameter for buffer size

Squashed-Change-Id: I4ce0e1fbbde461c2e1b8fcbaac3cd203ed707460

decode_test_driver: check HasFailure() in RunLoop

avoids unnecessary errors due to e.g., read (Next()) failures

Squashed-Change-Id: I70b1d09766456f1c55367d98299b5abd7afff842

Allow lossless breakout in non-rd mode decision.

This is very helpful for large moving windows in screencasts.

Squashed-Change-Id: I91b5f9acb133281ee85ccd8f843e6bae5cadefca

Revert "Revert 3 patches from Hangyu to get Chrome to build:"

This patch reverts the previous revert from Jim and also add a
variable user_priv in the FrameWorker to save the user_priv
passed from the application. In the decoder_get_frame function,
the user_priv will be binded with the img. This change is needed
or it will fail the unit test added here:
https://gerrit.chromium.org/gerrit/#/c/70610/

This reverts commit 9be46e4565.

Squashed-Change-Id: I376d9a12ee196faffdf3c792b59e6137c56132c1

test.mk: remove renamed file

vp90-2-15-fuzz-flicker.webm was renamed in:
c3db2d8 error check vp9 superframe parsing

Squashed-Change-Id: I229dd6ca4c662802c457beea0f7b4128153a65dc

vp9cx.mk: move avx c files outside of x86inc block

same reasoning as:
9f3a0db vp9_rtcd: correct avx2 references

these are all intrinsics, so don't depend on x86inc.asm

Squashed-Change-Id: I915beaef318a28f64bfa5469e5efe90e4af5b827

Dual arf: Name changes.

Cosmetic patch only in response to comments on
previous patches suggesting a couple of name changes
for consistency and clarity.

Squashed-Change-Id: Ida3a359b0d5755345660d304a7697a3a3686b2a3

Make non-RD intra mode search txfm size dependent

This commit fixes the potential issue in the non-RD mode decision
flow that only checks part of the block to estimate the cost. It
was due to the use of fixed transform size, in replacing the
largest transform block size. This commit enables per transform
block cost estimation of the intra prediction mode in the non-RD
mode decision.

Squashed-Change-Id: I14ff92065e193e3e731c2bbf7ec89db676f1e132

Fix quality regression for multi arf off case.

Bug introduced during multiple iterations on: I3831*

gf_group->arf_update_idx[] cannot currently be used
to select the arf buffer index if buffer flipping on overlays
is enabled (still currently the case when multi arf OFF).

Squashed-Change-Id: I4ce9ea08f1dd03ac3ad8b3e27375a91ee1d964dc

Enable real-time version reference motion vector search

This commit enables a fast reference motion vector search scheme.
It checks the nearest top and left neighboring blocks to decide the
most probable predicted motion vector. If it finds the two have
the same motion vectors, it then skip finding exterior range for
the second most probable motion vector, and correspondingly skips
the check for NEARMV.

The runtime of speed -5 goes down
pedestrian at 1080p 29377 ms -> 27783 ms
vidyo at 720p       11830 ms -> 10990 ms
i.e., 6%-8% speed-up.

For rtc set, the compression performance
goes down by about -1.3% for both speed -5 and -6.

Squashed-Change-Id: I2a7794fa99734f739f8b30519ad4dfd511ab91a5

Add const mark to const values in non-RD coding mode

Squashed-Change-Id: I65209fd1e06fc06833f6647cb028b414391a7017

Change-Id: Ic0be67ac9ef48f64a8878a0b8f1b336f136bceac
2014-06-26 14:22:05 -07:00
Debargha Mukherjee
77a29953c5 Revert "Migrating old experiments into new playground branch"
This reverts commit 1a4b017fad

Change-Id: I7f54cf0489e592887b61eb3f7bda90f757b0aad7
2014-06-26 12:46:51 -07:00
Yue Chen
1a4b017fad Migrating old experiments into new playground branch
Change-Id: I28dc4acdf5415a1ea3d88213022d9e3d4fd5db46
2014-06-23 16:35:38 -07:00
88 changed files with 10937 additions and 1994 deletions

View File

@@ -137,7 +137,9 @@ for opt in "$@"; do
;;
--lib) proj_kind="lib"
;;
--src-path-bare=*) src_path_bare=$(fix_path "$optval")
--src-path-bare=*)
src_path_bare=$(fix_path "$optval")
src_path_bare=${src_path_bare%/}
;;
--static-crt) use_static_runtime=true
;;
@@ -151,9 +153,9 @@ for opt in "$@"; do
esac
;;
-I*)
opt="${opt%/}"
opt=${opt##-I}
opt=$(fix_path "$opt")
opt="${opt%/}"
incs="${incs}${incs:+;}&quot;${opt}&quot;"
yasmincs="${yasmincs} -I&quot;${opt}&quot;"
;;
@@ -414,7 +416,7 @@ generate_vcproj() {
vpx)
tag Tool \
Name="VCPreBuildEventTool" \
CommandLine="call obj_int_extract.bat $src_path_bare $plat_no_ws\\\$(ConfigurationName)" \
CommandLine="call obj_int_extract.bat &quot;$src_path_bare&quot; $plat_no_ws\\\$(ConfigurationName)" \
tag Tool \
Name="VCCLCompilerTool" \

View File

@@ -157,7 +157,9 @@ for opt in "$@"; do
;;
--lib) proj_kind="lib"
;;
--src-path-bare=*) src_path_bare=$(fix_path "$optval")
--src-path-bare=*)
src_path_bare=$(fix_path "$optval")
src_path_bare=${src_path_bare%/}
;;
--static-crt) use_static_runtime=true
;;
@@ -173,9 +175,9 @@ for opt in "$@"; do
esac
;;
-I*)
opt="${opt%/}"
opt=${opt##-I}
opt=$(fix_path "$opt")
opt="${opt%/}"
incs="${incs}${incs:+;}&quot;${opt}&quot;"
yasmincs="${yasmincs} -I&quot;${opt}&quot;"
;;

View File

@@ -50,9 +50,79 @@ build_target() {
vlog "***Done building target: ${target}***"
}
# Returns the preprocessor symbol for the target specified by $1.
target_to_preproc_symbol() {
target="$1"
case "${target}" in
armv6-*)
echo "__ARM_ARCH_6__"
;;
armv7-*)
echo "__ARM_ARCH_7__"
;;
armv7s-*)
echo "__ARM_ARCH_7S__"
;;
x86-*)
echo "__i386__"
;;
x86_64-*)
echo "__x86_64__"
;;
*)
echo "#error ${target} unknown/unsupported"
return 1
;;
esac
}
# Create a vpx_config.h shim that, based on preprocessor settings for the
# current target CPU, includes the real vpx_config.h for the current target.
# $1 is the list of targets.
create_vpx_framework_config_shim() {
local targets="$1"
local config_file="${HEADER_DIR}/vpx_config.h"
local preproc_symbol=""
local target=""
local include_guard="VPX_FRAMEWORK_HEADERS_VPX_VPX_CONFIG_H_"
local file_header="/*
* Copyright (c) $(date +%Y) The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/* GENERATED FILE: DO NOT EDIT! */
#ifndef ${include_guard}
#define ${include_guard}
#if defined"
printf "%s" "${file_header}" > "${config_file}"
for target in ${targets}; do
preproc_symbol=$(target_to_preproc_symbol "${target}")
printf " ${preproc_symbol}\n" >> "${config_file}"
printf "#include \"VPX/vpx/${target}/vpx_config.h\"\n" >> "${config_file}"
printf "#elif defined" >> "${config_file}"
mkdir "${HEADER_DIR}/${target}"
cp -p "${BUILD_ROOT}/${target}/vpx_config.h" "${HEADER_DIR}/${target}"
done
# Consume the last line of output from the loop: We don't want it.
sed -i '' -e '$d' "${config_file}"
printf "#endif\n\n" >> "${config_file}"
printf "#endif // ${include_guard}" >> "${config_file}"
}
# Configures and builds each target specified by $1, and then builds
# VPX.framework.
build_targets() {
build_framework() {
local lib_list=""
local targets="$1"
local target=""
@@ -75,15 +145,20 @@ build_targets() {
cd "${ORIG_PWD}"
# Includes are identical for all platforms, and according to dist target
# behavior vpx_config.h and vpx_version.h aren't actually necessary for user
# apps built with libvpx. So, just copy the includes from the last target
# built.
# TODO(tomfinegan): The above is a lame excuse. Build common config/version
# includes that use the preprocessor to include the correct file.
# The basic libvpx API includes are all the same; just grab the most recent
# set.
cp -p "${target_dist_dir}"/include/vpx/* "${HEADER_DIR}"
# Build the fat library.
${LIPO} -create ${lib_list} -output ${FRAMEWORK_DIR}/VPX
# Create the vpx_config.h shim that allows usage of vpx_config.h from
# within VPX.framework.
create_vpx_framework_config_shim "${targets}"
# Copy in vpx_version.h.
cp -p "${BUILD_ROOT}/${target}/vpx_version.h" "${HEADER_DIR}"
vlog "Created fat library ${FRAMEWORK_DIR}/VPX containing:"
for lib in ${lib_list}; do
vlog " $(echo ${lib} | awk -F / '{print $2, $NF}')"
@@ -166,4 +241,4 @@ cat << EOF
EOF
fi
build_targets "${TARGETS}"
build_framework "${TARGETS}"

7
configure vendored
View File

@@ -273,6 +273,13 @@ EXPERIMENT_LIST="
multiple_arf
spatial_svc
denoising
masked_interinter
interintra
masked_interintra
filterintra
ext_tx
supertx
copy_coding
"
CONFIG_LIST="
external_build

View File

@@ -296,6 +296,7 @@ int main(int argc, const char **argv) {
int frame_duration = 1; /* 1 timebase tick per frame */
FILE *infile = NULL;
int end_of_stream = 0;
int frame_size;
memset(&svc_ctx, 0, sizeof(svc_ctx));
svc_ctx.log_print = 1;
@@ -351,11 +352,10 @@ int main(int argc, const char **argv) {
die_codec(&codec, "Failed to encode frame");
}
if (!(app_input.passes == 2 && app_input.pass == 1)) {
if (vpx_svc_get_frame_size(&svc_ctx) > 0) {
while ((frame_size = vpx_svc_get_frame_size(&svc_ctx)) > 0) {
vpx_video_writer_write_frame(writer,
vpx_svc_get_buffer(&svc_ctx),
vpx_svc_get_frame_size(&svc_ctx),
pts);
frame_size, pts);
}
}
if (vpx_svc_get_rc_stats_buffer_size(&svc_ctx) > 0) {

View File

@@ -15,13 +15,27 @@
namespace libvpx_test {
const char kVP8Name[] = "WebM Project VP8";
vpx_codec_err_t Decoder::PeekStream(const uint8_t *cxdata, size_t size,
vpx_codec_stream_info_t *stream_info) {
return vpx_codec_peek_stream_info(CodecInterface(),
cxdata, static_cast<unsigned int>(size),
stream_info);
}
vpx_codec_err_t Decoder::DecodeFrame(const uint8_t *cxdata, size_t size) {
return DecodeFrame(cxdata, size, NULL);
}
vpx_codec_err_t Decoder::DecodeFrame(const uint8_t *cxdata, size_t size,
void *user_priv) {
vpx_codec_err_t res_dec;
InitOnce();
REGISTER_STATE_CHECK(
res_dec = vpx_codec_decode(&decoder_,
cxdata, static_cast<unsigned int>(size),
NULL, 0));
user_priv, 0));
return res_dec;
}
@@ -29,13 +43,37 @@ void DecoderTest::RunLoop(CompressedVideoSource *video) {
vpx_codec_dec_cfg_t dec_cfg = {0};
Decoder* const decoder = codec_->CreateDecoder(dec_cfg, 0);
ASSERT_TRUE(decoder != NULL);
const char *codec_name = decoder->GetDecoderName();
const bool is_vp8 = strncmp(kVP8Name, codec_name, sizeof(kVP8Name) - 1) == 0;
// Decode frames.
for (video->Begin(); video->cxdata(); video->Next()) {
for (video->Begin(); !::testing::Test::HasFailure() && video->cxdata();
video->Next()) {
PreDecodeFrameHook(*video, decoder);
vpx_codec_stream_info_t stream_info;
stream_info.sz = sizeof(stream_info);
const vpx_codec_err_t res_peek = decoder->PeekStream(video->cxdata(),
video->frame_size(),
&stream_info);
if (is_vp8) {
/* Vp8's implementation of PeekStream returns an error if the frame you
* pass it is not a keyframe, so we only expect VPX_CODEC_OK on the first
* frame, which must be a keyframe. */
if (video->frame_number() == 0)
ASSERT_EQ(VPX_CODEC_OK, res_peek) << "Peek return failed: "
<< vpx_codec_err_to_string(res_peek);
} else {
/* The Vp9 implementation of PeekStream returns an error only if the
* data passed to it isn't a valid Vp9 chunk. */
ASSERT_EQ(VPX_CODEC_OK, res_peek) << "Peek return failed: "
<< vpx_codec_err_to_string(res_peek);
}
vpx_codec_err_t res_dec = decoder->DecodeFrame(video->cxdata(),
video->frame_size());
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder->DecodeError();
if (!HandleDecodeResult(res_dec, *video, decoder))
break;
DxDataIterator dec_iter = decoder->GetDxData();
const vpx_image_t *img = NULL;

View File

@@ -49,8 +49,14 @@ class Decoder {
vpx_codec_destroy(&decoder_);
}
vpx_codec_err_t PeekStream(const uint8_t *cxdata, size_t size,
vpx_codec_stream_info_t *stream_info);
vpx_codec_err_t DecodeFrame(const uint8_t *cxdata, size_t size);
vpx_codec_err_t DecodeFrame(const uint8_t *cxdata, size_t size,
void *user_priv);
DxDataIterator GetDxData() {
return DxDataIterator(&decoder_);
}
@@ -85,6 +91,10 @@ class Decoder {
&decoder_, cb_get, cb_release, user_priv);
}
const char* GetDecoderName() {
return vpx_codec_iface_name(CodecInterface());
}
protected:
virtual vpx_codec_iface_t* CodecInterface() const = 0;
@@ -114,6 +124,14 @@ class DecoderTest {
virtual void PreDecodeFrameHook(const CompressedVideoSource& video,
Decoder *decoder) {}
// Hook to be called to handle decode result. Return true to continue.
virtual bool HandleDecodeResult(const vpx_codec_err_t res_dec,
const CompressedVideoSource& /* video */,
Decoder *decoder) {
EXPECT_EQ(VPX_CODEC_OK, res_dec) << decoder->DecodeError();
return VPX_CODEC_OK == res_dec;
}
// Hook to be called on every decompressed frame.
virtual void DecompressedFrameHook(const vpx_image_t& img,
const unsigned int frame_number) {}

109
test/invalid_file_test.cc Normal file
View File

@@ -0,0 +1,109 @@
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cstdio>
#include <cstdlib>
#include <string>
#include <vector>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vpx_config.h"
#include "test/codec_factory.h"
#include "test/decode_test_driver.h"
#include "test/ivf_video_source.h"
#include "test/util.h"
#if CONFIG_WEBM_IO
#include "test/webm_video_source.h"
#endif
#include "vpx_mem/vpx_mem.h"
namespace {
class InvalidFileTest
: public ::libvpx_test::DecoderTest,
public ::libvpx_test::CodecTestWithParam<const char*> {
protected:
InvalidFileTest() : DecoderTest(GET_PARAM(0)), res_file_(NULL) {}
virtual ~InvalidFileTest() {
if (res_file_ != NULL)
fclose(res_file_);
}
void OpenResFile(const std::string &res_file_name_) {
res_file_ = libvpx_test::OpenTestDataFile(res_file_name_);
ASSERT_TRUE(res_file_ != NULL) << "Result file open failed. Filename: "
<< res_file_name_;
}
virtual bool HandleDecodeResult(
const vpx_codec_err_t res_dec,
const libvpx_test::CompressedVideoSource &video,
libvpx_test::Decoder *decoder) {
EXPECT_TRUE(res_file_ != NULL);
int expected_res_dec;
// Read integer result.
const int res = fscanf(res_file_, "%d", &expected_res_dec);
EXPECT_NE(res, EOF) << "Read result data failed";
// Check results match.
EXPECT_EQ(expected_res_dec, res_dec)
<< "Results don't match: frame number = " << video.frame_number();
return !HasFailure();
}
private:
FILE *res_file_;
};
TEST_P(InvalidFileTest, ReturnCode) {
const std::string filename = GET_PARAM(1);
libvpx_test::CompressedVideoSource *video = NULL;
// Open compressed video file.
if (filename.substr(filename.length() - 3, 3) == "ivf") {
video = new libvpx_test::IVFVideoSource(filename);
} else if (filename.substr(filename.length() - 4, 4) == "webm") {
#if CONFIG_WEBM_IO
video = new libvpx_test::WebMVideoSource(filename);
#else
fprintf(stderr, "WebM IO is disabled, skipping test vector %s\n",
filename.c_str());
return;
#endif
}
video->Init();
// Construct result file name. The file holds a list of expected integer
// results, one for each decoded frame. Any result that doesn't match
// the files list will cause a test failure.
const std::string res_filename = filename + ".res";
OpenResFile(res_filename);
// Decode frame, and check the md5 matching.
ASSERT_NO_FATAL_FAILURE(RunLoop(video));
delete video;
}
const char *const kVP9InvalidFileTests[] = {
"invalid-vp90-01.webm",
"invalid-vp90-02.webm",
"invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.ivf",
};
#define NELEMENTS(x) static_cast<int>(sizeof(x) / sizeof(x[0]))
VP9_INSTANTIATE_TEST_CASE(InvalidFileTest,
::testing::ValuesIn(kVP9InvalidFileTests,
kVP9InvalidFileTests +
NELEMENTS(kVP9InvalidFileTests)));
} // namespace

View File

@@ -265,9 +265,17 @@ TEST_F(SvcTest, FirstFrameHasLayers) {
video.duration(), VPX_DL_GOOD_QUALITY);
EXPECT_EQ(VPX_CODEC_OK, res);
if (vpx_svc_get_frame_size(&svc_) == 0) {
// Flush encoder
res = vpx_svc_encode(&svc_, &codec_, NULL, 0,
video.duration(), VPX_DL_GOOD_QUALITY);
EXPECT_EQ(VPX_CODEC_OK, res);
}
int frame_size = vpx_svc_get_frame_size(&svc_);
EXPECT_GT(frame_size, 0);
const vpx_codec_err_t res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)),
vpx_svc_get_frame_size(&svc_));
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
// this test fails with a decoder error
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
@@ -277,6 +285,9 @@ TEST_F(SvcTest, EncodeThreeFrames) {
svc_.spatial_layers = 2;
vpx_svc_set_scale_factors(&svc_, "4/16,16/16");
vpx_svc_set_quantizers(&svc_, "40,30", 0);
int decoded_frames = 0;
vpx_codec_err_t res_dec;
int frame_size;
vpx_codec_err_t res =
vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_);
@@ -291,13 +302,14 @@ TEST_F(SvcTest, EncodeThreeFrames) {
// This frame is a keyframe.
res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_EQ(1, vpx_svc_is_keyframe(&svc_));
vpx_codec_err_t res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)),
vpx_svc_get_frame_size(&svc_));
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
if ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
// FRAME 1
video.Next();
@@ -305,12 +317,14 @@ TEST_F(SvcTest, EncodeThreeFrames) {
res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_EQ(0, vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)),
vpx_svc_get_frame_size(&svc_));
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
if ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
// FRAME 2
video.Next();
@@ -318,12 +332,29 @@ TEST_F(SvcTest, EncodeThreeFrames) {
res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_EQ(0, vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)),
vpx_svc_get_frame_size(&svc_));
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
if ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
// Flush encoder
res = vpx_svc_encode(&svc_, &codec_, NULL, 0,
video.duration(), VPX_DL_GOOD_QUALITY);
EXPECT_EQ(VPX_CODEC_OK, res);
while ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
EXPECT_EQ(decoded_frames, 3);
}
TEST_F(SvcTest, GetLayerResolution) {
@@ -413,6 +444,9 @@ TEST_F(SvcTest, TwoPassEncode) {
vpx_codec_destroy(&codec_);
// Second pass encode
int decoded_frames = 0;
vpx_codec_err_t res_dec;
int frame_size;
codec_enc_.g_pass = VPX_RC_LAST_PASS;
codec_enc_.rc_twopass_stats_in.buf = &stats_buf[0];
codec_enc_.rc_twopass_stats_in.sz = stats_buf.size();
@@ -427,12 +461,14 @@ TEST_F(SvcTest, TwoPassEncode) {
res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_EQ(1, vpx_svc_is_keyframe(&svc_));
vpx_codec_err_t res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)),
vpx_svc_get_frame_size(&svc_));
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
if ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
// FRAME 1
video.Next();
@@ -440,12 +476,14 @@ TEST_F(SvcTest, TwoPassEncode) {
res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_EQ(0, vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)),
vpx_svc_get_frame_size(&svc_));
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
if ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
// FRAME 2
video.Next();
@@ -453,12 +491,29 @@ TEST_F(SvcTest, TwoPassEncode) {
res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_EQ(0, vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)),
vpx_svc_get_frame_size(&svc_));
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
if ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
// Flush encoder
res = vpx_svc_encode(&svc_, &codec_, NULL, 0,
video.duration(), VPX_DL_GOOD_QUALITY);
EXPECT_EQ(VPX_CODEC_OK, res);
while ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
EXPECT_EQ(decoded_frames, 3);
}
} // namespace

View File

@@ -1,5 +1,9 @@
d5dfb0151c9051f8c85999255645d7a23916d3c0 hantro_collage_w352h288.yuv
b87815bf86020c592ccc7a846ba2e28ec8043902 hantro_odd.yuv
fe346136b9b8c1e6f6084cc106485706915795e4 invalid-vp90-01.webm
25751f5d3b05ff03f0719ad42cd625348eb8961e invalid-vp90-01.webm.res
d78e2fceba5ac942246503ec8366f879c4775ca5 invalid-vp90-02.webm
2dadee5306245fa5eeb0f99652d0e17afbcba96d invalid-vp90-02.webm.res
b1f1c3ec79114b9a0651af24ce634afb44a9a419 rush_hour_444.y4m
5184c46ddca8b1fadd16742e8500115bc8f749da vp80-00-comprehensive-001.ivf
65bf1bbbced81b97bd030f376d1b7f61a224793f vp80-00-comprehensive-002.ivf
@@ -576,6 +580,8 @@ d48c5db1b0f8e60521a7c749696b8067886033a3 vp90-2-09-aq2.webm
54638c38009198c38c8f3b25c182b709b6c1fd2e vp90-2-09-lf_deltas.webm.md5
510d95f3beb3b51c572611fdaeeece12277dac30 vp90-2-10-show-existing-frame.webm
14d631096f4bfa2d71f7f739aec1448fb3c33bad vp90-2-10-show-existing-frame.webm.md5
d2feea7728e8d2c615981d0f47427a4a5a45d881 vp90-2-10-show-existing-frame2.webm
5f7c7811baa3e4f03be1dd78c33971b727846821 vp90-2-10-show-existing-frame2.webm.md5
b4318e75f73a6a08992c7326de2fb589c2a794c7 vp90-2-11-size-351x287.webm
b3c48382cf7d0454e83a02497c229d27720f9e20 vp90-2-11-size-351x287.webm.md5
8e0096475ea2535bac71d3e2fc09e0c451c444df vp90-2-11-size-351x288.webm
@@ -638,5 +644,5 @@ e615575ded499ea1d992f3b38e3baa434509cdcd vp90-2-15-segkey.webm
e3ab35d4316c5e81325c50f5236ceca4bc0d35df vp90-2-15-segkey.webm.md5
9b7ca2cac09d34c4a5d296c1900f93b1e2f69d0d vp90-2-15-segkey_adpq.webm
8f46ba5f785d0c2170591a153e0d0d146a7c8090 vp90-2-15-segkey_adpq.webm.md5
d78e2fceba5ac942246503ec8366f879c4775ca5 vp90-2-15-fuzz-flicker.webm
bbd7dd15f43a703ff0a332fee4959e7b23bf77dc vp90-2-15-fuzz-flicker.webm.md5
76024eb753cdac6a5e5703aaea189d35c3c30ac7 invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.ivf
d3964f9dad9f60363c81b688324d95b4ec7c8038 invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.ivf.res

View File

@@ -30,6 +30,7 @@ LIBVPX_TEST_SRCS-$(CONFIG_VP8_ENCODER) += cq_test.cc
LIBVPX_TEST_SRCS-$(CONFIG_VP8_ENCODER) += keyframe_test.cc
LIBVPX_TEST_SRCS-$(CONFIG_VP9_DECODER) += external_frame_buffer_test.cc
LIBVPX_TEST_SRCS-$(CONFIG_VP9_DECODER) += user_priv_test.cc
LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += active_map_test.cc
LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += borders_test.cc
LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += cpu_speed_test.cc
@@ -54,6 +55,7 @@ LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += ../webmdec.h
LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += webm_video_source.h
endif
LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += invalid_file_test.cc
LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += test_vector_test.cc
# Currently we only support decoder perf tests for vp9. Also they read from WebM
@@ -690,6 +692,8 @@ LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-09-subpixel-00.ivf
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-09-subpixel-00.ivf.md5
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-10-show-existing-frame.webm
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-10-show-existing-frame.webm.md5
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-10-show-existing-frame2.webm
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-10-show-existing-frame2.webm.md5
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-11-size-351x287.webm
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-11-size-351x287.webm.md5
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-11-size-351x288.webm
@@ -754,8 +758,14 @@ LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-15-segkey.webm
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-15-segkey.webm.md5
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-15-segkey_adpq.webm
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-15-segkey_adpq.webm.md5
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-15-fuzz-flicker.webm
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-15-fuzz-flicker.webm.md5
# Invalid files for testing libvpx error checking.
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-01.webm
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-01.webm.res
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-02.webm
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-02.webm.res
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.ivf
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.ivf.res
ifeq ($(CONFIG_DECODE_PERF_TESTS),yes)
# BBB VP9 streams

View File

@@ -161,6 +161,7 @@ const char *const kVP9TestVectors[] = {
"vp90-2-08-tile-4x1.webm", "vp90-2-09-subpixel-00.ivf",
"vp90-2-02-size-lf-1920x1080.webm", "vp90-2-09-aq2.webm",
"vp90-2-09-lf_deltas.webm", "vp90-2-10-show-existing-frame.webm",
"vp90-2-10-show-existing-frame2.webm",
"vp90-2-11-size-351x287.webm", "vp90-2-11-size-351x288.webm",
"vp90-2-11-size-352x287.webm", "vp90-2-12-droppable_1.ivf",
"vp90-2-12-droppable_2.ivf", "vp90-2-12-droppable_3.ivf",
@@ -179,7 +180,6 @@ const char *const kVP9TestVectors[] = {
"vp90-2-14-resize-fp-tiles-8-16.webm", "vp90-2-14-resize-fp-tiles-8-1.webm",
"vp90-2-14-resize-fp-tiles-8-2.webm", "vp90-2-14-resize-fp-tiles-8-4.webm",
"vp90-2-15-segkey.webm", "vp90-2-15-segkey_adpq.webm",
"vp90-2-15-fuzz-flicker.webm"
};
const int kNumVP9TestVectors = NELEMENTS(kVP9TestVectors);
#endif // CONFIG_VP9_DECODER

100
test/user_priv_test.cc Normal file
View File

@@ -0,0 +1,100 @@
/*
* Copyright (c) 2013 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cstdio>
#include <cstdlib>
#include <string>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vpx_config.h"
#include "test/acm_random.h"
#include "test/codec_factory.h"
#include "test/decode_test_driver.h"
#include "test/ivf_video_source.h"
#include "test/md5_helper.h"
#include "test/util.h"
#if CONFIG_WEBM_IO
#include "test/webm_video_source.h"
#endif
#include "vpx_mem/vpx_mem.h"
#include "vpx/vp8.h"
namespace {
using std::string;
using libvpx_test::ACMRandom;
#if CONFIG_WEBM_IO
void CheckUserPrivateData(void *user_priv, int *target) {
// actual pointer value should be the same as expected.
EXPECT_EQ(reinterpret_cast<void *>(target), user_priv) <<
"user_priv pointer value does not match.";
}
// Decodes |filename|. Passes in user_priv data when calling DecodeFrame and
// compares the user_priv from return img with the original user_priv to see if
// they match. Both the pointer values and the values inside the addresses
// should match.
string DecodeFile(const string &filename) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
libvpx_test::WebMVideoSource video(filename);
video.Init();
vpx_codec_dec_cfg_t cfg = {0};
libvpx_test::VP9Decoder decoder(cfg, 0);
libvpx_test::MD5 md5;
int frame_num = 0;
for (video.Begin(); !::testing::Test::HasFailure() && video.cxdata();
video.Next()) {
void *user_priv = reinterpret_cast<void *>(&frame_num);
const vpx_codec_err_t res =
decoder.DecodeFrame(video.cxdata(), video.frame_size(),
(frame_num == 0) ? NULL : user_priv);
if (res != VPX_CODEC_OK) {
EXPECT_EQ(VPX_CODEC_OK, res) << decoder.DecodeError();
break;
}
libvpx_test::DxDataIterator dec_iter = decoder.GetDxData();
const vpx_image_t *img = NULL;
// Get decompressed data.
while ((img = dec_iter.Next())) {
if (frame_num == 0) {
CheckUserPrivateData(img->user_priv, NULL);
} else {
CheckUserPrivateData(img->user_priv, &frame_num);
// Also test ctrl_get_reference api.
struct vp9_ref_frame ref;
// Randomly fetch a reference frame.
ref.idx = rnd.Rand8() % 3;
decoder.Control(VP9_GET_REFERENCE, &ref);
CheckUserPrivateData(ref.img.user_priv, &frame_num);
}
md5.Add(img);
}
frame_num++;
}
return string(md5.Get());
}
TEST(UserPrivTest, VideoDecode) {
// no tiles or frame parallel; this exercises the decoding to test the
// user_priv.
EXPECT_STREQ("b35a1b707b28e82be025d960aba039bc",
DecodeFile("vp90-2-03-size-226x226.webm").c_str());
}
#endif // CONFIG_WEBM_IO
} // namespace

231
third_party/libmkv/EbmlIDs.h vendored Normal file
View File

@@ -0,0 +1,231 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MKV_DEFS_HPP
#define MKV_DEFS_HPP 1
/* Commenting out values not available in webm, but available in matroska */
enum mkv {
EBML = 0x1A45DFA3,
EBMLVersion = 0x4286,
EBMLReadVersion = 0x42F7,
EBMLMaxIDLength = 0x42F2,
EBMLMaxSizeLength = 0x42F3,
DocType = 0x4282,
DocTypeVersion = 0x4287,
DocTypeReadVersion = 0x4285,
/* CRC_32 = 0xBF, */
Void = 0xEC,
SignatureSlot = 0x1B538667,
SignatureAlgo = 0x7E8A,
SignatureHash = 0x7E9A,
SignaturePublicKey = 0x7EA5,
Signature = 0x7EB5,
SignatureElements = 0x7E5B,
SignatureElementList = 0x7E7B,
SignedElement = 0x6532,
/* segment */
Segment = 0x18538067,
/* Meta Seek Information */
SeekHead = 0x114D9B74,
Seek = 0x4DBB,
SeekID = 0x53AB,
SeekPosition = 0x53AC,
/* Segment Information */
Info = 0x1549A966,
/* SegmentUID = 0x73A4, */
/* SegmentFilename = 0x7384, */
/* PrevUID = 0x3CB923, */
/* PrevFilename = 0x3C83AB, */
/* NextUID = 0x3EB923, */
/* NextFilename = 0x3E83BB, */
/* SegmentFamily = 0x4444, */
/* ChapterTranslate = 0x6924, */
/* ChapterTranslateEditionUID = 0x69FC, */
/* ChapterTranslateCodec = 0x69BF, */
/* ChapterTranslateID = 0x69A5, */
TimecodeScale = 0x2AD7B1,
Segment_Duration = 0x4489,
DateUTC = 0x4461,
/* Title = 0x7BA9, */
MuxingApp = 0x4D80,
WritingApp = 0x5741,
/* Cluster */
Cluster = 0x1F43B675,
Timecode = 0xE7,
/* SilentTracks = 0x5854, */
/* SilentTrackNumber = 0x58D7, */
/* Position = 0xA7, */
PrevSize = 0xAB,
BlockGroup = 0xA0,
Block = 0xA1,
/* BlockVirtual = 0xA2, */
BlockAdditions = 0x75A1,
BlockMore = 0xA6,
BlockAddID = 0xEE,
BlockAdditional = 0xA5,
BlockDuration = 0x9B,
/* ReferencePriority = 0xFA, */
ReferenceBlock = 0xFB,
/* ReferenceVirtual = 0xFD, */
/* CodecState = 0xA4, */
/* Slices = 0x8E, */
/* TimeSlice = 0xE8, */
LaceNumber = 0xCC,
/* FrameNumber = 0xCD, */
/* BlockAdditionID = 0xCB, */
/* MkvDelay = 0xCE, */
/* Cluster_Duration = 0xCF, */
SimpleBlock = 0xA3,
/* EncryptedBlock = 0xAF, */
/* Track */
Tracks = 0x1654AE6B,
TrackEntry = 0xAE,
TrackNumber = 0xD7,
TrackUID = 0x73C5,
TrackType = 0x83,
FlagEnabled = 0xB9,
FlagDefault = 0x88,
FlagForced = 0x55AA,
FlagLacing = 0x9C,
/* MinCache = 0x6DE7, */
/* MaxCache = 0x6DF8, */
DefaultDuration = 0x23E383,
/* TrackTimecodeScale = 0x23314F, */
/* TrackOffset = 0x537F, */
MaxBlockAdditionID = 0x55EE,
Name = 0x536E,
Language = 0x22B59C,
CodecID = 0x86,
CodecPrivate = 0x63A2,
CodecName = 0x258688,
/* AttachmentLink = 0x7446, */
/* CodecSettings = 0x3A9697, */
/* CodecInfoURL = 0x3B4040, */
/* CodecDownloadURL = 0x26B240, */
/* CodecDecodeAll = 0xAA, */
/* TrackOverlay = 0x6FAB, */
/* TrackTranslate = 0x6624, */
/* TrackTranslateEditionUID = 0x66FC, */
/* TrackTranslateCodec = 0x66BF, */
/* TrackTranslateTrackID = 0x66A5, */
/* video */
Video = 0xE0,
FlagInterlaced = 0x9A,
StereoMode = 0x53B8,
AlphaMode = 0x53C0,
PixelWidth = 0xB0,
PixelHeight = 0xBA,
PixelCropBottom = 0x54AA,
PixelCropTop = 0x54BB,
PixelCropLeft = 0x54CC,
PixelCropRight = 0x54DD,
DisplayWidth = 0x54B0,
DisplayHeight = 0x54BA,
DisplayUnit = 0x54B2,
AspectRatioType = 0x54B3,
/* ColourSpace = 0x2EB524, */
/* GammaValue = 0x2FB523, */
FrameRate = 0x2383E3,
/* end video */
/* audio */
Audio = 0xE1,
SamplingFrequency = 0xB5,
OutputSamplingFrequency = 0x78B5,
Channels = 0x9F,
/* ChannelPositions = 0x7D7B, */
BitDepth = 0x6264,
/* end audio */
/* content encoding */
/* ContentEncodings = 0x6d80, */
/* ContentEncoding = 0x6240, */
/* ContentEncodingOrder = 0x5031, */
/* ContentEncodingScope = 0x5032, */
/* ContentEncodingType = 0x5033, */
/* ContentCompression = 0x5034, */
/* ContentCompAlgo = 0x4254, */
/* ContentCompSettings = 0x4255, */
/* ContentEncryption = 0x5035, */
/* ContentEncAlgo = 0x47e1, */
/* ContentEncKeyID = 0x47e2, */
/* ContentSignature = 0x47e3, */
/* ContentSigKeyID = 0x47e4, */
/* ContentSigAlgo = 0x47e5, */
/* ContentSigHashAlgo = 0x47e6, */
/* end content encoding */
/* Cueing Data */
Cues = 0x1C53BB6B,
CuePoint = 0xBB,
CueTime = 0xB3,
CueTrackPositions = 0xB7,
CueTrack = 0xF7,
CueClusterPosition = 0xF1,
CueBlockNumber = 0x5378
/* CueCodecState = 0xEA, */
/* CueReference = 0xDB, */
/* CueRefTime = 0x96, */
/* CueRefCluster = 0x97, */
/* CueRefNumber = 0x535F, */
/* CueRefCodecState = 0xEB, */
/* Attachment */
/* Attachments = 0x1941A469, */
/* AttachedFile = 0x61A7, */
/* FileDescription = 0x467E, */
/* FileName = 0x466E, */
/* FileMimeType = 0x4660, */
/* FileData = 0x465C, */
/* FileUID = 0x46AE, */
/* FileReferral = 0x4675, */
/* Chapters */
/* Chapters = 0x1043A770, */
/* EditionEntry = 0x45B9, */
/* EditionUID = 0x45BC, */
/* EditionFlagHidden = 0x45BD, */
/* EditionFlagDefault = 0x45DB, */
/* EditionFlagOrdered = 0x45DD, */
/* ChapterAtom = 0xB6, */
/* ChapterUID = 0x73C4, */
/* ChapterTimeStart = 0x91, */
/* ChapterTimeEnd = 0x92, */
/* ChapterFlagHidden = 0x98, */
/* ChapterFlagEnabled = 0x4598, */
/* ChapterSegmentUID = 0x6E67, */
/* ChapterSegmentEditionUID = 0x6EBC, */
/* ChapterPhysicalEquiv = 0x63C3, */
/* ChapterTrack = 0x8F, */
/* ChapterTrackNumber = 0x89, */
/* ChapterDisplay = 0x80, */
/* ChapString = 0x85, */
/* ChapLanguage = 0x437C, */
/* ChapCountry = 0x437E, */
/* ChapProcess = 0x6944, */
/* ChapProcessCodecID = 0x6955, */
/* ChapProcessPrivate = 0x450D, */
/* ChapProcessCommand = 0x6911, */
/* ChapProcessTime = 0x6922, */
/* ChapProcessData = 0x6933, */
/* Tagging */
/* Tags = 0x1254C367, */
/* Tag = 0x7373, */
/* Targets = 0x63C0, */
/* TargetTypeValue = 0x68CA, */
/* TargetType = 0x63CA, */
/* Tagging_TrackUID = 0x63C5, */
/* Tagging_EditionUID = 0x63C9, */
/* Tagging_ChapterUID = 0x63C4, */
/* AttachmentUID = 0x63C6, */
/* SimpleTag = 0x67C8, */
/* TagName = 0x45A3, */
/* TagLanguage = 0x447A, */
/* TagDefault = 0x4484, */
/* TagString = 0x4487, */
/* TagBinary = 0x4485, */
};
#endif

157
third_party/libmkv/EbmlWriter.c vendored Normal file
View File

@@ -0,0 +1,157 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "EbmlWriter.h"
#include <stdlib.h>
#include <wchar.h>
#include <string.h>
#include <limits.h>
#if defined(_MSC_VER)
#define LITERALU64(n) n
#else
#define LITERALU64(n) n##LLU
#endif
void Ebml_WriteLen(EbmlGlobal *glob, int64_t val) {
/* TODO check and make sure we are not > than 0x0100000000000000LLU */
unsigned char size = 8; /* size in bytes to output */
/* mask to compare for byte size */
int64_t minVal = 0xff;
for (size = 1; size < 8; size ++) {
if (val < minVal)
break;
minVal = (minVal << 7);
}
val |= (((uint64_t)0x80) << ((size - 1) * 7));
Ebml_Serialize(glob, (void *) &val, sizeof(val), size);
}
void Ebml_WriteString(EbmlGlobal *glob, const char *str) {
const size_t size_ = strlen(str);
const uint64_t size = size_;
Ebml_WriteLen(glob, size);
/* TODO: it's not clear from the spec whether the nul terminator
* should be serialized too. For now we omit the null terminator.
*/
Ebml_Write(glob, str, (unsigned long)size);
}
void Ebml_WriteUTF8(EbmlGlobal *glob, const wchar_t *wstr) {
const size_t strlen = wcslen(wstr);
/* TODO: it's not clear from the spec whether the nul terminator
* should be serialized too. For now we include it.
*/
const uint64_t size = strlen;
Ebml_WriteLen(glob, size);
Ebml_Write(glob, wstr, (unsigned long)size);
}
void Ebml_WriteID(EbmlGlobal *glob, unsigned long class_id) {
int len;
if (class_id >= 0x01000000)
len = 4;
else if (class_id >= 0x00010000)
len = 3;
else if (class_id >= 0x00000100)
len = 2;
else
len = 1;
Ebml_Serialize(glob, (void *)&class_id, sizeof(class_id), len);
}
void Ebml_SerializeUnsigned64(EbmlGlobal *glob, unsigned long class_id, uint64_t ui) {
unsigned char sizeSerialized = 8 | 0x80;
Ebml_WriteID(glob, class_id);
Ebml_Serialize(glob, &sizeSerialized, sizeof(sizeSerialized), 1);
Ebml_Serialize(glob, &ui, sizeof(ui), 8);
}
void Ebml_SerializeUnsigned(EbmlGlobal *glob, unsigned long class_id, unsigned long ui) {
unsigned char size = 8; /* size in bytes to output */
unsigned char sizeSerialized = 0;
unsigned long minVal;
Ebml_WriteID(glob, class_id);
minVal = 0x7fLU; /* mask to compare for byte size */
for (size = 1; size < 4; size ++) {
if (ui < minVal) {
break;
}
minVal <<= 7;
}
sizeSerialized = 0x80 | size;
Ebml_Serialize(glob, &sizeSerialized, sizeof(sizeSerialized), 1);
Ebml_Serialize(glob, &ui, sizeof(ui), size);
}
/* TODO: perhaps this is a poor name for this id serializer helper function */
void Ebml_SerializeBinary(EbmlGlobal *glob, unsigned long class_id, unsigned long bin) {
int size;
for (size = 4; size > 1; size--) {
if (bin & (unsigned int)0x000000ff << ((size - 1) * 8))
break;
}
Ebml_WriteID(glob, class_id);
Ebml_WriteLen(glob, size);
Ebml_WriteID(glob, bin);
}
void Ebml_SerializeFloat(EbmlGlobal *glob, unsigned long class_id, double d) {
unsigned char len = 0x88;
Ebml_WriteID(glob, class_id);
Ebml_Serialize(glob, &len, sizeof(len), 1);
Ebml_Serialize(glob, &d, sizeof(d), 8);
}
void Ebml_WriteSigned16(EbmlGlobal *glob, short val) {
signed long out = ((val & 0x003FFFFF) | 0x00200000) << 8;
Ebml_Serialize(glob, &out, sizeof(out), 3);
}
void Ebml_SerializeString(EbmlGlobal *glob, unsigned long class_id, const char *s) {
Ebml_WriteID(glob, class_id);
Ebml_WriteString(glob, s);
}
void Ebml_SerializeUTF8(EbmlGlobal *glob, unsigned long class_id, wchar_t *s) {
Ebml_WriteID(glob, class_id);
Ebml_WriteUTF8(glob, s);
}
void Ebml_SerializeData(EbmlGlobal *glob, unsigned long class_id, unsigned char *data, unsigned long data_length) {
Ebml_WriteID(glob, class_id);
Ebml_WriteLen(glob, data_length);
Ebml_Write(glob, data, data_length);
}
void Ebml_WriteVoid(EbmlGlobal *glob, unsigned long vSize) {
unsigned char tmp = 0;
unsigned long i = 0;
Ebml_WriteID(glob, 0xEC);
Ebml_WriteLen(glob, vSize);
for (i = 0; i < vSize; i++) {
Ebml_Write(glob, &tmp, 1);
}
}
/* TODO Serialize Date */

42
third_party/libmkv/EbmlWriter.h vendored Normal file
View File

@@ -0,0 +1,42 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef EBMLWRITER_HPP
#define EBMLWRITER_HPP
#include <stddef.h>
#include "vpx/vpx_integer.h"
/* note: you must define write and serialize functions as well as your own
* EBML_GLOBAL
*
* These functions MUST be implemented
*/
typedef struct EbmlGlobal EbmlGlobal;
void Ebml_Serialize(EbmlGlobal *glob, const void *, int, unsigned long);
void Ebml_Write(EbmlGlobal *glob, const void *, unsigned long);
/*****/
void Ebml_WriteLen(EbmlGlobal *glob, int64_t val);
void Ebml_WriteString(EbmlGlobal *glob, const char *str);
void Ebml_WriteUTF8(EbmlGlobal *glob, const wchar_t *wstr);
void Ebml_WriteID(EbmlGlobal *glob, unsigned long class_id);
void Ebml_SerializeUnsigned64(EbmlGlobal *glob, unsigned long class_id, uint64_t ui);
void Ebml_SerializeUnsigned(EbmlGlobal *glob, unsigned long class_id, unsigned long ui);
void Ebml_SerializeBinary(EbmlGlobal *glob, unsigned long class_id, unsigned long ui);
void Ebml_SerializeFloat(EbmlGlobal *glob, unsigned long class_id, double d);
/* TODO make this more generic to signed */
void Ebml_WriteSigned16(EbmlGlobal *glob, short val);
void Ebml_SerializeString(EbmlGlobal *glob, unsigned long class_id, const char *s);
void Ebml_SerializeUTF8(EbmlGlobal *glob, unsigned long class_id, wchar_t *s);
void Ebml_SerializeData(EbmlGlobal *glob, unsigned long class_id, unsigned char *data, unsigned long data_length);
void Ebml_WriteVoid(EbmlGlobal *glob, unsigned long vSize);
/* TODO need date function */
#endif

View File

@@ -463,9 +463,7 @@ $vp8_short_walsh4x4_neon_asm=vp8_short_walsh4x4_neon;
# Quantizer
#
add_proto qw/void vp8_regular_quantize_b/, "struct block *, struct blockd *";
specialize qw/vp8_regular_quantize_b sse2/;
# TODO(johann) Update sse4 implementation and re-enable
#$vp8_regular_quantize_b_sse4_1=vp8_regular_quantize_b_sse4;
specialize qw/vp8_regular_quantize_b sse2 sse4_1/;
add_proto qw/void vp8_fast_quantize_b/, "struct block *, struct blockd *";
specialize qw/vp8_fast_quantize_b sse2 ssse3 media neon_asm/;

View File

@@ -26,11 +26,10 @@
int cmp = (x[z] < boost) | (y[z] == 0); \
zbin_boost_ptr++; \
if (cmp) \
goto select_eob_end_##i; \
break; \
qcoeff_ptr[z] = y[z]; \
eob = i; \
zbin_boost_ptr = b->zrun_zbin_boost; \
select_eob_end_##i:; \
} while (0)
void vp8_regular_quantize_b_sse2(BLOCK *b, BLOCKD *d)

View File

@@ -1,256 +0,0 @@
;
; Copyright (c) 2010 The WebM project authors. All Rights Reserved.
;
; Use of this source code is governed by a BSD-style license and patent
; grant that can be found in the LICENSE file in the root of the source
; tree. All contributing project authors may be found in the AUTHORS
; file in the root of the source tree.
;
%include "vpx_ports/x86_abi_support.asm"
%include "vp8_asm_enc_offsets.asm"
; void vp8_regular_quantize_b_sse4 | arg
; (BLOCK *b, | 0
; BLOCKD *d) | 1
global sym(vp8_regular_quantize_b_sse4) PRIVATE
sym(vp8_regular_quantize_b_sse4):
%if ABI_IS_32BIT
push rbp
mov rbp, rsp
GET_GOT rbx
push rdi
push rsi
ALIGN_STACK 16, rax
%define qcoeff 0 ; 32
%define stack_size 32
sub rsp, stack_size
%else
%if LIBVPX_YASM_WIN64
SAVE_XMM 8, u
push rdi
push rsi
%endif
%endif
; end prolog
%if ABI_IS_32BIT
mov rdi, arg(0) ; BLOCK *b
mov rsi, arg(1) ; BLOCKD *d
%else
%if LIBVPX_YASM_WIN64
mov rdi, rcx ; BLOCK *b
mov rsi, rdx ; BLOCKD *d
%else
;mov rdi, rdi ; BLOCK *b
;mov rsi, rsi ; BLOCKD *d
%endif
%endif
mov rax, [rdi + vp8_block_coeff]
mov rcx, [rdi + vp8_block_zbin]
mov rdx, [rdi + vp8_block_round]
movd xmm7, [rdi + vp8_block_zbin_extra]
; z
movdqa xmm0, [rax]
movdqa xmm1, [rax + 16]
; duplicate zbin_oq_value
pshuflw xmm7, xmm7, 0
punpcklwd xmm7, xmm7
movdqa xmm2, xmm0
movdqa xmm3, xmm1
; sz
psraw xmm0, 15
psraw xmm1, 15
; (z ^ sz)
pxor xmm2, xmm0
pxor xmm3, xmm1
; x = abs(z)
psubw xmm2, xmm0
psubw xmm3, xmm1
; zbin
movdqa xmm4, [rcx]
movdqa xmm5, [rcx + 16]
; *zbin_ptr + zbin_oq_value
paddw xmm4, xmm7
paddw xmm5, xmm7
movdqa xmm6, xmm2
movdqa xmm7, xmm3
; x - (*zbin_ptr + zbin_oq_value)
psubw xmm6, xmm4
psubw xmm7, xmm5
; round
movdqa xmm4, [rdx]
movdqa xmm5, [rdx + 16]
mov rax, [rdi + vp8_block_quant_shift]
mov rcx, [rdi + vp8_block_quant]
mov rdx, [rdi + vp8_block_zrun_zbin_boost]
; x + round
paddw xmm2, xmm4
paddw xmm3, xmm5
; quant
movdqa xmm4, [rcx]
movdqa xmm5, [rcx + 16]
; y = x * quant_ptr >> 16
pmulhw xmm4, xmm2
pmulhw xmm5, xmm3
; y += x
paddw xmm2, xmm4
paddw xmm3, xmm5
pxor xmm4, xmm4
%if ABI_IS_32BIT
movdqa [rsp + qcoeff], xmm4
movdqa [rsp + qcoeff + 16], xmm4
%else
pxor xmm8, xmm8
%endif
; quant_shift
movdqa xmm5, [rax]
; zrun_zbin_boost
mov rax, rdx
%macro ZIGZAG_LOOP 5
; x
pextrw ecx, %4, %2
; if (x >= zbin)
sub cx, WORD PTR[rdx] ; x - zbin
lea rdx, [rdx + 2] ; zbin_boost_ptr++
jl .rq_zigzag_loop_%1 ; x < zbin
pextrw edi, %3, %2 ; y
; downshift by quant_shift[rc]
pextrb ecx, xmm5, %1 ; quant_shift[rc]
sar edi, cl ; also sets Z bit
je .rq_zigzag_loop_%1 ; !y
%if ABI_IS_32BIT
mov WORD PTR[rsp + qcoeff + %1 *2], di
%else
pinsrw %5, edi, %2 ; qcoeff[rc]
%endif
mov rdx, rax ; reset to b->zrun_zbin_boost
.rq_zigzag_loop_%1:
%endmacro
; in vp8_default_zig_zag1d order: see vp8/common/entropy.c
ZIGZAG_LOOP 0, 0, xmm2, xmm6, xmm4
ZIGZAG_LOOP 1, 1, xmm2, xmm6, xmm4
ZIGZAG_LOOP 4, 4, xmm2, xmm6, xmm4
ZIGZAG_LOOP 8, 0, xmm3, xmm7, xmm8
ZIGZAG_LOOP 5, 5, xmm2, xmm6, xmm4
ZIGZAG_LOOP 2, 2, xmm2, xmm6, xmm4
ZIGZAG_LOOP 3, 3, xmm2, xmm6, xmm4
ZIGZAG_LOOP 6, 6, xmm2, xmm6, xmm4
ZIGZAG_LOOP 9, 1, xmm3, xmm7, xmm8
ZIGZAG_LOOP 12, 4, xmm3, xmm7, xmm8
ZIGZAG_LOOP 13, 5, xmm3, xmm7, xmm8
ZIGZAG_LOOP 10, 2, xmm3, xmm7, xmm8
ZIGZAG_LOOP 7, 7, xmm2, xmm6, xmm4
ZIGZAG_LOOP 11, 3, xmm3, xmm7, xmm8
ZIGZAG_LOOP 14, 6, xmm3, xmm7, xmm8
ZIGZAG_LOOP 15, 7, xmm3, xmm7, xmm8
mov rcx, [rsi + vp8_blockd_dequant]
mov rdi, [rsi + vp8_blockd_dqcoeff]
%if ABI_IS_32BIT
movdqa xmm4, [rsp + qcoeff]
movdqa xmm5, [rsp + qcoeff + 16]
%else
%define xmm5 xmm8
%endif
; y ^ sz
pxor xmm4, xmm0
pxor xmm5, xmm1
; x = (y ^ sz) - sz
psubw xmm4, xmm0
psubw xmm5, xmm1
; dequant
movdqa xmm0, [rcx]
movdqa xmm1, [rcx + 16]
mov rcx, [rsi + vp8_blockd_qcoeff]
pmullw xmm0, xmm4
pmullw xmm1, xmm5
; store qcoeff
movdqa [rcx], xmm4
movdqa [rcx + 16], xmm5
; store dqcoeff
movdqa [rdi], xmm0
movdqa [rdi + 16], xmm1
mov rcx, [rsi + vp8_blockd_eob]
; select the last value (in zig_zag order) for EOB
pxor xmm6, xmm6
pcmpeqw xmm4, xmm6
pcmpeqw xmm5, xmm6
packsswb xmm4, xmm5
pshufb xmm4, [GLOBAL(zig_zag1d)]
pmovmskb edx, xmm4
xor rdi, rdi
mov eax, -1
xor dx, ax
bsr eax, edx
sub edi, edx
sar edi, 31
add eax, 1
and eax, edi
mov BYTE PTR [rcx], al ; store eob
; begin epilog
%if ABI_IS_32BIT
add rsp, stack_size
pop rsp
pop rsi
pop rdi
RESTORE_GOT
pop rbp
%else
%undef xmm5
%if LIBVPX_YASM_WIN64
pop rsi
pop rdi
RESTORE_XMM
%endif
%endif
ret
SECTION_RODATA
align 16
; vp8/common/entropy.c: vp8_default_zig_zag1d
zig_zag1d:
db 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15

View File

@@ -0,0 +1,128 @@
/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <smmintrin.h> /* SSE4.1 */
#include "./vp8_rtcd.h"
#include "vp8/encoder/block.h"
#include "vp8/common/entropy.h" /* vp8_default_inv_zig_zag */
#define SELECT_EOB(i, z, x, y, q) \
do { \
short boost = *zbin_boost_ptr; \
short x_z = _mm_extract_epi16(x, z); \
short y_z = _mm_extract_epi16(y, z); \
int cmp = (x_z < boost) | (y_z == 0); \
zbin_boost_ptr++; \
if (cmp) \
break; \
q = _mm_insert_epi16(q, y_z, z); \
eob = i; \
zbin_boost_ptr = b->zrun_zbin_boost; \
} while (0)
void vp8_regular_quantize_b_sse4_1(BLOCK *b, BLOCKD *d) {
char eob = 0;
short *zbin_boost_ptr = b->zrun_zbin_boost;
__m128i sz0, x0, sz1, x1, y0, y1, x_minus_zbin0, x_minus_zbin1,
dqcoeff0, dqcoeff1;
__m128i quant_shift0 = _mm_load_si128((__m128i *)(b->quant_shift));
__m128i quant_shift1 = _mm_load_si128((__m128i *)(b->quant_shift + 8));
__m128i z0 = _mm_load_si128((__m128i *)(b->coeff));
__m128i z1 = _mm_load_si128((__m128i *)(b->coeff+8));
__m128i zbin_extra = _mm_cvtsi32_si128(b->zbin_extra);
__m128i zbin0 = _mm_load_si128((__m128i *)(b->zbin));
__m128i zbin1 = _mm_load_si128((__m128i *)(b->zbin + 8));
__m128i round0 = _mm_load_si128((__m128i *)(b->round));
__m128i round1 = _mm_load_si128((__m128i *)(b->round + 8));
__m128i quant0 = _mm_load_si128((__m128i *)(b->quant));
__m128i quant1 = _mm_load_si128((__m128i *)(b->quant + 8));
__m128i dequant0 = _mm_load_si128((__m128i *)(d->dequant));
__m128i dequant1 = _mm_load_si128((__m128i *)(d->dequant + 8));
__m128i qcoeff0 = _mm_setzero_si128();
__m128i qcoeff1 = _mm_setzero_si128();
/* Duplicate to all lanes. */
zbin_extra = _mm_shufflelo_epi16(zbin_extra, 0);
zbin_extra = _mm_unpacklo_epi16(zbin_extra, zbin_extra);
/* Sign of z: z >> 15 */
sz0 = _mm_srai_epi16(z0, 15);
sz1 = _mm_srai_epi16(z1, 15);
/* x = abs(z): (z ^ sz) - sz */
x0 = _mm_xor_si128(z0, sz0);
x1 = _mm_xor_si128(z1, sz1);
x0 = _mm_sub_epi16(x0, sz0);
x1 = _mm_sub_epi16(x1, sz1);
/* zbin[] + zbin_extra */
zbin0 = _mm_add_epi16(zbin0, zbin_extra);
zbin1 = _mm_add_epi16(zbin1, zbin_extra);
/* In C x is compared to zbin where zbin = zbin[] + boost + extra. Rebalance
* the equation because boost is the only value which can change:
* x - (zbin[] + extra) >= boost */
x_minus_zbin0 = _mm_sub_epi16(x0, zbin0);
x_minus_zbin1 = _mm_sub_epi16(x1, zbin1);
/* All the remaining calculations are valid whether they are done now with
* simd or later inside the loop one at a time. */
x0 = _mm_add_epi16(x0, round0);
x1 = _mm_add_epi16(x1, round1);
y0 = _mm_mulhi_epi16(x0, quant0);
y1 = _mm_mulhi_epi16(x1, quant1);
y0 = _mm_add_epi16(y0, x0);
y1 = _mm_add_epi16(y1, x1);
/* Instead of shifting each value independently we convert the scaling
* factor with 1 << (16 - shift) so we can use multiply/return high half. */
y0 = _mm_mulhi_epi16(y0, quant_shift0);
y1 = _mm_mulhi_epi16(y1, quant_shift1);
/* Return the sign: (y ^ sz) - sz */
y0 = _mm_xor_si128(y0, sz0);
y1 = _mm_xor_si128(y1, sz1);
y0 = _mm_sub_epi16(y0, sz0);
y1 = _mm_sub_epi16(y1, sz1);
/* The loop gets unrolled anyway. Avoid the vp8_default_zig_zag1d lookup. */
SELECT_EOB(1, 0, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(2, 1, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(3, 4, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(4, 0, x_minus_zbin1, y1, qcoeff1);
SELECT_EOB(5, 5, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(6, 2, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(7, 3, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(8, 6, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(9, 1, x_minus_zbin1, y1, qcoeff1);
SELECT_EOB(10, 4, x_minus_zbin1, y1, qcoeff1);
SELECT_EOB(11, 5, x_minus_zbin1, y1, qcoeff1);
SELECT_EOB(12, 2, x_minus_zbin1, y1, qcoeff1);
SELECT_EOB(13, 7, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(14, 3, x_minus_zbin1, y1, qcoeff1);
SELECT_EOB(15, 6, x_minus_zbin1, y1, qcoeff1);
SELECT_EOB(16, 7, x_minus_zbin1, y1, qcoeff1);
_mm_store_si128((__m128i *)(d->qcoeff), qcoeff0);
_mm_store_si128((__m128i *)(d->qcoeff + 8), qcoeff1);
dqcoeff0 = _mm_mullo_epi16(qcoeff0, dequant0);
dqcoeff1 = _mm_mullo_epi16(qcoeff1, dequant1);
_mm_store_si128((__m128i *)(d->dqcoeff), dqcoeff0);
_mm_store_si128((__m128i *)(d->dqcoeff + 8), dqcoeff1);
*d->eob = eob;
}

View File

@@ -89,6 +89,7 @@ VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/dct_sse2.asm
VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/fwalsh_sse2.asm
VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/quantize_sse2.c
VP8_CX_SRCS-$(HAVE_SSSE3) += encoder/x86/quantize_ssse3.c
VP8_CX_SRCS-$(HAVE_SSE4_1) += encoder/x86/quantize_sse4.c
ifeq ($(CONFIG_TEMPORAL_DENOISING),yes)
VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/denoising_sse2.c
@@ -97,7 +98,6 @@ endif
VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/subtract_sse2.asm
VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/temporal_filter_apply_sse2.asm
VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp8_enc_stubs_sse2.c
VP8_CX_SRCS-$(HAVE_SSE4_1) += encoder/x86/quantize_sse4.asm
VP8_CX_SRCS-$(ARCH_X86)$(ARCH_X86_64) += encoder/x86/quantize_mmx.asm
VP8_CX_SRCS-$(ARCH_X86)$(ARCH_X86_64) += encoder/x86/encodeopt.asm
VP8_CX_SRCS-$(ARCH_X86_64) += encoder/x86/ssim_opt_x86_64.asm

View File

@@ -25,12 +25,14 @@ void vp9_convolve8_neon(const uint8_t *src, ptrdiff_t src_stride,
// Account for the vertical phase needing 3 lines prior and 4 lines post
int intermediate_height = h + 7;
if (x_step_q4 != 16 || y_step_q4 != 16)
return vp9_convolve8_c(src, src_stride,
dst, dst_stride,
filter_x, x_step_q4,
filter_y, y_step_q4,
w, h);
if (x_step_q4 != 16 || y_step_q4 != 16) {
vp9_convolve8_c(src, src_stride,
dst, dst_stride,
filter_x, x_step_q4,
filter_y, y_step_q4,
w, h);
return;
}
/* Filter starting 3 lines back. The neon implementation will ignore the
* given height and filter a multiple of 4 lines. Since this goes in to
@@ -57,12 +59,14 @@ void vp9_convolve8_avg_neon(const uint8_t *src, ptrdiff_t src_stride,
DECLARE_ALIGNED_ARRAY(8, uint8_t, temp, 64 * 72);
int intermediate_height = h + 7;
if (x_step_q4 != 16 || y_step_q4 != 16)
return vp9_convolve8_avg_c(src, src_stride,
dst, dst_stride,
filter_x, x_step_q4,
filter_y, y_step_q4,
w, h);
if (x_step_q4 != 16 || y_step_q4 != 16) {
vp9_convolve8_avg_c(src, src_stride,
dst, dst_stride,
filter_x, x_step_q4,
filter_y, y_step_q4,
w, h);
return;
}
/* This implementation has the same issues as above. In addition, we only want
* to average the values after both passes.

View File

@@ -9,6 +9,7 @@
*/
#include "./vp9_rtcd.h"
#include "vpx/vpx_integer.h"
void vp9_lpf_horizontal_8_dual_neon(uint8_t *s, int p /* pitch */,
const uint8_t *blimit0,

View File

@@ -109,7 +109,9 @@ void vp9_free_frame_buffers(VP9_COMMON *cm) {
}
vp9_free_frame_buffer(&cm->post_proc_buffer);
}
void vp9_free_context_buffers(VP9_COMMON *cm) {
free_mi(cm);
vpx_free(cm->last_frame_seg_map);
@@ -165,37 +167,55 @@ int vp9_resize_frame_buffers(VP9_COMMON *cm, int width, int height) {
fail:
vp9_free_frame_buffers(cm);
vp9_free_context_buffers(cm);
return 1;
}
static void init_frame_bufs(VP9_COMMON *cm) {
int i;
cm->new_fb_idx = FRAME_BUFFERS - 1;
cm->frame_bufs[cm->new_fb_idx].ref_count = 1;
for (i = 0; i < REF_FRAMES; ++i) {
cm->ref_frame_map[i] = i;
cm->frame_bufs[i].ref_count = 1;
}
}
int vp9_alloc_frame_buffers(VP9_COMMON *cm, int width, int height) {
const int aligned_width = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2);
const int aligned_height = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2);
int i;
const int ss_x = cm->subsampling_x;
const int ss_y = cm->subsampling_y;
int i;
vp9_free_frame_buffers(cm);
for (i = 0; i < FRAME_BUFFERS; i++) {
for (i = 0; i < FRAME_BUFFERS; ++i) {
cm->frame_bufs[i].ref_count = 0;
if (vp9_alloc_frame_buffer(&cm->frame_bufs[i].buf, width, height,
ss_x, ss_y, VP9_ENC_BORDER_IN_PIXELS) < 0)
goto fail;
}
cm->new_fb_idx = FRAME_BUFFERS - 1;
cm->frame_bufs[cm->new_fb_idx].ref_count = 1;
for (i = 0; i < REF_FRAMES; i++) {
cm->ref_frame_map[i] = i;
cm->frame_bufs[i].ref_count = 1;
}
init_frame_bufs(cm);
if (vp9_alloc_frame_buffer(&cm->post_proc_buffer, width, height, ss_x, ss_y,
VP9_ENC_BORDER_IN_PIXELS) < 0)
goto fail;
return 0;
fail:
vp9_free_frame_buffers(cm);
return 1;
}
int vp9_alloc_context_buffers(VP9_COMMON *cm, int width, int height) {
const int aligned_width = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2);
const int aligned_height = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2);
vp9_free_context_buffers(cm);
set_mb_mi(cm, aligned_width, aligned_height);
if (alloc_mi(cm, cm->mi_stride * (cm->mi_rows + MI_BLOCK_SIZE)))
@@ -224,12 +244,13 @@ int vp9_alloc_frame_buffers(VP9_COMMON *cm, int width, int height) {
return 0;
fail:
vp9_free_frame_buffers(cm);
vp9_free_context_buffers(cm);
return 1;
}
void vp9_remove_common(VP9_COMMON *cm) {
vp9_free_frame_buffers(cm);
vp9_free_context_buffers(cm);
vp9_free_internal_frame_buffers(&cm->int_frame_buffers);
}

View File

@@ -23,8 +23,12 @@ void vp9_remove_common(struct VP9Common *cm);
int vp9_resize_frame_buffers(struct VP9Common *cm, int width, int height);
int vp9_alloc_frame_buffers(struct VP9Common *cm, int width, int height);
int vp9_alloc_state_buffers(struct VP9Common *cm, int width, int height);
int vp9_alloc_context_buffers(struct VP9Common *cm, int width, int height);
void vp9_free_frame_buffers(struct VP9Common *cm);
void vp9_free_state_buffers(struct VP9Common *cm);
void vp9_free_context_buffers(struct VP9Common *cm);
void vp9_update_frame_size(struct VP9Common *cm);

View File

@@ -32,6 +32,9 @@ extern "C" {
#define BLOCK_SIZE_GROUPS 4
#define SKIP_CONTEXTS 3
#define INTER_MODE_CONTEXTS 7
#if CONFIG_COPY_CODING
#define COPY_MODE_CONTEXTS 5
#endif
/* Segment Feature Masks */
#define MAX_MV_REF_CANDIDATES 2
@@ -79,6 +82,16 @@ typedef enum {
MB_MODE_COUNT
} PREDICTION_MODE;
#if CONFIG_COPY_CODING
typedef enum {
NOREF,
REF0,
REF1,
REF2,
COPY_MODE_COUNT
} COPY_MODE;
#endif
static INLINE int is_inter_mode(PREDICTION_MODE mode) {
return mode >= NEARESTMV && mode <= NEWMV;
}
@@ -118,11 +131,86 @@ static INLINE int mi_width_log2(BLOCK_SIZE sb_type) {
return mi_width_log2_lookup[sb_type];
}
#if CONFIG_SUPERTX
static INLINE TX_SIZE bsize_to_tx_size(BLOCK_SIZE bsize) {
const TX_SIZE tx_size_lookup[BLOCK_SIZES] = {
TX_4X4, TX_4X4, TX_4X4,
TX_8X8, TX_8X8, TX_8X8,
TX_16X16, TX_16X16, TX_16X16,
TX_32X32, TX_32X32, TX_32X32, TX_32X32};
return tx_size_lookup[bsize];
}
#endif
#if CONFIG_MASKED_INTERINTER
#define MASK_BITS_SML 3
#define MASK_BITS_MED 4
#define MASK_BITS_BIG 5
#define MASK_NONE -1
static inline int get_mask_bits(BLOCK_SIZE sb_type) {
if (sb_type < BLOCK_8X8)
return 0;
if (sb_type <= BLOCK_8X8)
return MASK_BITS_SML;
else if (sb_type <= BLOCK_32X32)
return MASK_BITS_MED;
else
return MASK_BITS_BIG;
}
#endif
#if CONFIG_INTERINTRA
static INLINE TX_SIZE intra_size_log2_for_interintra(int bs) {
switch (bs) {
case 4:
return TX_4X4;
break;
case 8:
return TX_8X8;
break;
case 16:
return TX_16X16;
break;
case 32:
return TX_32X32;
break;
default:
return TX_32X32;
break;
}
}
static INLINE int is_interintra_allowed(BLOCK_SIZE sb_type) {
return ((sb_type >= BLOCK_8X8) && (sb_type < BLOCK_64X64));
}
#if CONFIG_MASKED_INTERINTRA
#define MASK_BITS_SML_INTERINTRA 3
#define MASK_BITS_MED_INTERINTRA 4
#define MASK_BITS_BIG_INTERINTRA 5
#define MASK_NONE_INTERINTRA -1
static INLINE int get_mask_bits_interintra(BLOCK_SIZE sb_type) {
if (sb_type == BLOCK_4X4)
return 0;
if (sb_type <= BLOCK_8X8)
return MASK_BITS_SML_INTERINTRA;
else if (sb_type <= BLOCK_32X32)
return MASK_BITS_MED_INTERINTRA;
else
return MASK_BITS_BIG_INTERINTRA;
}
#endif
#endif
// This structure now relates to 8x8 block regions.
typedef struct {
// Common for both INTER and INTRA blocks
BLOCK_SIZE sb_type;
PREDICTION_MODE mode;
#if CONFIG_FILTERINTRA
int filterbit, uv_filterbit;
#endif
TX_SIZE tx_size;
uint8_t skip;
uint8_t segment_id;
@@ -137,10 +225,34 @@ typedef struct {
int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES];
uint8_t mode_context[MAX_REF_FRAMES];
INTERP_FILTER interp_filter;
#if CONFIG_EXT_TX
EXT_TX_TYPE ext_txfrm;
#endif
#if CONFIG_MASKED_INTERINTER
int use_masked_interinter;
int mask_index;
#endif
#if CONFIG_INTERINTRA
PREDICTION_MODE interintra_mode, interintra_uv_mode;
#if CONFIG_MASKED_INTERINTRA
int interintra_mask_index;
int interintra_uv_mask_index;
int use_masked_interintra;
#endif
#endif
#if CONFIG_COPY_CODING
COPY_MODE copy_mode;
int inter_ref_count;
#endif
} MB_MODE_INFO;
typedef struct {
MB_MODE_INFO mbmi;
#if CONFIG_FILTERINTRA
int b_filter_info[4];
#endif
b_mode_info bmi[4];
} MODE_INFO;
@@ -149,6 +261,16 @@ static INLINE PREDICTION_MODE get_y_mode(const MODE_INFO *mi, int block) {
: mi->mbmi.mode;
}
#if CONFIG_FILTERINTRA
static INLINE int is_filter_allowed(PREDICTION_MODE mode) {
return 1;
}
static INLINE int is_filter_enabled(TX_SIZE txsize) {
return (txsize <= TX_32X32);
}
#endif
static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
return mbmi->ref_frame[0] > INTRA_FRAME;
}
@@ -240,6 +362,13 @@ typedef struct macroblockd {
PARTITION_CONTEXT left_seg_context[8];
} MACROBLOCKD;
#if CONFIG_SUPERTX
static INLINE int supertx_enabled(const MB_MODE_INFO *mbmi) {
return mbmi->tx_size >
MIN(b_width_log2(mbmi->sb_type), b_height_log2(mbmi->sb_type));
}
#endif
static INLINE BLOCK_SIZE get_subsize(BLOCK_SIZE bsize,
PARTITION_TYPE partition) {
const BLOCK_SIZE subsize = subsize_lookup[partition][bsize];
@@ -253,8 +382,20 @@ static INLINE TX_TYPE get_tx_type(PLANE_TYPE plane_type,
const MACROBLOCKD *xd) {
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
#if !CONFIG_EXT_TX
if (plane_type != PLANE_TYPE_Y || is_inter_block(mbmi))
return DCT_DCT;
#else
if (plane_type != PLANE_TYPE_Y)
return DCT_DCT;
if (is_inter_block(mbmi)) {
if (mbmi->ext_txfrm == NORM || mbmi->tx_size >= TX_32X32)
return DCT_DCT;
else
return ADST_ADST;
}
#endif
return intra_mode_to_tx_type_lookup[mbmi->mode];
}
@@ -262,8 +403,20 @@ static INLINE TX_TYPE get_tx_type_4x4(PLANE_TYPE plane_type,
const MACROBLOCKD *xd, int ib) {
const MODE_INFO *const mi = xd->mi[0];
#if !CONFIG_EXT_TX
if (plane_type != PLANE_TYPE_Y || xd->lossless || is_inter_block(&mi->mbmi))
return DCT_DCT;
#else
if (plane_type != PLANE_TYPE_Y || xd->lossless)
return DCT_DCT;
if (is_inter_block(&mi->mbmi)) {
if (mi->mbmi.ext_txfrm == NORM)
return DCT_DCT;
else
return ADST_ADST;
}
#endif
return intra_mode_to_tx_type_lookup[get_y_mode(mi, ib)];
}
@@ -281,7 +434,15 @@ static INLINE TX_SIZE get_uv_tx_size_impl(TX_SIZE y_tx_size, BLOCK_SIZE bsize) {
}
static INLINE TX_SIZE get_uv_tx_size(const MB_MODE_INFO *mbmi) {
#if CONFIG_SUPERTX
if (!supertx_enabled(mbmi)) {
#endif
return get_uv_tx_size_impl(mbmi->tx_size, mbmi->sb_type);
#if CONFIG_SUPERTX
} else {
return uvsupertx_size_lookup[mbmi->tx_size];
}
#endif
}
static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,

View File

@@ -133,6 +133,15 @@ const BLOCK_SIZE ss_size_lookup[BLOCK_SIZES][2][2] = {
{{BLOCK_64X64, BLOCK_64X32}, {BLOCK_32X64, BLOCK_32X32}},
};
#if CONFIG_SUPERTX
const TX_SIZE uvsupertx_size_lookup[TX_SIZES] = {
TX_4X4,
TX_4X4,
TX_8X8,
TX_16X16
};
#endif
// Generates 4 bit field in which each bit set to 1 represents
// a blocksize partition 1111 means we split 64x64, 32x32, 16x16
// and 8x8. 1000 means we just split the 64x64 to 32x32

View File

@@ -31,6 +31,9 @@ extern const BLOCK_SIZE subsize_lookup[PARTITION_TYPES][BLOCK_SIZES];
extern const TX_SIZE max_txsize_lookup[BLOCK_SIZES];
extern const TX_SIZE tx_mode_to_biggest_tx_size[TX_MODES];
extern const BLOCK_SIZE ss_size_lookup[BLOCK_SIZES][2][2];
#if CONFIG_SUPERTX
extern const TX_SIZE uvsupertx_size_lookup[TX_SIZES];
#endif
#ifdef __cplusplus
} // extern "C"

View File

@@ -117,17 +117,25 @@ static void convolve(const uint8_t *src, ptrdiff_t src_stride,
const InterpKernel *const y_filters,
int y0_q4, int y_step_q4,
int w, int h) {
// Fixed size intermediate buffer places limits on parameters.
// Maximum intermediate_height is 324, for y_step_q4 == 80,
// h == 64, taps == 8.
// y_step_q4 of 80 allows for 1/10 scale for 5 layer svc
uint8_t temp[64 * 324];
// Note: Fixed size intermediate buffer, temp, places limits on parameters.
// 2d filtering proceeds in 2 steps:
// (1) Interpolate horizontally into an intermediate buffer, temp.
// (2) Interpolate temp vertically to derive the sub-pixel result.
// Deriving the maximum number of rows in the temp buffer (135):
// --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
// --Largest block size is 64x64 pixels.
// --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
// original frame (in 1/16th pixel units).
// --Must round-up because block may be located at sub-pixel position.
// --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
// --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
uint8_t temp[135 * 64];
int intermediate_height = (((h - 1) * y_step_q4 + 15) >> 4) + SUBPEL_TAPS;
assert(w <= 64);
assert(h <= 64);
assert(y_step_q4 <= 80);
assert(x_step_q4 <= 80);
assert(y_step_q4 <= 32);
assert(x_step_q4 <= 32);
if (intermediate_height < h)
intermediate_height = h;

View File

@@ -13,6 +13,84 @@
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_seg_common.h"
#if CONFIG_MASKED_INTERINTER
static const vp9_prob default_masked_interinter_prob[BLOCK_SIZES] = {
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192
};
#endif
#if CONFIG_INTERINTRA
static const vp9_prob default_interintra_prob[BLOCK_SIZES] = {
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192
};
#if CONFIG_MASKED_INTERINTRA
static const vp9_prob default_masked_interintra_prob[BLOCK_SIZES] = {
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192
};
#endif
#endif
#if CONFIG_FILTERINTRA
static const vp9_prob default_filterintra_prob[TX_SIZES][INTRA_MODES] = {
// DC V H D45 D135 D117 D153 D207 D63 TM
{153, 171, 147, 150, 129, 101, 100, 153, 132, 111},
{171, 173, 185, 131, 70, 53, 70, 148, 127, 114},
{175, 203, 213, 86, 45, 71, 41, 150, 125, 154},
{235, 230, 154, 202, 154, 205, 37, 128, 0, 202}
};
#endif
#if CONFIG_EXT_TX
static const vp9_prob default_ext_tx_prob = 178;
#endif
#if CONFIG_SUPERTX
static const vp9_prob default_supertx_prob[TX_SIZES] = {
255, 160, 160, 160
};
static const vp9_prob default_supertxsplit_prob[TX_SIZES] = {
255, 200, 200, 200
};
#endif
#if CONFIG_COPY_CODING
static const vp9_prob default_copy_noref_prob[COPY_MODE_CONTEXTS]
[BLOCK_SIZES] = {
{255, 255, 255, 82, 148, 182, 65, 193, 158, 70, 138, 101, 23},
{255, 255, 255, 118, 153, 161, 123, 169, 157, 82, 101, 123, 88},
{255, 255, 255, 130, 178, 226, 194, 196, 174, 173, 135, 144, 141},
{255, 255, 255, 178, 218, 225, 197, 230, 222, 215, 220, 220, 220},
{255, 255, 255, 243, 248, 241, 233, 249, 249, 249, 249, 249, 249}
};
static const vp9_prob default_copy_mode_probs_l2[COPY_MODE_CONTEXTS][1] = {
{207},
{135},
{141},
{189},
{209}
};
const vp9_tree_index vp9_copy_mode_tree_l2[TREE_SIZE(2)] = {
-(REF0 - REF0), -(REF1 - REF0)
};
static const vp9_prob default_copy_mode_probs[COPY_MODE_CONTEXTS]
[COPY_MODE_COUNT - 2] = {
{130, 159},
{126, 176},
{120, 150},
{158, 183},
{149, 125}
};
const vp9_tree_index vp9_copy_mode_tree[TREE_SIZE(COPY_MODE_COUNT - 1)] = {
-(REF0 - REF0), 2,
-(REF1 - REF0), -(REF2 - REF0)
};
#endif
const vp9_prob vp9_kf_y_mode_prob[INTRA_MODES][INTRA_MODES][INTRA_MODES - 1] = {
{ // above = dc
{ 137, 30, 42, 148, 151, 207, 70, 52, 91 }, // left = dc
@@ -245,7 +323,11 @@ const vp9_tree_index vp9_partition_tree[TREE_SIZE(PARTITION_TYPES)] = {
};
static const vp9_prob default_intra_inter_p[INTRA_INTER_CONTEXTS] = {
#if !CONFIG_COPY_CODING
9, 102, 187, 225
#else
35, 112, 187, 225
#endif
};
static const vp9_prob default_comp_inter_p[COMP_INTER_CONTEXTS] = {
@@ -326,6 +408,30 @@ void vp9_init_mode_probs(FRAME_CONTEXT *fc) {
fc->tx_probs = default_tx_probs;
vp9_copy(fc->skip_probs, default_skip_probs);
vp9_copy(fc->inter_mode_probs, default_inter_mode_probs);
#if CONFIG_MASKED_INTERINTER
vp9_copy(fc->masked_interinter_prob, default_masked_interinter_prob);
#endif
#if CONFIG_INTERINTRA
vp9_copy(fc->interintra_prob, default_interintra_prob);
#if CONFIG_MASKED_INTERINTRA
vp9_copy(fc->masked_interintra_prob, default_masked_interintra_prob);
#endif
#endif
#if CONFIG_FILTERINTRA
vp9_copy(fc->filterintra_prob, default_filterintra_prob);
#endif
#if CONFIG_EXT_TX
fc->ext_tx_prob = default_ext_tx_prob;
#endif
#if CONFIG_SUPERTX
vp9_copy(fc->supertx_prob, default_supertx_prob);
vp9_copy(fc->supertxsplit_prob, default_supertxsplit_prob);
#endif
#if CONFIG_COPY_CODING
vp9_copy(fc->copy_noref_prob, default_copy_noref_prob);
vp9_copy(fc->copy_mode_probs_l2, default_copy_mode_probs_l2);
vp9_copy(fc->copy_mode_probs, default_copy_mode_probs);
#endif
}
const vp9_tree_index vp9_switchable_interp_tree
@@ -416,6 +522,73 @@ void vp9_adapt_mode_probs(VP9_COMMON *cm) {
for (i = 0; i < SKIP_CONTEXTS; ++i)
fc->skip_probs[i] = adapt_prob(pre_fc->skip_probs[i], counts->skip[i]);
#if CONFIG_MASKED_INTERINTER
if (cm->use_masked_interinter) {
for (i = 0; i < BLOCK_SIZES; ++i) {
if (get_mask_bits(i))
fc->masked_interinter_prob[i] = adapt_prob
(pre_fc->masked_interinter_prob[i],
counts->masked_interinter[i]);
}
}
#endif
#if CONFIG_INTERINTRA
if (cm->use_interintra) {
for (i = 0; i < BLOCK_SIZES; ++i) {
if (is_interintra_allowed(i))
fc->interintra_prob[i] = adapt_prob(pre_fc->interintra_prob[i],
counts->interintra[i]);
}
#if CONFIG_MASKED_INTERINTRA
if (cm->use_masked_interintra) {
for (i = 0; i < BLOCK_SIZES; ++i) {
if (is_interintra_allowed(i) && get_mask_bits_interintra(i))
fc->masked_interintra_prob[i] = adapt_prob(
pre_fc->masked_interintra_prob[i],
counts->masked_interintra[i]);
}
}
#endif
}
#endif
#if CONFIG_FILTERINTRA
for (i = 0; i < TX_SIZES; ++i)
for (j = 0; j < INTRA_MODES; ++j)
fc->filterintra_prob[i][j] = adapt_prob(pre_fc->filterintra_prob[i][j],
counts->filterintra[i][j]);
#endif
#if CONFIG_EXT_TX
fc->ext_tx_prob = adapt_prob(pre_fc->ext_tx_prob, counts->ext_tx);
#endif
#if CONFIG_SUPERTX
for (i = 1; i < TX_SIZES; ++i) {
fc->supertx_prob[i] = adapt_prob(pre_fc->supertx_prob[i],
counts->supertx[i]);
}
for (i = 1; i < TX_SIZES; ++i) {
fc->supertxsplit_prob[i] = adapt_prob(pre_fc->supertxsplit_prob[i],
counts->supertxsplit[i]);
}
#endif
#if CONFIG_COPY_CODING
for (i = 0; i < COPY_MODE_CONTEXTS; i++) {
for (j = BLOCK_8X8; j < BLOCK_SIZES; j++) {
fc->copy_noref_prob[i][j] =
adapt_prob(pre_fc->copy_noref_prob[i][j], counts->copy_noref[i][j]);
}
adapt_probs(vp9_copy_mode_tree_l2, pre_fc->copy_mode_probs_l2[i],
counts->copy_mode_l2[i], fc->copy_mode_probs_l2[i]);
adapt_probs(vp9_copy_mode_tree, pre_fc->copy_mode_probs[i],
counts->copy_mode[i], fc->copy_mode_probs[i]);
}
#endif
}
static void set_default_lf_deltas(struct loopfilter *lf) {

View File

@@ -52,6 +52,30 @@ typedef struct frame_contexts {
struct tx_probs tx_probs;
vp9_prob skip_probs[SKIP_CONTEXTS];
nmv_context nmvc;
#if CONFIG_MASKED_INTERINTER
vp9_prob masked_interinter_prob[BLOCK_SIZES];
#endif
#if CONFIG_INTERINTRA
vp9_prob interintra_prob[BLOCK_SIZES];
#if CONFIG_MASKED_INTERINTRA
vp9_prob masked_interintra_prob[BLOCK_SIZES];
#endif
#endif
#if CONFIG_FILTERINTRA
vp9_prob filterintra_prob[TX_SIZES][INTRA_MODES];
#endif
#if CONFIG_EXT_TX
vp9_prob ext_tx_prob;
#endif
#if CONFIG_SUPERTX
vp9_prob supertx_prob[TX_SIZES];
vp9_prob supertxsplit_prob[TX_SIZES];
#endif
#if CONFIG_COPY_CODING
vp9_prob copy_noref_prob[COPY_MODE_CONTEXTS][BLOCK_SIZES];
vp9_prob copy_mode_probs_l2[COPY_MODE_CONTEXTS][1];
vp9_prob copy_mode_probs[COPY_MODE_CONTEXTS][COPY_MODE_COUNT - 2];
#endif
} FRAME_CONTEXT;
typedef struct {
@@ -71,6 +95,31 @@ typedef struct {
struct tx_counts tx;
unsigned int skip[SKIP_CONTEXTS][2];
nmv_context_counts mv;
#if CONFIG_MASKED_INTERINTER
unsigned int masked_interinter[BLOCK_SIZES][2];
#endif
#if CONFIG_INTERINTRA
unsigned int interintra[BLOCK_SIZES][2];
#if CONFIG_MASKED_INTERINTRA
unsigned int masked_interintra[BLOCK_SIZES][2];
#endif
#endif
#if CONFIG_FILTERINTRA
unsigned int filterintra[TX_SIZES][INTRA_MODES][2];
#endif
#if CONFIG_EXT_TX
unsigned int ext_tx[2];
#endif
#if CONFIG_SUPERTX
unsigned int supertx[TX_SIZES][2];
unsigned int supertxsplit[TX_SIZES][2];
unsigned int supertx_size[BLOCK_SIZES];
#endif
#if CONFIG_COPY_CODING
unsigned int copy_noref[COPY_MODE_CONTEXTS][BLOCK_SIZES][2];
unsigned int copy_mode_l2[COPY_MODE_CONTEXTS][2];
unsigned int copy_mode[COPY_MODE_CONTEXTS][COPY_MODE_COUNT - 1];
#endif
} FRAME_COUNTS;
extern const vp9_prob vp9_kf_uv_mode_prob[INTRA_MODES][INTRA_MODES - 1];
@@ -83,6 +132,10 @@ extern const vp9_tree_index vp9_inter_mode_tree[TREE_SIZE(INTER_MODES)];
extern const vp9_tree_index vp9_partition_tree[TREE_SIZE(PARTITION_TYPES)];
extern const vp9_tree_index vp9_switchable_interp_tree
[TREE_SIZE(SWITCHABLE_FILTERS)];
#if CONFIG_COPY_CODING
extern const vp9_tree_index vp9_copy_mode_tree_l2[TREE_SIZE(2)];
extern const vp9_tree_index vp9_copy_mode_tree[TREE_SIZE(COPY_MODE_COUNT - 1)];
#endif
void vp9_setup_past_independence(struct VP9Common *cm);

View File

@@ -100,6 +100,14 @@ typedef enum {
TX_TYPES = 4
} TX_TYPE;
#if CONFIG_EXT_TX
typedef enum {
NORM = 0,
ALT = 1,
EXT_TX_TYPES = 2
} EXT_TX_TYPE;
#endif
typedef enum {
UNKNOWN = 0,
BT_601 = 1, // YUV

View File

@@ -206,6 +206,13 @@ static const int mode_lf_lut[MB_MODE_COUNT] = {
1, 1, 0, 1 // INTER_MODES (ZEROMV == 0)
};
#if CONFIG_SUPERTX
static int supertx_enabled_lpf(const MB_MODE_INFO *mbmi) {
return mbmi->tx_size >
MIN(b_width_log2(mbmi->sb_type), b_height_log2(mbmi->sb_type));
}
#endif
static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
int lvl;
@@ -572,6 +579,85 @@ static void build_masks(const loop_filter_info_n *const lfi_n,
*int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
}
#if CONFIG_SUPERTX
static void build_masks_supertx(const loop_filter_info_n *const lfi_n,
const MODE_INFO *mi, const int shift_y,
const int shift_uv,
LOOP_FILTER_MASK *lfm) {
const MB_MODE_INFO *mbmi = &mi->mbmi;
const TX_SIZE tx_size_y = mbmi->tx_size;
const TX_SIZE tx_size_uv = get_uv_tx_size(mbmi);
const BLOCK_SIZE block_size = 3 * (int)tx_size_y;
const int filter_level = get_filter_level(lfi_n, mbmi);
uint64_t *const left_y = &lfm->left_y[tx_size_y];
uint64_t *const above_y = &lfm->above_y[tx_size_y];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
uint16_t *const left_uv = &lfm->left_uv[tx_size_uv];
uint16_t *const above_uv = &lfm->above_uv[tx_size_uv];
uint16_t *const int_4x4_uv = &lfm->int_4x4_uv;
int i;
// If filter level is 0 we don't loop filter.
if (!filter_level) {
return;
} else {
const int w = num_8x8_blocks_wide_lookup[block_size];
const int h = num_8x8_blocks_high_lookup[block_size];
int index = shift_y;
for (i = 0; i < h; i++) {
vpx_memset(&lfm->lfl_y[index], filter_level, w);
index += 8;
}
}
// These set 1 in the current block size for the block size edges.
// For instance if the block size is 32x16, we'll set :
// above = 1111
// 0000
// and
// left = 1000
// = 1000
// NOTE : In this example the low bit is left most ( 1000 ) is stored as
// 1, not 8...
//
// U and v set things on a 16 bit scale.
//
*above_y |= above_prediction_mask[block_size] << shift_y;
*above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
*left_y |= left_prediction_mask[block_size] << shift_y;
*left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
// If the block has no coefficients and is not intra we skip applying
// the loop filter on block edges.
if (mbmi->skip && is_inter_block(mbmi))
return;
// Here we are adding a mask for the transform size. The transform
// size mask is set to be correct for a 64x64 prediction block size. We
// mask to match the size of the block we are working on and then shift it
// into place..
*above_y |= (size_mask[block_size] &
above_64x64_txform_mask[tx_size_y]) << shift_y;
*above_uv |= (size_mask_uv[block_size] &
above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
*left_y |= (size_mask[block_size] &
left_64x64_txform_mask[tx_size_y]) << shift_y;
*left_uv |= (size_mask_uv[block_size] &
left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
// Here we are trying to determine what to do with the internal 4x4 block
// boundaries. These differ from the 4x4 boundaries on the outside edge of
// an 8x8 in that the internal ones can be skipped and don't depend on
// the prediction block size.
if (tx_size_y == TX_4X4)
*int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
if (tx_size_uv == TX_4X4)
*int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
}
#endif
// This function does the same thing as the one above with the exception that
// it only affects the y masks. It exists because for blocks < 16x16 in size,
// we only update u and v masks on the first block.
@@ -615,6 +701,48 @@ static void build_y_mask(const loop_filter_info_n *const lfi_n,
*int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
}
#if CONFIG_SUPERTX
static void build_y_mask_supertx(const loop_filter_info_n *const lfi_n,
const MODE_INFO *mi, const int shift_y,
LOOP_FILTER_MASK *lfm) {
const MB_MODE_INFO *mbmi = &mi->mbmi;
const TX_SIZE tx_size_y = mbmi->tx_size;
const BLOCK_SIZE block_size = 3 * (int)tx_size_y;
const int filter_level = get_filter_level(lfi_n, mbmi);
uint64_t *const left_y = &lfm->left_y[tx_size_y];
uint64_t *const above_y = &lfm->above_y[tx_size_y];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
int i;
if (!filter_level) {
return;
} else {
const int w = num_8x8_blocks_wide_lookup[block_size];
const int h = num_8x8_blocks_high_lookup[block_size];
int index = shift_y;
for (i = 0; i < h; i++) {
vpx_memset(&lfm->lfl_y[index], filter_level, w);
index += 8;
}
}
*above_y |= above_prediction_mask[block_size] << shift_y;
*left_y |= left_prediction_mask[block_size] << shift_y;
if (mbmi->skip && is_inter_block(mbmi))
return;
*above_y |= (size_mask[block_size] &
above_64x64_txform_mask[tx_size_y]) << shift_y;
*left_y |= (size_mask[block_size] &
left_64x64_txform_mask[tx_size_y]) << shift_y;
if (tx_size_y == TX_4X4)
*int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
}
#endif
// This function sets up the bit masks for the entire 64x64 region represented
// by mi_row, mi_col.
// TODO(JBB): This function only works for yv12.
@@ -650,6 +778,9 @@ void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
cm->mi_rows - mi_row : MI_BLOCK_SIZE);
const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ?
cm->mi_cols - mi_col : MI_BLOCK_SIZE);
#if CONFIG_SUPERTX
int supertx;
#endif
vp9_zero(*lfm);
@@ -687,20 +818,43 @@ void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
break;
case BLOCK_32X16:
#if CONFIG_SUPERTX
supertx = supertx_enabled_lpf(&mip[0]->mbmi);
if (!supertx) {
#endif
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
if (mi_32_row_offset + 2 >= max_rows)
continue;
mip2 = mip + mode_info_stride * 2;
build_masks(lfi_n, mip2[0], shift_y + 16, shift_uv + 4, lfm);
#if CONFIG_SUPERTX
} else {
build_masks_supertx(lfi_n, mip[0], shift_y, shift_uv, lfm);
}
#endif
break;
case BLOCK_16X32:
#if CONFIG_SUPERTX
supertx = supertx_enabled_lpf(&mip[0]->mbmi);
if (!supertx) {
#endif
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
if (mi_32_col_offset + 2 >= max_cols)
continue;
mip2 = mip + 2;
build_masks(lfi_n, mip2[0], shift_y + 2, shift_uv + 1, lfm);
#if CONFIG_SUPERTX
} else {
build_masks_supertx(lfi_n, mip[0], shift_y, shift_uv, lfm);
}
#endif
break;
default:
#if CONFIG_SUPERTX
if (mip[0]->mbmi.tx_size == TX_32X32) {
build_masks_supertx(lfi_n, mip[0], shift_y, shift_uv, lfm);
} else {
#endif
for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16];
const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16];
@@ -717,24 +871,56 @@ void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
break;
case BLOCK_16X8:
#if CONFIG_SUPERTX
supertx = supertx_enabled_lpf(&mip[0]->mbmi);
if (!supertx) {
#endif
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
if (mi_16_row_offset + 1 >= max_rows)
continue;
mip2 = mip + mode_info_stride;
build_y_mask(lfi_n, mip2[0], shift_y+8, lfm);
#if CONFIG_SUPERTX
} else {
build_masks_supertx(lfi_n, mip[0], shift_y, shift_uv, lfm);
}
#endif
break;
case BLOCK_8X16:
#if CONFIG_SUPERTX
supertx = supertx_enabled_lpf(&mip[0]->mbmi);
if (!supertx) {
#endif
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
if (mi_16_col_offset +1 >= max_cols)
continue;
mip2 = mip + 1;
build_y_mask(lfi_n, mip2[0], shift_y+1, lfm);
#if CONFIG_SUPERTX
} else {
build_masks_supertx(lfi_n, mip[0], shift_y, shift_uv, lfm);
}
#endif
break;
default: {
#if CONFIG_SUPERTX
if (mip[0]->mbmi.tx_size == TX_16X16) {
build_masks_supertx(lfi_n, mip[0], shift_y, shift_uv, lfm);
} else {
#endif
const int shift_y = shift_32_y[idx_32] +
shift_16_y[idx_16] +
shift_8_y[0];
#if CONFIG_SUPERTX
supertx = supertx_enabled_lpf(&mip[0]->mbmi);
if (!supertx) {
#endif
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
#if CONFIG_SUPERTX
} else {
build_masks_supertx(lfi_n, mip[0], shift_y, shift_uv, lfm);
}
#endif
mip += offset[0];
for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
const int shift_y = shift_32_y[idx_32] +
@@ -748,12 +934,26 @@ void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
if (mi_8_col_offset >= max_cols ||
mi_8_row_offset >= max_rows)
continue;
#if CONFIG_SUPERTX
supertx = supertx_enabled_lpf(&mip[0]->mbmi);
if (!supertx)
#endif
build_y_mask(lfi_n, mip[0], shift_y, lfm);
#if CONFIG_SUPERTX
else
build_y_mask_supertx(lfi_n, mip[0], shift_y, lfm);
#endif
}
#if CONFIG_SUPERTX
}
#endif
break;
}
}
}
#if CONFIG_SUPERTX
}
#endif
break;
}
}

View File

@@ -11,181 +11,6 @@
#include "vp9/common/vp9_mvref_common.h"
#define MVREF_NEIGHBOURS 8
typedef struct position {
int row;
int col;
} POSITION;
typedef enum {
BOTH_ZERO = 0,
ZERO_PLUS_PREDICTED = 1,
BOTH_PREDICTED = 2,
NEW_PLUS_NON_INTRA = 3,
BOTH_NEW = 4,
INTRA_PLUS_NON_INTRA = 5,
BOTH_INTRA = 6,
INVALID_CASE = 9
} motion_vector_context;
// This is used to figure out a context for the ref blocks. The code flattens
// an array that would have 3 possible counts (0, 1 & 2) for 3 choices by
// adding 9 for each intra block, 3 for each zero mv and 1 for each new
// motion vector. This single number is then converted into a context
// with a single lookup ( counter_to_context ).
static const int mode_2_counter[MB_MODE_COUNT] = {
9, // DC_PRED
9, // V_PRED
9, // H_PRED
9, // D45_PRED
9, // D135_PRED
9, // D117_PRED
9, // D153_PRED
9, // D207_PRED
9, // D63_PRED
9, // TM_PRED
0, // NEARESTMV
0, // NEARMV
3, // ZEROMV
1, // NEWMV
};
// There are 3^3 different combinations of 3 counts that can be either 0,1 or
// 2. However the actual count can never be greater than 2 so the highest
// counter we need is 18. 9 is an invalid counter that's never used.
static const int counter_to_context[19] = {
BOTH_PREDICTED, // 0
NEW_PLUS_NON_INTRA, // 1
BOTH_NEW, // 2
ZERO_PLUS_PREDICTED, // 3
NEW_PLUS_NON_INTRA, // 4
INVALID_CASE, // 5
BOTH_ZERO, // 6
INVALID_CASE, // 7
INVALID_CASE, // 8
INTRA_PLUS_NON_INTRA, // 9
INTRA_PLUS_NON_INTRA, // 10
INVALID_CASE, // 11
INTRA_PLUS_NON_INTRA, // 12
INVALID_CASE, // 13
INVALID_CASE, // 14
INVALID_CASE, // 15
INVALID_CASE, // 16
INVALID_CASE, // 17
BOTH_INTRA // 18
};
static const POSITION mv_ref_blocks[BLOCK_SIZES][MVREF_NEIGHBOURS] = {
// 4X4
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 4X8
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 8X4
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 8X8
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 8X16
{{0, -1}, {-1, 0}, {1, -1}, {-1, -1}, {0, -2}, {-2, 0}, {-2, -1}, {-1, -2}},
// 16X8
{{-1, 0}, {0, -1}, {-1, 1}, {-1, -1}, {-2, 0}, {0, -2}, {-1, -2}, {-2, -1}},
// 16X16
{{-1, 0}, {0, -1}, {-1, 1}, {1, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
// 16X32
{{0, -1}, {-1, 0}, {2, -1}, {-1, -1}, {-1, 1}, {0, -3}, {-3, 0}, {-3, -3}},
// 32X16
{{-1, 0}, {0, -1}, {-1, 2}, {-1, -1}, {1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
// 32X32
{{-1, 1}, {1, -1}, {-1, 2}, {2, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
// 32X64
{{0, -1}, {-1, 0}, {4, -1}, {-1, 2}, {-1, -1}, {0, -3}, {-3, 0}, {2, -1}},
// 64X32
{{-1, 0}, {0, -1}, {-1, 4}, {2, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-1, 2}},
// 64X64
{{-1, 3}, {3, -1}, {-1, 4}, {4, -1}, {-1, -1}, {-1, 0}, {0, -1}, {-1, 6}}
};
static const int idx_n_column_to_subblock[4][2] = {
{1, 2},
{1, 3},
{3, 2},
{3, 3}
};
// clamp_mv_ref
#define MV_BORDER (16 << 3) // Allow 16 pels in 1/8th pel units
static void clamp_mv_ref(MV *mv, const MACROBLOCKD *xd) {
clamp_mv(mv, xd->mb_to_left_edge - MV_BORDER,
xd->mb_to_right_edge + MV_BORDER,
xd->mb_to_top_edge - MV_BORDER,
xd->mb_to_bottom_edge + MV_BORDER);
}
// This function returns either the appropriate sub block or block's mv
// on whether the block_size < 8x8 and we have check_sub_blocks set.
static INLINE int_mv get_sub_block_mv(const MODE_INFO *candidate, int which_mv,
int search_col, int block_idx) {
return block_idx >= 0 && candidate->mbmi.sb_type < BLOCK_8X8
? candidate->bmi[idx_n_column_to_subblock[block_idx][search_col == 0]]
.as_mv[which_mv]
: candidate->mbmi.mv[which_mv];
}
// Performs mv sign inversion if indicated by the reference frame combination.
static INLINE int_mv scale_mv(const MB_MODE_INFO *mbmi, int ref,
const MV_REFERENCE_FRAME this_ref_frame,
const int *ref_sign_bias) {
int_mv mv = mbmi->mv[ref];
if (ref_sign_bias[mbmi->ref_frame[ref]] != ref_sign_bias[this_ref_frame]) {
mv.as_mv.row *= -1;
mv.as_mv.col *= -1;
}
return mv;
}
// This macro is used to add a motion vector mv_ref list if it isn't
// already in the list. If it's the second motion vector it will also
// skip all additional processing and jump to done!
#define ADD_MV_REF_LIST(mv) \
do { \
if (refmv_count) { \
if ((mv).as_int != mv_ref_list[0].as_int) { \
mv_ref_list[refmv_count] = (mv); \
goto Done; \
} \
} else { \
mv_ref_list[refmv_count++] = (mv); \
} \
} while (0)
// If either reference frame is different, not INTRA, and they
// are different from each other scale and add the mv to our list.
#define IF_DIFF_REF_FRAME_ADD_MV(mbmi) \
do { \
if (is_inter_block(mbmi)) { \
if ((mbmi)->ref_frame[0] != ref_frame) \
ADD_MV_REF_LIST(scale_mv((mbmi), 0, ref_frame, ref_sign_bias)); \
if (has_second_ref(mbmi) && \
(mbmi)->ref_frame[1] != ref_frame && \
(mbmi)->mv[1].as_int != (mbmi)->mv[0].as_int) \
ADD_MV_REF_LIST(scale_mv((mbmi), 1, ref_frame, ref_sign_bias)); \
} \
} while (0)
// Checks that the given mi_row, mi_col and search point
// are inside the borders of the tile.
static INLINE int is_inside(const TileInfo *const tile,
int mi_col, int mi_row, int mi_rows,
const POSITION *mi_pos) {
return !(mi_row + mi_pos->row < 0 ||
mi_col + mi_pos->col < tile->mi_col_start ||
mi_row + mi_pos->row >= mi_rows ||
mi_col + mi_pos->col >= tile->mi_col_end);
}
// This function searches the neighbourhood of a given MB/SB
// to try and find candidate reference vectors.
static void find_mv_refs_idx(const VP9_COMMON *cm, const MACROBLOCKD *xd,
@@ -363,3 +188,176 @@ void vp9_append_sub8x8_mvs_for_idx(VP9_COMMON *cm, MACROBLOCKD *xd,
assert("Invalid block index.");
}
}
#if CONFIG_COPY_CODING
static int compare_interinfo(MB_MODE_INFO *mbmi, MB_MODE_INFO *ref_mbmi) {
if (mbmi == ref_mbmi) {
return 1;
} else {
int is_same;
#if CONFIG_INTERINTRA
MV_REFERENCE_FRAME mbmi_ref1_backup = mbmi->ref_frame[1];
MV_REFERENCE_FRAME refmbmi_ref1_backup = ref_mbmi->ref_frame[1];
if (mbmi->ref_frame[1] == INTRA_FRAME)
mbmi->ref_frame[1] = NONE;
if (ref_mbmi->ref_frame[1] == INTRA_FRAME)
ref_mbmi->ref_frame[1] = NONE;
#endif
if (mbmi->ref_frame[0] == ref_mbmi->ref_frame[0] &&
mbmi->ref_frame[1] == ref_mbmi->ref_frame[1]) {
if (mbmi->ref_frame[1] > INTRA_FRAME)
is_same = mbmi->mv[0].as_int == ref_mbmi->mv[0].as_int &&
mbmi->mv[1].as_int == ref_mbmi->mv[1].as_int &&
mbmi->interp_filter == ref_mbmi->interp_filter;
else
is_same = mbmi->mv[0].as_int == ref_mbmi->mv[0].as_int &&
mbmi->interp_filter == ref_mbmi->interp_filter;
} else {
is_same = 0;
}
#if CONFIG_INTERINTRA
mbmi->ref_frame[1] = mbmi_ref1_backup;
ref_mbmi->ref_frame[1] = refmbmi_ref1_backup;
#endif
return is_same;
}
}
static int check_inside(VP9_COMMON *cm, int mi_row, int mi_col) {
return mi_row >= 0 && mi_col >= 0 &&
mi_row < cm->mi_rows && mi_col < cm->mi_cols;
}
static int is_right_available(BLOCK_SIZE bsize, int mi_row, int mi_col) {
int depth, max_depth = 4 - MIN(b_width_log2(bsize), b_height_log2(bsize));
int block[4] = {0};
if (bsize == BLOCK_64X64)
return 1;
mi_row = mi_row % 8;
mi_col = mi_col % 8;
for (depth = 1; depth <= max_depth; depth++) {
block[depth] = (mi_row >> (3 - depth)) * 2 + (mi_col >> (3 - depth));
mi_row = mi_row % (8 >> depth);
mi_col = mi_col % (8 >> depth);
}
if (b_width_log2(bsize) < b_height_log2(bsize)) {
if (block[max_depth] == 0)
return 1;
} else if (b_width_log2(bsize) > b_height_log2(bsize)) {
if (block[max_depth] > 0)
return 0;
} else {
if (block[max_depth] == 0 || block[max_depth] == 2)
return 1;
else if (block[max_depth] == 3)
return 0;
}
for (depth = max_depth - 1; depth > 0; depth--) {
if (block[depth] == 0 || block[depth] == 2)
return 1;
else if (block[depth] == 3)
return 0;
}
return 1;
}
static int is_second_rec(int mi_row, int mi_col, BLOCK_SIZE bsize) {
int bw = 4 << b_width_log2(bsize);
int bh = 4 << b_height_log2(bsize);
if (bw < bh)
return (mi_col << 3) % (bw << 1) == 0 ? 0 : 1;
else if (bh < bw)
return (mi_row << 3) % (bh << 1) == 0 ? 0 : 2;
else
return 0;
}
int vp9_construct_ref_inter_list(VP9_COMMON *cm, MACROBLOCKD *xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
MB_MODE_INFO *ref_list[18]) {
int bw = 4 << b_width_log2(bsize);
int bh = 4 << b_height_log2(bsize);
int row_offset, col_offset;
int mi_offset;
MB_MODE_INFO *ref_mbmi;
int ref_index, ref_num = 0;
int row_offset_cand[18], col_offset_cand[18];
int offset_num = 0, i, switchflag;
int is_sec_rec = is_second_rec(mi_row, mi_col, bsize);
if (is_sec_rec != 2) {
row_offset_cand[offset_num] = -1; col_offset_cand[offset_num] = 0;
offset_num++;
}
if (is_sec_rec != 1) {
row_offset_cand[offset_num] = bh / 16; col_offset_cand[offset_num] = -1;
offset_num++;
}
row_offset = bh / 8 - 1;
col_offset = 1;
if (is_sec_rec < 2)
switchflag = 1;
else
switchflag = 0;
while ((is_sec_rec == 0 && ((row_offset >=0) || col_offset < (bw / 8 + 1))) ||
(is_sec_rec == 1 && col_offset < (bw / 8 + 1)) ||
(is_sec_rec == 2 && row_offset >=0)) {
switch (switchflag) {
case 0:
if (row_offset >= 0) {
if (row_offset != bh / 16) {
row_offset_cand[offset_num] = row_offset;
col_offset_cand[offset_num] = -1;
offset_num++;
}
row_offset--;
}
break;
case 1:
if (col_offset < (bw / 8 + 1)) {
row_offset_cand[offset_num] = -1;
col_offset_cand[offset_num] = col_offset;
offset_num++;
col_offset++;
}
break;
default:
assert(0);
}
if (is_sec_rec == 0)
switchflag = 1 - switchflag;
}
row_offset_cand[offset_num] = -1;
col_offset_cand[offset_num] = -1;
offset_num++;
for (i = 0; i < offset_num; i++) {
row_offset = row_offset_cand[i];
col_offset = col_offset_cand[i];
if ((col_offset < (bw / 8) ||
(col_offset == (bw / 8) && is_right_available(bsize, mi_row, mi_col)))
&& check_inside(cm, mi_row + row_offset, mi_col + col_offset)) {
mi_offset = row_offset * cm->mi_stride + col_offset;
ref_mbmi = &xd->mi[mi_offset]->mbmi;
if (is_inter_block(ref_mbmi)) {
for (ref_index = 0; ref_index < ref_num; ref_index++) {
if (compare_interinfo(ref_mbmi, ref_list[ref_index]))
break;
}
if (ref_index == ref_num) {
ref_list[ref_num] = ref_mbmi;
ref_num++;
}
}
}
}
return ref_num;
}
#endif

View File

@@ -21,6 +21,181 @@ extern "C" {
#define RIGHT_BOTTOM_MARGIN ((VP9_ENC_BORDER_IN_PIXELS -\
VP9_INTERP_EXTEND) << 3)
#define MVREF_NEIGHBOURS 8
typedef struct position {
int row;
int col;
} POSITION;
typedef enum {
BOTH_ZERO = 0,
ZERO_PLUS_PREDICTED = 1,
BOTH_PREDICTED = 2,
NEW_PLUS_NON_INTRA = 3,
BOTH_NEW = 4,
INTRA_PLUS_NON_INTRA = 5,
BOTH_INTRA = 6,
INVALID_CASE = 9
} motion_vector_context;
// This is used to figure out a context for the ref blocks. The code flattens
// an array that would have 3 possible counts (0, 1 & 2) for 3 choices by
// adding 9 for each intra block, 3 for each zero mv and 1 for each new
// motion vector. This single number is then converted into a context
// with a single lookup ( counter_to_context ).
static const int mode_2_counter[MB_MODE_COUNT] = {
9, // DC_PRED
9, // V_PRED
9, // H_PRED
9, // D45_PRED
9, // D135_PRED
9, // D117_PRED
9, // D153_PRED
9, // D207_PRED
9, // D63_PRED
9, // TM_PRED
0, // NEARESTMV
0, // NEARMV
3, // ZEROMV
1, // NEWMV
};
// There are 3^3 different combinations of 3 counts that can be either 0,1 or
// 2. However the actual count can never be greater than 2 so the highest
// counter we need is 18. 9 is an invalid counter that's never used.
static const int counter_to_context[19] = {
BOTH_PREDICTED, // 0
NEW_PLUS_NON_INTRA, // 1
BOTH_NEW, // 2
ZERO_PLUS_PREDICTED, // 3
NEW_PLUS_NON_INTRA, // 4
INVALID_CASE, // 5
BOTH_ZERO, // 6
INVALID_CASE, // 7
INVALID_CASE, // 8
INTRA_PLUS_NON_INTRA, // 9
INTRA_PLUS_NON_INTRA, // 10
INVALID_CASE, // 11
INTRA_PLUS_NON_INTRA, // 12
INVALID_CASE, // 13
INVALID_CASE, // 14
INVALID_CASE, // 15
INVALID_CASE, // 16
INVALID_CASE, // 17
BOTH_INTRA // 18
};
static const POSITION mv_ref_blocks[BLOCK_SIZES][MVREF_NEIGHBOURS] = {
// 4X4
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 4X8
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 8X4
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 8X8
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 8X16
{{0, -1}, {-1, 0}, {1, -1}, {-1, -1}, {0, -2}, {-2, 0}, {-2, -1}, {-1, -2}},
// 16X8
{{-1, 0}, {0, -1}, {-1, 1}, {-1, -1}, {-2, 0}, {0, -2}, {-1, -2}, {-2, -1}},
// 16X16
{{-1, 0}, {0, -1}, {-1, 1}, {1, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
// 16X32
{{0, -1}, {-1, 0}, {2, -1}, {-1, -1}, {-1, 1}, {0, -3}, {-3, 0}, {-3, -3}},
// 32X16
{{-1, 0}, {0, -1}, {-1, 2}, {-1, -1}, {1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
// 32X32
{{-1, 1}, {1, -1}, {-1, 2}, {2, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
// 32X64
{{0, -1}, {-1, 0}, {4, -1}, {-1, 2}, {-1, -1}, {0, -3}, {-3, 0}, {2, -1}},
// 64X32
{{-1, 0}, {0, -1}, {-1, 4}, {2, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-1, 2}},
// 64X64
{{-1, 3}, {3, -1}, {-1, 4}, {4, -1}, {-1, -1}, {-1, 0}, {0, -1}, {-1, 6}}
};
static const int idx_n_column_to_subblock[4][2] = {
{1, 2},
{1, 3},
{3, 2},
{3, 3}
};
// clamp_mv_ref
#define MV_BORDER (16 << 3) // Allow 16 pels in 1/8th pel units
static void clamp_mv_ref(MV *mv, const MACROBLOCKD *xd) {
clamp_mv(mv, xd->mb_to_left_edge - MV_BORDER,
xd->mb_to_right_edge + MV_BORDER,
xd->mb_to_top_edge - MV_BORDER,
xd->mb_to_bottom_edge + MV_BORDER);
}
// This function returns either the appropriate sub block or block's mv
// on whether the block_size < 8x8 and we have check_sub_blocks set.
static INLINE int_mv get_sub_block_mv(const MODE_INFO *candidate, int which_mv,
int search_col, int block_idx) {
return block_idx >= 0 && candidate->mbmi.sb_type < BLOCK_8X8
? candidate->bmi[idx_n_column_to_subblock[block_idx][search_col == 0]]
.as_mv[which_mv]
: candidate->mbmi.mv[which_mv];
}
// Performs mv sign inversion if indicated by the reference frame combination.
static INLINE int_mv scale_mv(const MB_MODE_INFO *mbmi, int ref,
const MV_REFERENCE_FRAME this_ref_frame,
const int *ref_sign_bias) {
int_mv mv = mbmi->mv[ref];
if (ref_sign_bias[mbmi->ref_frame[ref]] != ref_sign_bias[this_ref_frame]) {
mv.as_mv.row *= -1;
mv.as_mv.col *= -1;
}
return mv;
}
// This macro is used to add a motion vector mv_ref list if it isn't
// already in the list. If it's the second motion vector it will also
// skip all additional processing and jump to done!
#define ADD_MV_REF_LIST(mv) \
do { \
if (refmv_count) { \
if ((mv).as_int != mv_ref_list[0].as_int) { \
mv_ref_list[refmv_count] = (mv); \
goto Done; \
} \
} else { \
mv_ref_list[refmv_count++] = (mv); \
} \
} while (0)
// If either reference frame is different, not INTRA, and they
// are different from each other scale and add the mv to our list.
#define IF_DIFF_REF_FRAME_ADD_MV(mbmi) \
do { \
if (is_inter_block(mbmi)) { \
if ((mbmi)->ref_frame[0] != ref_frame) \
ADD_MV_REF_LIST(scale_mv((mbmi), 0, ref_frame, ref_sign_bias)); \
if (has_second_ref(mbmi) && \
(mbmi)->ref_frame[1] != ref_frame && \
(mbmi)->mv[1].as_int != (mbmi)->mv[0].as_int) \
ADD_MV_REF_LIST(scale_mv((mbmi), 1, ref_frame, ref_sign_bias)); \
} \
} while (0)
// Checks that the given mi_row, mi_col and search point
// are inside the borders of the tile.
static INLINE int is_inside(const TileInfo *const tile,
int mi_col, int mi_row, int mi_rows,
const POSITION *mi_pos) {
return !(mi_row + mi_pos->row < 0 ||
mi_col + mi_pos->col < tile->mi_col_start ||
mi_row + mi_pos->row >= mi_rows ||
mi_col + mi_pos->col >= tile->mi_col_end);
}
// TODO(jingning): this mv clamping function should be block size dependent.
static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) {
clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN,
@@ -45,6 +220,12 @@ void vp9_append_sub8x8_mvs_for_idx(VP9_COMMON *cm, MACROBLOCKD *xd,
int block, int ref, int mi_row, int mi_col,
int_mv *nearest, int_mv *near);
#if CONFIG_COPY_CODING
int vp9_construct_ref_inter_list(VP9_COMMON *cm, MACROBLOCKD *xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
MB_MODE_INFO *ref_list[18]);
#endif
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -212,6 +212,16 @@ typedef struct VP9Common {
PARTITION_CONTEXT *above_seg_context;
ENTROPY_CONTEXT *above_context;
#if CONFIG_MASKED_INTERINTER
int use_masked_interinter;
#endif
#if CONFIG_INTERINTRA
int use_interintra;
#if CONFIG_MASKED_INTERINTRA
int use_masked_interintra;
#endif
#endif
} VP9_COMMON;
static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(VP9_COMMON *cm) {

View File

@@ -383,3 +383,47 @@ int vp9_get_segment_id(VP9_COMMON *cm, const uint8_t *segment_ids,
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
return segment_id;
}
#if CONFIG_COPY_CODING
int vp9_get_copy_mode_context(const MACROBLOCKD *xd) {
const MB_MODE_INFO *const above_mbmi = get_mbmi(get_above_mi(xd));
const MB_MODE_INFO *const left_mbmi = get_mbmi(get_left_mi(xd));
const int has_above = above_mbmi != NULL;
const int has_left = left_mbmi != NULL;
if (has_above && has_left) {
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
if (above_intra && left_intra) {
return 4;
} else if (above_intra || left_intra) {
return 3;
} else {
const int above_predict = above_mbmi->copy_mode != NOREF;
const int left_predict = left_mbmi->copy_mode != NOREF;
if (above_predict && left_predict)
return 0;
else if (above_predict || left_predict)
return 1;
else
return 2;
}
} else if (has_above || has_left) {
const MB_MODE_INFO *const ref_mbmi = has_above ? above_mbmi : left_mbmi;
const int ref_intra = !is_inter_block(ref_mbmi);
if (ref_intra) {
return 3;
} else {
const int ref_predict = ref_mbmi != NOREF;
if (ref_predict)
return 0;
else
return 1;
}
} else {
return 0;
}
}
#endif

View File

@@ -134,6 +134,10 @@ static INLINE unsigned int *get_tx_counts(TX_SIZE max_tx_size, int ctx,
}
}
#if CONFIG_COPY_CODING
int vp9_get_copy_mode_context(const MACROBLOCKD *xd);
#endif
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -12,7 +12,6 @@
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_seg_common.h"
#if 1
static const int16_t dc_qlookup[QINDEX_RANGE] = {
4, 8, 8, 9, 10, 11, 12, 12,
13, 14, 15, 16, 17, 18, 19, 19,
@@ -83,44 +82,6 @@ static const int16_t ac_qlookup[QINDEX_RANGE] = {
1597, 1628, 1660, 1692, 1725, 1759, 1793, 1828,
};
void vp9_init_quant_tables(void) { }
#else
static int16_t dc_qlookup[QINDEX_RANGE];
static int16_t ac_qlookup[QINDEX_RANGE];
#define ACDC_MIN 8
// TODO(dkovalev) move to common and reuse
static double poly3(double a, double b, double c, double d, double x) {
return a*x*x*x + b*x*x + c*x + d;
}
void vp9_init_quant_tables() {
int i, val = 4;
// A "real" q of 1.0 forces lossless mode.
// In practice non lossless Q's between 1.0 and 2.0 (represented here by
// integer values from 5-7 give poor rd results (lower psnr and often
// larger size than the lossless encode. To block out those "not very useful"
// values we increment the ac and dc q lookup values by 4 after position 0.
ac_qlookup[0] = val;
dc_qlookup[0] = val;
val += 4;
for (i = 1; i < QINDEX_RANGE; i++) {
const int ac_val = val;
val = (int)(val * 1.01975);
if (val == ac_val)
++val;
ac_qlookup[i] = (int16_t)ac_val;
dc_qlookup[i] = (int16_t)MAX(ACDC_MIN, poly3(0.000000305, -0.00065, 0.9,
0.5, ac_val));
}
}
#endif
int16_t vp9_dc_quant(int qindex, int delta) {
return dc_qlookup[clamp(qindex + delta, 0, MAXQ)];
}

View File

@@ -22,8 +22,6 @@ extern "C" {
#define QINDEX_RANGE (MAXQ - MINQ + 1)
#define QINDEX_BITS 8
void vp9_init_quant_tables();
int16_t vp9_dc_quant(int qindex, int delta);
int16_t vp9_ac_quant(int qindex, int delta);

View File

@@ -139,9 +139,349 @@ MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv,
return clamped_mv;
}
#if CONFIG_MASKED_INTERINTER
#define MASK_WEIGHT_BITS 6
static int get_masked_weight(int m) {
#define SMOOTHER_LEN 32
static const uint8_t smoothfn[2 * SMOOTHER_LEN + 1] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 2, 2, 3, 4, 5, 6,
8, 9, 12, 14, 17, 21, 24, 28,
32,
36, 40, 43, 47, 50, 52, 55, 56,
58, 59, 60, 61, 62, 62, 63, 63,
63, 63, 63, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64,
};
if (m < -SMOOTHER_LEN)
return 0;
else if (m > SMOOTHER_LEN)
return (1 << MASK_WEIGHT_BITS);
else
return smoothfn[m + SMOOTHER_LEN];
}
static int get_hard_mask(int m) {
return 1 << MASK_WEIGHT_BITS * (m > 0);
}
// Equation of line: f(x, y) = a[0]*(x - a[2]*w/4) + a[1]*(y - a[3]*h/4) = 0
// The soft mask is obtained by computing f(x, y) and then calling
// get_masked_weight(f(x, y)).
static const int mask_params_sml[1 << MASK_BITS_SML][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
};
static const int mask_params_med_hgtw[1 << MASK_BITS_MED][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
};
static const int mask_params_med_hltw[1 << MASK_BITS_MED][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
};
static const int mask_params_med_heqw[1 << MASK_BITS_MED][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{ 0, 2, 0, 1},
{ 0, -2, 0, 1},
{ 0, 2, 0, 3},
{ 0, -2, 0, 3},
{ 2, 0, 1, 0},
{-2, 0, 1, 0},
{ 2, 0, 3, 0},
{-2, 0, 3, 0},
};
static const int mask_params_big_hgtw[1 << MASK_BITS_BIG][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
{ 0, 2, 0, 1},
{ 0, -2, 0, 1},
{ 0, 2, 0, 2},
{ 0, -2, 0, 2},
{ 0, 2, 0, 3},
{ 0, -2, 0, 3},
{ 2, 0, 2, 0},
{-2, 0, 2, 0},
};
static const int mask_params_big_hltw[1 << MASK_BITS_BIG][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
{ 0, 2, 0, 2},
{ 0, -2, 0, 2},
{ 2, 0, 1, 0},
{-2, 0, 1, 0},
{ 2, 0, 2, 0},
{-2, 0, 2, 0},
{ 2, 0, 3, 0},
{-2, 0, 3, 0},
};
static const int mask_params_big_heqw[1 << MASK_BITS_BIG][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
{ 0, 2, 0, 1},
{ 0, -2, 0, 1},
{ 0, 2, 0, 3},
{ 0, -2, 0, 3},
{ 2, 0, 1, 0},
{-2, 0, 1, 0},
{ 2, 0, 3, 0},
{-2, 0, 3, 0},
};
static const int *get_mask_params(int mask_index,
BLOCK_SIZE sb_type,
int h, int w) {
const int *a;
const int mask_bits = get_mask_bits(sb_type);
if (mask_index == MASK_NONE)
return NULL;
if (mask_bits == MASK_BITS_SML) {
a = mask_params_sml[mask_index];
} else if (mask_bits == MASK_BITS_MED) {
if (h > w)
a = mask_params_med_hgtw[mask_index];
else if (h < w)
a = mask_params_med_hltw[mask_index];
else
a = mask_params_med_heqw[mask_index];
} else if (mask_bits == MASK_BITS_BIG) {
if (h > w)
a = mask_params_big_hgtw[mask_index];
else if (h < w)
a = mask_params_big_hltw[mask_index];
else
a = mask_params_big_heqw[mask_index];
} else {
assert(0);
}
return a;
}
void vp9_generate_masked_weight(int mask_index,
BLOCK_SIZE sb_type,
int h, int w,
uint8_t *mask, int stride) {
int i, j;
const int *a = get_mask_params(mask_index, sb_type, h, w);
if (!a) return;
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int x = (j - (a[2] * w) / 4);
int y = (i - (a[3] * h) / 4);
int m = a[0] * x + a[1] * y;
mask[i * stride + j] = get_masked_weight(m);
}
}
void vp9_generate_hard_mask(int mask_index, BLOCK_SIZE sb_type,
int h, int w, uint8_t *mask, int stride) {
int i, j;
const int *a = get_mask_params(mask_index, sb_type, h, w);
if (!a) return;
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int x = (j - (a[2] * w) / 4);
int y = (i - (a[3] * h) / 4);
int m = a[0] * x + a[1] * y;
mask[i * stride + j] = get_hard_mask(m);
}
}
static void build_masked_compound(uint8_t *dst, int dst_stride,
uint8_t *dst2, int dst2_stride,
int mask_index, BLOCK_SIZE sb_type,
int h, int w) {
int i, j;
uint8_t mask[4096];
vp9_generate_masked_weight(mask_index, sb_type, h, w, mask, 64);
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int m = mask[i * 64 + j];
dst[i * dst_stride + j] = (dst[i * dst_stride + j] * m +
dst2[i * dst2_stride + j] *
((1 << MASK_WEIGHT_BITS) - m) +
(1 << (MASK_WEIGHT_BITS - 1))) >>
MASK_WEIGHT_BITS;
}
}
#if CONFIG_SUPERTX
void generate_masked_weight_extend(int mask_index, int plane,
BLOCK_SIZE sb_type, int h, int w,
int mask_offset_x, int mask_offset_y,
uint8_t *mask, int stride) {
int i, j;
int subh = (plane ? 2 : 4) << b_height_log2(sb_type);
int subw = (plane ? 2 : 4) << b_width_log2(sb_type);
const int *a = get_mask_params(mask_index, sb_type, subh, subw);
if (!a) return;
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int x = (j - (a[2] * subw) / 4 - mask_offset_x);
int y = (i - (a[3] * subh) / 4 - mask_offset_y);
int m = a[0] * x + a[1] * y;
mask[i * stride + j] = get_masked_weight(m);
}
}
static void build_masked_compound_extend(uint8_t *dst, int dst_stride,
uint8_t *dst2, int dst2_stride,
int plane,
int mask_index, BLOCK_SIZE sb_type,
int mask_offset_x, int mask_offset_y,
int h, int w) {
int i, j;
uint8_t mask[4096];
generate_masked_weight_extend(mask_index, plane, sb_type, h, w,
mask_offset_x, mask_offset_y, mask, 64);
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int m = mask[i * 64 + j];
dst[i * dst_stride + j] = (dst[i * dst_stride + j] * m +
dst2[i * dst2_stride + j] *
((1 << MASK_WEIGHT_BITS) - m) +
(1 << (MASK_WEIGHT_BITS - 1))) >>
MASK_WEIGHT_BITS;
}
}
#endif
#endif
static void build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
int bw, int bh,
int x, int y, int w, int h,
#if CONFIG_SUPERTX && CONFIG_MASKED_INTERINTER
int mask_offset_x, int mask_offset_y,
#endif
int mi_x, int mi_y) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const MODE_INFO *mi = xd->mi[0];
@@ -193,8 +533,27 @@ static void build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride
+ (scaled_mv.col >> SUBPEL_BITS);
#if CONFIG_MASKED_INTERINTER
if (ref && get_mask_bits(mi->mbmi.sb_type)
&& mi->mbmi.use_masked_interinter) {
uint8_t tmp_dst[4096];
inter_predictor(pre, pre_buf->stride, tmp_dst, 64,
subpel_x, subpel_y, sf, w, h, 0, kernel, xs, ys);
#if CONFIG_SUPERTX
build_masked_compound_extend(dst, dst_buf->stride, tmp_dst, 64, plane,
mi->mbmi.mask_index, mi->mbmi.sb_type,
mask_offset_x, mask_offset_y, h, w);
#else
build_masked_compound(dst, dst_buf->stride, tmp_dst, 64,
mi->mbmi.mask_index, mi->mbmi.sb_type, h, w);
#endif
} else {
#endif
inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride,
subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys);
#if CONFIG_MASKED_INTERINTER
}
#endif
}
}
@@ -218,10 +577,18 @@ static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize,
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_inter_predictors(xd, plane, i++, bw, bh,
4 * x, 4 * y, 4, 4, mi_x, mi_y);
4 * x, 4 * y, 4, 4,
#if CONFIG_SUPERTX && CONFIG_MASKED_INTERINTER
0, 0,
#endif
mi_x, mi_y);
} else {
build_inter_predictors(xd, plane, 0, bw, bh,
0, 0, bw, bh, mi_x, mi_y);
0, 0, bw, bh,
#if CONFIG_SUPERTX && CONFIG_MASKED_INTERINTER
0, 0,
#endif
mi_x, mi_y);
}
}
}
@@ -229,23 +596,323 @@ static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize,
void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0);
#if CONFIG_INTERINTRA
if (xd->mi[0]->mbmi.ref_frame[1] == INTRA_FRAME &&
is_interintra_allowed(xd->mi[0]->mbmi.sb_type))
vp9_build_interintra_predictors_sby(xd, xd->plane[0].dst.buf,
xd->plane[0].dst.stride, bsize);
#endif
}
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1,
MAX_MB_PLANE - 1);
#if CONFIG_INTERINTRA
if (xd->mi[0]->mbmi.ref_frame[1] == INTRA_FRAME &&
is_interintra_allowed(xd->mi[0]->mbmi.sb_type))
vp9_build_interintra_predictors_sbuv(xd, xd->plane[1].dst.buf,
xd->plane[2].dst.buf,
xd->plane[1].dst.stride,
xd->plane[2].dst.stride, bsize);
#endif
}
void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0,
MAX_MB_PLANE - 1);
#if CONFIG_INTERINTRA
if (xd->mi[0]->mbmi.ref_frame[1] == INTRA_FRAME &&
is_interintra_allowed(xd->mi[0]->mbmi.sb_type))
vp9_build_interintra_predictors(xd, xd->plane[0].dst.buf,
xd->plane[1].dst.buf, xd->plane[2].dst.buf,
xd->plane[0].dst.stride,
xd->plane[1].dst.stride,
xd->plane[2].dst.stride, bsize);
#endif
}
#if CONFIG_SUPERTX
static int get_masked_weight_supertx(int m) {
#define SMOOTHER_LEN 32
static const uint8_t smoothfn[2 * SMOOTHER_LEN + 1] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 2, 2, 3, 4, 5, 6,
8, 9, 12, 14, 17, 21, 24, 28,
32,
36, 40, 43, 47, 50, 52, 55, 56,
58, 59, 60, 61, 62, 62, 63, 63,
63, 63, 63, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64,
};
if (m < -SMOOTHER_LEN)
return 0;
else if (m > SMOOTHER_LEN)
return 64;
else
return smoothfn[m + SMOOTHER_LEN];
}
static const uint8_t mask_8[8] = {
64, 64, 62, 52, 12, 2, 0, 0
};
static const uint8_t mask_16[16] = {
63, 62, 60, 58, 55, 50, 43, 36, 28, 21, 14, 9, 6, 4, 2, 1
};
static const uint8_t mask_32[32] = {
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 61, 57, 52, 45, 36,
28, 19, 12, 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
static void generate_1dmask(int length, uint8_t *mask) {
int i;
switch (length) {
case 8:
vpx_memcpy(mask, mask_8, length);
break;
case 16:
vpx_memcpy(mask, mask_16, length);
break;
case 32:
vpx_memcpy(mask, mask_32, length);
break;
default:
assert(0);
}
if (length > 16) {
for (i = 0; i < length; ++i)
mask[i] = get_masked_weight_supertx(-1 * (2 * i - length + 1));
}
}
void vp9_build_masked_inter_predictor_complex(uint8_t *dst, int dst_stride,
uint8_t *dst2, int dst2_stride,
int plane,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize,
BLOCK_SIZE top_bsize,
PARTITION_TYPE partition) {
int i, j;
uint8_t mask[32];
int top_w = 4 << b_width_log2(top_bsize),
top_h = 4 << b_height_log2(top_bsize);
int w = 4 << b_width_log2(bsize), h = 4 << b_height_log2(bsize);
int w_offset = (mi_col - mi_col_ori) << 3,
h_offset = (mi_row - mi_row_ori) << 3;
int m;
if (plane > 0) {
top_w = top_w >> 1; top_h = top_h >> 1;
w = w >> 1; h = h >> 1;
w_offset = w_offset >> 1; h_offset = h_offset >> 1;
}
switch (partition) {
case PARTITION_HORZ:
generate_1dmask(h, mask + h_offset);
vpx_memset(mask, 64, h_offset);
vpx_memset(mask + h_offset + h, 0, top_h - h_offset - h);
break;
case PARTITION_VERT:
generate_1dmask(w, mask + w_offset);
vpx_memset(mask, 64, w_offset);
vpx_memset(mask + w_offset + w, 0, top_w - w_offset - w);
break;
default:
assert(0);
}
for (i = 0; i < top_h; ++i)
for (j = 0; j < top_w; ++j) {
m = partition == PARTITION_HORZ ? mask[i] : mask[j];
if (m == 64)
continue;
if (m == 0)
dst[i * dst_stride + j] = dst2[i * dst2_stride + j];
else
dst[i * dst_stride + j] = (dst[i * dst_stride + j] * m +
dst2[i * dst2_stride + j] *
(64 - m) + 32) >> 6;
}
}
#if CONFIG_MASKED_INTERINTER
void vp9_build_inter_predictors_sb_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize) {
int plane;
const int mi_x = mi_col_ori * MI_SIZE;
const int mi_y = mi_row_ori * MI_SIZE;
const int mask_offset_x = (mi_col - mi_col_ori) * MI_SIZE;
const int mask_offset_y = (mi_row - mi_row_ori) * MI_SIZE;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
&xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
int i = 0, x, y;
assert(bsize == BLOCK_8X8);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_inter_predictors(xd, plane, i++, bw, bh, 4 * x, 4 * y, 4, 4,
mask_offset_x, mask_offset_y, mi_x, mi_y);
} else {
build_inter_predictors(xd, plane, 0, bw, bh, 0, 0, bw, bh,
mask_offset_x, mask_offset_y, mi_x, mi_y);
}
}
}
#endif
void vp9_build_inter_predictors_sby_sub8x8_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize,
PARTITION_TYPE partition) {
const int mi_x = mi_col_ori * MI_SIZE;
const int mi_y = mi_row_ori * MI_SIZE;
#if CONFIG_MASKED_INTERINTER
const int mask_offset_x = (mi_col - mi_col_ori) * MI_SIZE;
const int mask_offset_y = (mi_row - mi_row_ori) * MI_SIZE;
#endif
uint8_t *orig_dst;
int orig_dst_stride;
int bw = 4 << b_width_log2(top_bsize);
int bh = 4 << b_height_log2(top_bsize);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf, 32 * 32);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf1, 32 * 32);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf2, 32 * 32);
orig_dst = xd->plane[0].dst.buf;
orig_dst_stride = xd->plane[0].dst.stride;
build_inter_predictors(xd, 0, 0, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
xd->plane[0].dst.buf = tmp_buf;
xd->plane[0].dst.stride = 32;
switch (partition) {
case PARTITION_HORZ:
build_inter_predictors(xd, 0, 2, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
break;
case PARTITION_VERT:
build_inter_predictors(xd, 0, 1, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
break;
case PARTITION_SPLIT:
build_inter_predictors(xd, 0, 1, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
xd->plane[0].dst.buf = tmp_buf1;
xd->plane[0].dst.stride = 32;
build_inter_predictors(xd, 0, 2, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
xd->plane[0].dst.buf = tmp_buf2;
xd->plane[0].dst.stride = 32;
build_inter_predictors(xd, 0, 3, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
break;
default:
assert(0);
}
if (partition != PARTITION_SPLIT) {
vp9_build_masked_inter_predictor_complex(orig_dst, orig_dst_stride,
tmp_buf, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
partition);
xd->plane[0].dst.buf = orig_dst;
xd->plane[0].dst.stride = orig_dst_stride;
} else {
vp9_build_masked_inter_predictor_complex(orig_dst, orig_dst_stride,
tmp_buf, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
PARTITION_VERT);
vp9_build_masked_inter_predictor_complex(tmp_buf1, 32,
tmp_buf2, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
PARTITION_VERT);
vp9_build_masked_inter_predictor_complex(orig_dst, orig_dst_stride,
tmp_buf1, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
PARTITION_HORZ);
xd->plane[0].dst.buf = orig_dst;
xd->plane[0].dst.stride = orig_dst_stride;
}
}
void vp9_build_inter_predictors_sbuv_sub8x8_extend(MACROBLOCKD *xd,
#if CONFIG_MASKED_INTERINTER
int mi_row, int mi_col,
#endif
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize) {
int plane;
const int mi_x = mi_col_ori * MI_SIZE;
const int mi_y = mi_row_ori * MI_SIZE;
#if CONFIG_MASKED_INTERINTER
const int mask_offset_x = (mi_col - mi_col_ori) * MI_SIZE;
const int mask_offset_y = (mi_row - mi_row_ori) * MI_SIZE;
#endif
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(top_bsize,
&xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
build_inter_predictors(xd, plane, 0, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
}
}
#endif
// TODO(jingning): This function serves as a placeholder for decoder prediction
// using on demand border extension. It should be moved to /decoder/ directory.
static void dec_build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
int bw, int bh,
int x, int y, int w, int h,
#if CONFIG_SUPERTX && CONFIG_MASKED_INTERINTER
int mask_offset_x, int mask_offset_y,
#endif
int mi_x, int mi_y) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const MODE_INFO *mi = xd->mi[0];
@@ -377,8 +1044,27 @@ static void dec_build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
}
}
#if CONFIG_MASKED_INTERINTER
if (ref && get_mask_bits(mi->mbmi.sb_type)
&& mi->mbmi.use_masked_interinter) {
uint8_t tmp_dst[4096];
inter_predictor(buf_ptr, buf_stride, tmp_dst, 64,
subpel_x, subpel_y, sf, w, h, 0, kernel, xs, ys);
#if CONFIG_SUPERTX
build_masked_compound_extend(dst, dst_buf->stride, tmp_dst, 64, plane,
mi->mbmi.mask_index, mi->mbmi.sb_type,
mask_offset_x, mask_offset_y, h, w);
#else
build_masked_compound(dst, dst_buf->stride, tmp_dst, 64,
mi->mbmi.mask_index, mi->mbmi.sb_type, h, w);
#endif
} else {
#endif
inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
subpel_y, sf, w, h, ref, kernel, xs, ys);
#if CONFIG_MASKED_INTERINTER
}
#endif
}
}
@@ -401,13 +1087,198 @@ void vp9_dec_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
dec_build_inter_predictors(xd, plane, i++, bw, bh,
4 * x, 4 * y, 4, 4, mi_x, mi_y);
4 * x, 4 * y, 4, 4,
#if CONFIG_SUPERTX && CONFIG_MASKED_INTERINTER
0, 0,
#endif
mi_x, mi_y);
} else {
dec_build_inter_predictors(xd, plane, 0, bw, bh,
0, 0, bw, bh, mi_x, mi_y);
0, 0, bw, bh,
#if CONFIG_SUPERTX && CONFIG_MASKED_INTERINTER
0, 0,
#endif
mi_x, mi_y);
}
}
#if CONFIG_INTERINTRA
if (xd->mi[0]->mbmi.ref_frame[1] == INTRA_FRAME &&
is_interintra_allowed(xd->mi[0]->mbmi.sb_type))
vp9_build_interintra_predictors(xd, xd->plane[0].dst.buf,
xd->plane[1].dst.buf, xd->plane[2].dst.buf,
xd->plane[0].dst.stride,
xd->plane[1].dst.stride,
xd->plane[2].dst.stride, bsize);
#endif
}
#if CONFIG_SUPERTX
#if CONFIG_MASKED_INTERINTER
void vp9_dec_build_inter_predictors_sb_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize) {
int plane;
const int mi_x = mi_col_ori * MI_SIZE;
const int mi_y = mi_row_ori * MI_SIZE;
const int mask_offset_x = (mi_col - mi_col_ori) * MI_SIZE;
const int mask_offset_y = (mi_row - mi_row_ori) * MI_SIZE;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
&xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
int i = 0, x, y;
assert(bsize == BLOCK_8X8);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
dec_build_inter_predictors(xd, plane, i++, bw, bh, 4 * x, 4 * y, 4, 4,
mask_offset_x, mask_offset_y, mi_x, mi_y);
} else {
dec_build_inter_predictors(xd, plane, 0, bw, bh, 0, 0, bw, bh,
mask_offset_x, mask_offset_y, mi_x, mi_y);
}
}
}
#endif
void vp9_dec_build_inter_predictors_sby_sub8x8_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize,
PARTITION_TYPE partition) {
const int mi_x = mi_col_ori * MI_SIZE;
const int mi_y = mi_row_ori * MI_SIZE;
#if CONFIG_MASKED_INTERINTER
const int mask_offset_x = (mi_col - mi_col_ori) * MI_SIZE;
const int mask_offset_y = (mi_row - mi_row_ori) * MI_SIZE;
#endif
uint8_t *orig_dst;
int orig_dst_stride;
int bw = 4 << b_width_log2(top_bsize);
int bh = 4 << b_height_log2(top_bsize);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf, 32 * 32);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf1, 32 * 32);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf2, 32 * 32);
orig_dst = xd->plane[0].dst.buf;
orig_dst_stride = xd->plane[0].dst.stride;
dec_build_inter_predictors(xd, 0, 0, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
xd->plane[0].dst.buf = tmp_buf;
xd->plane[0].dst.stride = 32;
switch (partition) {
case PARTITION_HORZ:
dec_build_inter_predictors(xd, 0, 2, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
break;
case PARTITION_VERT:
dec_build_inter_predictors(xd, 0, 1, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
break;
case PARTITION_SPLIT:
dec_build_inter_predictors(xd, 0, 1, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
xd->plane[0].dst.buf = tmp_buf1;
xd->plane[0].dst.stride = 32;
dec_build_inter_predictors(xd, 0, 2, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
xd->plane[0].dst.buf = tmp_buf2;
xd->plane[0].dst.stride = 32;
dec_build_inter_predictors(xd, 0, 3, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
break;
default:
assert(0);
}
if (partition != PARTITION_SPLIT) {
vp9_build_masked_inter_predictor_complex(orig_dst, orig_dst_stride,
tmp_buf, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
partition);
xd->plane[0].dst.buf = orig_dst;
xd->plane[0].dst.stride = orig_dst_stride;
} else {
vp9_build_masked_inter_predictor_complex(orig_dst, orig_dst_stride,
tmp_buf, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
PARTITION_VERT);
vp9_build_masked_inter_predictor_complex(tmp_buf1, 32,
tmp_buf2, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
PARTITION_VERT);
vp9_build_masked_inter_predictor_complex(orig_dst, orig_dst_stride,
tmp_buf1, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
PARTITION_HORZ);
xd->plane[0].dst.buf = orig_dst;
xd->plane[0].dst.stride = orig_dst_stride;
}
}
void vp9_dec_build_inter_predictors_sbuv_sub8x8_extend(MACROBLOCKD *xd,
#if CONFIG_MASKED_INTERINTER
int mi_row, int mi_col,
#endif
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize) {
int plane;
const int mi_x = mi_col_ori * MI_SIZE;
const int mi_y = mi_row_ori * MI_SIZE;
#if CONFIG_MASKED_INTERINTER
const int mask_offset_x = (mi_col - mi_col_ori) * MI_SIZE;
const int mask_offset_y = (mi_row - mi_row_ori) * MI_SIZE;
#endif
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(top_bsize,
&xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
dec_build_inter_predictors(xd, plane, 0, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
}
}
#endif
void vp9_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src,

View File

@@ -65,6 +65,60 @@ void vp9_setup_pre_planes(MACROBLOCKD *xd, int idx,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *sf);
#if CONFIG_MASKED_INTERINTER
void vp9_generate_masked_weight(int mask_index, BLOCK_SIZE sb_type,
int h, int w, uint8_t *mask, int stride);
void vp9_generate_hard_mask(int mask_index, BLOCK_SIZE sb_type,
int h, int w, uint8_t *mask, int stride);
#endif
#if CONFIG_SUPERTX
void vp9_build_inter_predictors_sby_sub8x8_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize,
PARTITION_TYPE partition);
void vp9_build_inter_predictors_sbuv_sub8x8_extend(MACROBLOCKD *xd,
#if CONFIG_MASKED_INTERINTER
int mi_row, int mi_col,
#endif
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize);
void vp9_build_masked_inter_predictor_complex(uint8_t *dst, int dst_stride,
uint8_t *dst2, int dst2_stride,
int plane,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize,
BLOCK_SIZE top_bsize,
PARTITION_TYPE partition);
void vp9_dec_build_inter_predictors_sby_sub8x8_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize,
PARTITION_TYPE p);
void vp9_dec_build_inter_predictors_sbuv_sub8x8_extend(MACROBLOCKD *xd,
#if CONFIG_MASKED_INTERINTER
int mi_row, int mi_col,
#endif
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize);
#if CONFIG_MASKED_INTERINTER
void vp9_build_inter_predictors_sb_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize);
void vp9_dec_build_inter_predictors_sb_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize);
#endif
#endif
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -444,8 +444,227 @@ static void build_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref,
}
}
#if CONFIG_FILTERINTRA
static void filter_intra_predictors_4tap(uint8_t *ypred_ptr, int y_stride,
int bs,
const uint8_t *yabove_row,
const uint8_t *yleft_col,
int mode) {
static const int prec_bits = 10;
static const int round_val = 511;
int k, r, c;
int pred[33][33];
int mean, ipred;
int taps4_4[10][4] = {
{735, 881, -537, -54},
{1005, 519, -488, -11},
{383, 990, -343, -6},
{442, 805, -542, 319},
{658, 616, -133, -116},
{875, 442, -141, -151},
{386, 741, -23, -80},
{390, 1027, -446, 51},
{679, 606, -523, 262},
{903, 922, -778, -23}
};
int taps4_8[10][4] = {
{648, 803, -444, 16},
{972, 620, -576, 7},
{561, 967, -499, -5},
{585, 762, -468, 144},
{596, 619, -182, -9},
{895, 459, -176, -153},
{557, 722, -126, -129},
{601, 839, -523, 105},
{562, 709, -499, 251},
{803, 872, -695, 43}
};
int taps4_16[10][4] = {
{423, 728, -347, 111},
{963, 685, -665, 23},
{281, 1024, -480, 216},
{640, 596, -437, 78},
{429, 669, -259, 99},
{740, 646, -415, 23},
{568, 771, -346, 40},
{404, 833, -486, 209},
{398, 712, -423, 307},
{939, 935, -887, 17}
};
int taps4_32[10][4] = {
{477, 737, -393, 150},
{881, 630, -546, 67},
{506, 984, -443, -20},
{114, 459, -270, 528},
{433, 528, 14, 3},
{837, 470, -301, -30},
{181, 777, 89, -107},
{-29, 716, -232, 259},
{589, 646, -495, 255},
{740, 884, -728, 77}
};
const int c1 = (bs >= 32) ? taps4_32[mode][0] : ((bs >= 16) ?
taps4_16[mode][0] : ((bs >= 8) ? taps4_8[mode][0] : taps4_4[mode][0]));
const int c2 = (bs >= 32) ? taps4_32[mode][1] : ((bs >= 16) ?
taps4_16[mode][1] : ((bs >= 8) ? taps4_8[mode][1] : taps4_4[mode][1]));
const int c3 = (bs >= 32) ? taps4_32[mode][2] : ((bs >= 16) ?
taps4_16[mode][2] : ((bs >= 8) ? taps4_8[mode][2] : taps4_4[mode][2]));
const int c4 = (bs >= 32) ? taps4_32[mode][3] : ((bs >= 16) ?
taps4_16[mode][3] : ((bs >= 8) ? taps4_8[mode][3] : taps4_4[mode][3]));
k = 0;
mean = 0;
while (k < bs) {
mean = mean + (int)yleft_col[k];
mean = mean + (int)yabove_row[k];
k++;
}
mean = (mean + bs) / (2 * bs);
for (r = 0; r < bs; r++)
pred[r + 1][0] = (int)yleft_col[r] - mean;
for (c = 0; c < 2 * bs + 1; c++)
pred[0][c] = (int)yabove_row[c - 1] - mean;
for (r = 1; r < bs + 1; r++)
for (c = 1; c < 2 * bs + 1 - r; c++) {
ipred = c1 * pred[r - 1][c] + c2 * pred[r][c - 1]
+ c3 * pred[r - 1][c - 1] + c4 * pred[r - 1][c + 1];
pred[r][c] = ipred < 0 ? -((-ipred + round_val) >> prec_bits) :
((ipred + round_val) >> prec_bits);
}
for (r = 0; r < bs; r++) {
for (c = 0; c < bs; c++) {
ipred = pred[r + 1][c + 1] + mean;
ypred_ptr[c] = clip_pixel(ipred);
}
ypred_ptr += y_stride;
}
}
static void build_filter_intra_predictors(const MACROBLOCKD *xd,
const uint8_t *ref, int ref_stride,
uint8_t *dst, int dst_stride,
PREDICTION_MODE mode, TX_SIZE tx_size,
int up_available, int left_available,
int right_available, int x, int y,
int plane) {
int i;
DECLARE_ALIGNED_ARRAY(16, uint8_t, left_col, 64);
DECLARE_ALIGNED_ARRAY(16, uint8_t, above_data, 128 + 16);
uint8_t *above_row = above_data + 16;
const uint8_t *const_above_row = above_row;
const int bs = 4 << tx_size;
int frame_width, frame_height;
int x0, y0;
const struct macroblockd_plane *const pd = &xd->plane[plane];
// Get current frame pointer, width and height.
if (plane == 0) {
frame_width = xd->cur_buf->y_width;
frame_height = xd->cur_buf->y_height;
} else {
frame_width = xd->cur_buf->uv_width;
frame_height = xd->cur_buf->uv_height;
}
// Get block position in current frame.
x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
vpx_memset(left_col, 129, 64);
// left
if (left_available) {
if (xd->mb_to_bottom_edge < 0) {
/* slower path if the block needs border extension */
if (y0 + bs <= frame_height) {
for (i = 0; i < bs; ++i)
left_col[i] = ref[i * ref_stride - 1];
} else {
const int extend_bottom = frame_height - y0;
for (i = 0; i < extend_bottom; ++i)
left_col[i] = ref[i * ref_stride - 1];
for (; i < bs; ++i)
left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1];
}
} else {
/* faster path if the block does not need extension */
for (i = 0; i < bs; ++i)
left_col[i] = ref[i * ref_stride - 1];
}
}
// TODO(hkuang) do not extend 2*bs pixels for all modes.
// above
if (up_available) {
const uint8_t *above_ref = ref - ref_stride;
if (xd->mb_to_right_edge < 0) {
/* slower path if the block needs border extension */
if (x0 + 2 * bs <= frame_width) {
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, 2 * bs);
} else {
vpx_memcpy(above_row, above_ref, bs);
vpx_memset(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 + bs <= frame_width) {
const int r = frame_width - x0;
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
} else {
vpx_memcpy(above_row, above_ref, bs);
vpx_memset(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 <= frame_width) {
const int r = frame_width - x0;
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
} else {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
}
}
above_row[-1] = left_available ? above_ref[-1] : 129;
} else {
/* faster path if the block does not need extension */
if (bs == 4 && right_available && left_available) {
const_above_row = above_ref;
} else {
vpx_memcpy(above_row, above_ref, bs);
if (bs == 4 && right_available)
vpx_memcpy(above_row + bs, above_ref + bs, bs);
else
vpx_memset(above_row + bs, above_row[bs - 1], bs);
above_row[-1] = left_available ? above_ref[-1] : 129;
}
}
} else {
vpx_memset(above_row, 127, bs * 2);
above_row[-1] = 127;
}
// predict
filter_intra_predictors_4tap(dst, dst_stride, bs, const_above_row, left_col,
mode);
}
#endif
void vp9_predict_intra_block(const MACROBLOCKD *xd, int block_idx, int bwl_in,
TX_SIZE tx_size, PREDICTION_MODE mode,
#if CONFIG_FILTERINTRA
int filterbit,
#endif
const uint8_t *ref, int ref_stride,
uint8_t *dst, int dst_stride,
int aoff, int loff, int plane) {
@@ -456,8 +675,708 @@ void vp9_predict_intra_block(const MACROBLOCKD *xd, int block_idx, int bwl_in,
const int have_right = ((block_idx & wmask) != wmask);
const int x = aoff * 4;
const int y = loff * 4;
#if CONFIG_FILTERINTRA
const int filterflag = is_filter_allowed(mode) && is_filter_enabled(tx_size)
&& filterbit;
#endif
assert(bwl >= 0);
#if CONFIG_FILTERINTRA
if (!filterflag) {
#endif
build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, tx_size,
have_top, have_left, have_right, x, y, plane);
#if CONFIG_FILTERINTRA
} else {
build_filter_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode,
tx_size, have_top, have_left, have_right, x, y, plane);
}
#endif
}
#if CONFIG_INTERINTRA
#if CONFIG_MASKED_INTERINTRA
#define MASK_WEIGHT_BITS_INTERINTRA 6
static int get_masked_weight_interintra(int m) {
#define SMOOTHER_LEN_INTERINTRA 32
static const uint8_t smoothfn[2 * SMOOTHER_LEN_INTERINTRA + 1] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 2, 2, 3, 4, 5, 6,
8, 9, 12, 14, 17, 21, 24, 28,
32,
36, 40, 43, 47, 50, 52, 55, 56,
58, 59, 60, 61, 62, 62, 63, 63,
63, 63, 63, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64,
};
if (m < -SMOOTHER_LEN_INTERINTRA)
return 0;
else if (m > SMOOTHER_LEN_INTERINTRA)
return (1 << MASK_WEIGHT_BITS_INTERINTRA);
else
return smoothfn[m + SMOOTHER_LEN_INTERINTRA];
}
static int get_hard_mask_interintra(int m) {
return m > 0;
}
// Equation of line: f(x, y) = a[0]*(x - a[2]*w/4) + a[1]*(y - a[3]*h/4) = 0
// The soft mask is obtained by computing f(x, y) and then calling
// get_masked_weight(f(x, y)).
static const int mask_params_sml_interintra[1 << MASK_BITS_SML_INTERINTRA]
[4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
};
static const int mask_params_med_hgtw_interintra[1 << MASK_BITS_MED_INTERINTRA]
[4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
};
static const int mask_params_med_hltw_interintra[1 << MASK_BITS_MED_INTERINTRA]
[4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
};
static const int mask_params_med_heqw_interintra[1 << MASK_BITS_MED_INTERINTRA]
[4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{ 0, 2, 0, 1},
{ 0, -2, 0, 1},
{ 0, 2, 0, 3},
{ 0, -2, 0, 3},
{ 2, 0, 1, 0},
{-2, 0, 1, 0},
{ 2, 0, 3, 0},
{-2, 0, 3, 0},
};
static const int mask_params_big_hgtw_interintra[1 << MASK_BITS_BIG_INTERINTRA]
[4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
{ 0, 2, 0, 1},
{ 0, -2, 0, 1},
{ 0, 2, 0, 2},
{ 0, -2, 0, 2},
{ 0, 2, 0, 3},
{ 0, -2, 0, 3},
{ 2, 0, 2, 0},
{-2, 0, 2, 0},
};
static const int mask_params_big_hltw_interintra[1 << MASK_BITS_BIG_INTERINTRA]
[4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
{ 0, 2, 0, 2},
{ 0, -2, 0, 2},
{ 2, 0, 1, 0},
{-2, 0, 1, 0},
{ 2, 0, 2, 0},
{-2, 0, 2, 0},
{ 2, 0, 3, 0},
{-2, 0, 3, 0},
};
static const int mask_params_big_heqw_interintra[1 << MASK_BITS_BIG_INTERINTRA]
[4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
{ 0, 2, 0, 1},
{ 0, -2, 0, 1},
{ 0, 2, 0, 3},
{ 0, -2, 0, 3},
{ 2, 0, 1, 0},
{-2, 0, 1, 0},
{ 2, 0, 3, 0},
{-2, 0, 3, 0},
};
static const int *get_mask_params_interintra(int mask_index,
BLOCK_SIZE sb_type,
int h, int w) {
const int *a;
const int mask_bits = get_mask_bits_interintra(sb_type);
if (mask_index == MASK_NONE_INTERINTRA)
return NULL;
if (mask_bits == MASK_BITS_SML_INTERINTRA) {
a = mask_params_sml_interintra[mask_index];
} else if (mask_bits == MASK_BITS_MED_INTERINTRA) {
if (h > w)
a = mask_params_med_hgtw_interintra[mask_index];
else if (h < w)
a = mask_params_med_hltw_interintra[mask_index];
else
a = mask_params_med_heqw_interintra[mask_index];
} else if (mask_bits == MASK_BITS_BIG_INTERINTRA) {
if (h > w)
a = mask_params_big_hgtw_interintra[mask_index];
else if (h < w)
a = mask_params_big_hltw_interintra[mask_index];
else
a = mask_params_big_heqw_interintra[mask_index];
} else {
assert(0);
}
return a;
}
void vp9_generate_masked_weight_interintra(int mask_index,
BLOCK_SIZE sb_type,
int h, int w,
uint8_t *mask, int stride) {
int i, j;
const int *a = get_mask_params_interintra(mask_index, sb_type, h, w);
if (!a) return;
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int x = (j - (a[2] * w) / 4);
int y = (i - (a[3] * h) / 4);
int m = a[0] * x + a[1] * y;
mask[i * stride + j] = get_masked_weight_interintra(m);
}
}
void vp9_generate_hard_mask_interintra(int mask_index, BLOCK_SIZE sb_type,
int h, int w, uint8_t *mask, int stride) {
int i, j;
const int *a = get_mask_params_interintra(mask_index, sb_type, h, w);
if (!a) return;
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int x = (j - (a[2] * w) / 4);
int y = (i - (a[3] * h) / 4);
int m = a[0] * x + a[1] * y;
mask[i * stride + j] = get_hard_mask_interintra(m);
}
}
#endif
static void combine_interintra(PREDICTION_MODE mode,
#if CONFIG_MASKED_INTERINTRA
int use_masked_interintra,
int mask_index,
BLOCK_SIZE bsize,
#endif
uint8_t *comppred,
int compstride,
uint8_t *interpred,
int interstride,
uint8_t *intrapred,
int intrastride,
int bw, int bh) {
static const int scale_bits = 8;
static const int scale_max = 256;
static const int scale_round = 127;
static const int weights1d[64] = {
128, 125, 122, 119, 116, 114, 111, 109,
107, 105, 103, 101, 99, 97, 96, 94,
93, 91, 90, 89, 88, 86, 85, 84,
83, 82, 81, 81, 80, 79, 78, 78,
77, 76, 76, 75, 75, 74, 74, 73,
73, 72, 72, 71, 71, 71, 70, 70,
70, 70, 69, 69, 69, 69, 68, 68,
68, 68, 68, 67, 67, 67, 67, 67,
};
int size = MAX(bw, bh);
int size_scale = (size >= 64 ? 1 :
size == 32 ? 2 :
size == 16 ? 4 :
size == 8 ? 8 : 16);
int i, j;
#if CONFIG_MASKED_INTERINTRA
if (use_masked_interintra && get_mask_bits_interintra(bsize)) {
uint8_t mask[4096];
vp9_generate_masked_weight_interintra(mask_index, bsize, bh, bw, mask, bw);
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int m = mask[i * bw + j];
comppred[i * compstride + j] =
(intrapred[i * intrastride + j] * m +
interpred[i * interstride + j] *
((1 << MASK_WEIGHT_BITS_INTERINTRA) - m) +
(1 << (MASK_WEIGHT_BITS_INTERINTRA - 1))) >>
MASK_WEIGHT_BITS_INTERINTRA;
}
}
return;
}
#endif
switch (mode) {
case V_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = weights1d[i * size_scale];
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case H_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = weights1d[j * size_scale];
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case D63_PRED:
case D117_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (weights1d[i * size_scale] * 3 +
weights1d[j * size_scale]) >> 2;
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case D207_PRED:
case D153_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (weights1d[j * size_scale] * 3 +
weights1d[i * size_scale]) >> 2;
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case D135_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = weights1d[(i < j ? i : j) * size_scale];
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case D45_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (weights1d[i * size_scale] +
weights1d[j * size_scale]) >> 1;
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case TM_PRED:
case DC_PRED:
default:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
comppred[i * compstride + j] = (interpred[i * interstride + j] +
intrapred[i * intrastride + j]) >> 1;
}
}
break;
}
}
static void build_intra_predictors_for_2nd_block_interintra
(const MACROBLOCKD *xd, const uint8_t *ref,
int ref_stride, uint8_t *dst, int dst_stride,
PREDICTION_MODE mode, TX_SIZE tx_size,
int up_available, int left_available,
int right_available, int bwltbh,
int x, int y, int plane) {
int i;
DECLARE_ALIGNED_ARRAY(16, uint8_t, left_col, 64);
DECLARE_ALIGNED_ARRAY(16, uint8_t, above_data, 128 + 16);
uint8_t *above_row = above_data + 16;
const uint8_t *const_above_row = above_row;
const int bs = 4 << tx_size;
int frame_width, frame_height;
int x0, y0;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const uint8_t *ref_fi;
int ref_stride_fi;
// 127 127 127 .. 127 127 127 127 127 127
// 129 A B .. Y Z
// 129 C D .. W X
// 129 E F .. U V
// 129 G H .. S T T T T T
// ..
once(init_intra_pred_fn_ptrs);
// Get current frame pointer, width and height.
if (plane == 0) {
frame_width = xd->cur_buf->y_width;
frame_height = xd->cur_buf->y_height;
} else {
frame_width = xd->cur_buf->uv_width;
frame_height = xd->cur_buf->uv_height;
}
// Get block position in current frame.
x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
vpx_memset(left_col, 129, 64);
// left
if (left_available) {
if (bwltbh) {
ref_fi = ref;
ref_stride_fi = ref_stride;
} else {
ref_fi = dst;
ref_stride_fi = dst_stride;
}
if (xd->mb_to_bottom_edge < 0) {
/* slower path if the block needs border extension */
if (y0 + bs <= frame_height) {
for (i = 0; i < bs; ++i)
left_col[i] = ref_fi[i * ref_stride_fi - 1];
} else {
const int extend_bottom = frame_height - y0;
assert(extend_bottom >= 0);
for (i = 0; i < extend_bottom; ++i)
left_col[i] = ref_fi[i * ref_stride_fi - 1];
for (; i < bs; ++i)
left_col[i] = ref_fi[(extend_bottom - 1) * ref_stride_fi - 1];
}
} else {
/* faster path if the block does not need extension */
for (i = 0; i < bs; ++i)
left_col[i] = ref_fi[i * ref_stride_fi - 1];
}
}
// TODO(hkuang) do not extend 2*bs pixels for all modes.
// above
if (up_available) {
const uint8_t *above_ref;
if (bwltbh) {
ref_fi = dst;
ref_stride_fi = dst_stride;
above_row[-1] = left_available ? ref[-ref_stride-1] : 129;
} else {
ref_fi = ref;
ref_stride_fi = ref_stride;
above_row[-1] = ref[-ref_stride-1];
}
above_ref = ref_fi - ref_stride_fi;
if (xd->mb_to_right_edge < 0) {
/* slower path if the block needs border extension */
if (x0 + 2 * bs <= frame_width) {
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, 2 * bs);
} else {
vpx_memcpy(above_row, above_ref, bs);
vpx_memset(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 + bs <= frame_width) {
const int r = frame_width - x0;
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
} else {
vpx_memcpy(above_row, above_ref, bs);
vpx_memset(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 <= frame_width) {
const int r = frame_width - x0;
assert(r >= 0);
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
} else {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
}
}
} else {
/* faster path if the block does not need extension */
if (bs == 4 && right_available && left_available) {
const_above_row = above_ref;
} else {
vpx_memcpy(above_row, above_ref, bs);
if (bs == 4 && right_available)
vpx_memcpy(above_row + bs, above_ref + bs, bs);
else
vpx_memset(above_row + bs, above_row[bs - 1], bs);
}
}
} else {
vpx_memset(above_row, 127, bs * 2);
above_row[-1] = 127;
}
// predict
if (mode == DC_PRED) {
dc_pred[left_available][up_available][tx_size](dst, dst_stride,
const_above_row, left_col);
} else {
pred[mode][tx_size](dst, dst_stride, const_above_row, left_col);
}
}
// Break down rectangular intra prediction for joint spatio-temporal prediction
// into two square intra predictions.
static void build_intra_predictors_for_interintra(MACROBLOCKD *xd,
uint8_t *src, int src_stride,
uint8_t *pred_ptr, int stride,
PREDICTION_MODE mode,
int bw, int bh,
int up_available, int left_available,
int right_available, int plane) {
if (bw == bh) {
build_intra_predictors(xd, src, src_stride, pred_ptr, stride,
mode, intra_size_log2_for_interintra(bw),
up_available, left_available, right_available,
0, 0, plane);
} else if (bw < bh) {
uint8_t *src_bottom = src + bw * src_stride;
uint8_t *pred_ptr_bottom = pred_ptr + bw * stride;
build_intra_predictors(xd, src, src_stride, pred_ptr, stride,
mode, intra_size_log2_for_interintra(bw),
up_available, left_available, right_available,
0, 0, plane);
build_intra_predictors_for_2nd_block_interintra(xd, src_bottom, src_stride,
pred_ptr_bottom, stride,
mode, intra_size_log2_for_interintra(bw),
up_available, left_available, 0, 1,
0, bw, plane);
} else {
uint8_t *src_right = src + bh;
uint8_t *pred_ptr_right = pred_ptr + bh;
build_intra_predictors(xd, src, src_stride, pred_ptr, stride,
mode, intra_size_log2_for_interintra(bh),
up_available, left_available, 1,
0, 0, plane);
build_intra_predictors_for_2nd_block_interintra(xd, src_right, src_stride,
pred_ptr_right, stride,
mode, intra_size_log2_for_interintra(bh),
up_available, left_available, right_available, 0,
bh, 0, plane);
}
}
void vp9_build_interintra_predictors_sby(MACROBLOCKD *xd,
uint8_t *ypred,
int ystride,
BLOCK_SIZE bsize) {
int bw = 4 << b_width_log2(bsize);
int bh = 4 << b_height_log2(bsize);
uint8_t intrapredictor[4096];
build_intra_predictors_for_interintra(
xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride,
intrapredictor, bw,
xd->mi[0]->mbmi.interintra_mode, bw, bh,
xd->up_available, xd->left_available, 0, 0);
combine_interintra(xd->mi[0]->mbmi.interintra_mode,
#if CONFIG_MASKED_INTERINTRA
xd->mi[0]->mbmi.use_masked_interintra,
xd->mi[0]->mbmi.interintra_mask_index,
bsize,
#endif
xd->plane[0].dst.buf, xd->plane[0].dst.stride,
ypred, ystride, intrapredictor, bw, bw, bh);
}
void vp9_build_interintra_predictors_sbuv(MACROBLOCKD *xd,
uint8_t *upred,
uint8_t *vpred,
int ustride, int vstride,
BLOCK_SIZE bsize) {
int bwl = b_width_log2(bsize), bw = 2 << bwl;
int bhl = b_height_log2(bsize), bh = 2 << bhl;
uint8_t uintrapredictor[1024];
uint8_t vintrapredictor[1024];
build_intra_predictors_for_interintra(
xd, xd->plane[1].dst.buf, xd->plane[1].dst.stride,
uintrapredictor, bw,
xd->mi[0]->mbmi.interintra_uv_mode, bw, bh,
xd->up_available, xd->left_available, 0, 1);
build_intra_predictors_for_interintra(
xd, xd->plane[2].dst.buf, xd->plane[1].dst.stride,
vintrapredictor, bw,
xd->mi[0]->mbmi.interintra_uv_mode, bw, bh,
xd->up_available, xd->left_available, 0, 2);
combine_interintra(xd->mi[0]->mbmi.interintra_uv_mode,
#if CONFIG_MASKED_INTERINTRA
xd->mi[0]->mbmi.use_masked_interintra,
xd->mi[0]->mbmi.interintra_uv_mask_index,
bsize,
#endif
xd->plane[1].dst.buf, xd->plane[1].dst.stride,
upred, ustride, uintrapredictor, bw, bw, bh);
combine_interintra(xd->mi[0]->mbmi.interintra_uv_mode,
#if CONFIG_MASKED_INTERINTRA
xd->mi[0]->mbmi.use_masked_interintra,
xd->mi[0]->mbmi.interintra_uv_mask_index,
bsize,
#endif
xd->plane[2].dst.buf, xd->plane[2].dst.stride,
vpred, vstride, vintrapredictor, bw, bw, bh);
}
void vp9_build_interintra_predictors(MACROBLOCKD *xd,
uint8_t *ypred,
uint8_t *upred,
uint8_t *vpred,
int ystride, int ustride, int vstride,
BLOCK_SIZE bsize) {
vp9_build_interintra_predictors_sby(xd, ypred, ystride, bsize);
vp9_build_interintra_predictors_sbuv(xd, upred, vpred,
ustride, vstride, bsize);
}
#endif

View File

@@ -20,9 +20,37 @@ extern "C" {
void vp9_predict_intra_block(const MACROBLOCKD *xd, int block_idx, int bwl_in,
TX_SIZE tx_size, PREDICTION_MODE mode,
#if CONFIG_FILTERINTRA
int filterbit,
#endif
const uint8_t *ref, int ref_stride,
uint8_t *dst, int dst_stride,
int aoff, int loff, int plane);
#if CONFIG_INTERINTRA
void vp9_build_interintra_predictors(MACROBLOCKD *xd,
uint8_t *ypred,
uint8_t *upred,
uint8_t *vpred,
int ystride,
int ustride,
int vstride,
BLOCK_SIZE bsize);
void vp9_build_interintra_predictors_sby(MACROBLOCKD *xd,
uint8_t *ypred,
int ystride,
BLOCK_SIZE bsize);
void vp9_build_interintra_predictors_sbuv(MACROBLOCKD *xd,
uint8_t *upred,
uint8_t *vpred,
int ustride, int vstride,
BLOCK_SIZE bsize);
#if CONFIG_MASKED_INTERINTRA
void vp9_generate_masked_weight_interintra(int mask_index,
BLOCK_SIZE sb_type,
int h, int w,
uint8_t *mask, int stride);
#endif
#endif
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -506,6 +506,125 @@ specialize qw/vp9_sub_pixel_variance8x8/, "$sse2_x86inc", "$ssse3_x86inc";
add_proto qw/unsigned int vp9_sub_pixel_avg_variance8x8/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse, const uint8_t *second_pred";
specialize qw/vp9_sub_pixel_avg_variance8x8/, "$sse2_x86inc", "$ssse3_x86inc";
if ((vpx_config("CONFIG_MASKED_INTERINTER") eq "yes") || ((vpx_config("CONFIG_INTERINTRA") eq "yes") && (vpx_config("CONFIG_MASKED_INTERINTRA") eq "yes"))) {
add_proto qw/unsigned int vp9_masked_variance32x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance32x16/;
add_proto qw/unsigned int vp9_masked_variance16x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masdctked_variance16x32/;
add_proto qw/unsigned int vp9_masked_variance64x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance64x32/;
add_proto qw/unsigned int vp9_masked_variance32x64/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance32x64/;
add_proto qw/unsigned int vp9_masked_variance32x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance32x32/;
add_proto qw/unsigned int vp9_masked_variance64x64/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance64x64/;
add_proto qw/unsigned int vp9_masked_variance16x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance16x16/;
add_proto qw/unsigned int vp9_masked_variance16x8/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance16x8/;
add_proto qw/unsigned int vp9_masked_variance8x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance8x16/;
add_proto qw/unsigned int vp9_masked_variance8x8/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance8x8/;
add_proto qw/unsigned int vp9_masked_variance8x4/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance8x4/;
add_proto qw/unsigned int vp9_masked_variance4x8/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance4x8/;
add_proto qw/unsigned int vp9_masked_variance4x4/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance4x4/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance64x64/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance64x64/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance32x64/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance32x64/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance64x32/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance64x32/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance32x16/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance32x16/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance16x32/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance16x32/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance32x32/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance32x32/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance16x16/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance16x16/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance8x16/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance8x16/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance16x8/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance16x8/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance8x8/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance8x8/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance8x4/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance8x4/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance4x8/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance4x8/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance4x4/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance4x4/;
add_proto qw/unsigned int vp9_masked_sad64x64/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad64x64/;
add_proto qw/unsigned int vp9_masked_sad32x64/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad32x64/;
add_proto qw/unsigned int vp9_masked_sad64x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad64x32/;
add_proto qw/unsigned int vp9_masked_sad32x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad32x16/;
add_proto qw/unsigned int vp9_masked_sad16x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad16x32/;
add_proto qw/unsigned int vp9_masked_sad32x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad32x32/;
add_proto qw/unsigned int vp9_masked_sad16x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad16x16/;
add_proto qw/unsigned int vp9_masked_sad16x8/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad16x8/;
add_proto qw/unsigned int vp9_masked_sad8x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad8x16/;
add_proto qw/unsigned int vp9_masked_sad8x8/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad8x8/;
add_proto qw/unsigned int vp9_masked_sad8x4/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad8x4/;
add_proto qw/unsigned int vp9_masked_sad4x8/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad4x8/;
add_proto qw/unsigned int vp9_masked_sad4x4/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad4x4/;
}
# TODO(jingning): need to convert 8x4/4x8 functions into mmx/sse form
add_proto qw/unsigned int vp9_sub_pixel_variance8x4/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse";
specialize qw/vp9_sub_pixel_variance8x4/, "$sse2_x86inc", "$ssse3_x86inc";

View File

@@ -46,8 +46,8 @@ static INLINE int vp9_is_valid_scale(const struct scale_factors *sf) {
}
static INLINE int vp9_is_scaled(const struct scale_factors *sf) {
return sf->x_scale_fp != REF_NO_SCALE ||
sf->y_scale_fp != REF_NO_SCALE;
return vp9_is_valid_scale(sf) &&
(sf->x_scale_fp != REF_NO_SCALE || sf->y_scale_fp != REF_NO_SCALE);
}
#ifdef __cplusplus

View File

@@ -254,11 +254,24 @@ static void predict_and_reconstruct_intra_block(int plane, int block,
: mi->mbmi.uv_mode;
int x, y;
uint8_t *dst;
#if CONFIG_FILTERINTRA
int fbit;
if (plane == 0)
if (mi->mbmi.sb_type < BLOCK_8X8)
fbit = mi->b_filter_info[block];
else
fbit = is_filter_enabled(tx_size) ? mi->mbmi.filterbit : 0;
else
fbit = is_filter_enabled(tx_size) ? mi->mbmi.uv_filterbit : 0;
#endif
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y);
dst = &pd->dst.buf[4 * y * pd->dst.stride + 4 * x];
vp9_predict_intra_block(xd, block >> (tx_size << 1),
b_width_log2(plane_bsize), tx_size, mode,
#if CONFIG_FILTERINTRA
fbit,
#endif
dst, pd->dst.stride, dst, pd->dst.stride,
x, y, plane);
@@ -322,6 +335,84 @@ static MB_MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
return &xd->mi[0]->mbmi;
}
#if CONFIG_SUPERTX
static void set_offsets_extend(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
BLOCK_SIZE top_bsize,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori) {
const int bw = num_8x8_blocks_wide_lookup[top_bsize];
const int bh = num_8x8_blocks_high_lookup[top_bsize];
const int offset = mi_row * cm->mi_stride + mi_col;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
set_mi_row_col(xd, tile, mi_row_ori, bh, mi_col_ori, bw,
cm->mi_rows, cm->mi_cols);
}
static void set_mb_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
BLOCK_SIZE bsize, int mi_row, int mi_col) {
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
xd->mi[0]->mbmi.sb_type = bsize;
for (y = 0; y < y_mis; ++y)
for (x = !y; x < x_mis; ++x)
xd->mi[y * cm->mi_stride + x] = xd->mi[0];
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
}
static void set_offsets_topblock(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
BLOCK_SIZE bsize, int mi_row, int mi_col) {
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int offset = mi_row * cm->mi_stride + mi_col;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
}
static void set_param_topblock(VP9_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
#if CONFIG_EXT_TX
int txfm,
#endif
int skip) {
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
for (y = 0; y < y_mis; ++y)
for (x = 0; x < x_mis; ++x) {
xd->mi[y * cm->mi_stride + x]->mbmi.skip = skip;
#if CONFIG_EXT_TX
xd->mi[y * cm->mi_stride + x]->mbmi.ext_txfrm = txfm;
#endif
}
}
#endif
static void set_ref(VP9_COMMON *const cm, MACROBLOCKD *const xd,
int idx, int mi_row, int mi_col) {
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
@@ -335,14 +426,246 @@ static void set_ref(VP9_COMMON *const cm, MACROBLOCKD *const xd,
xd->corrupted |= ref_buffer->buf->corrupted;
}
#if CONFIG_SUPERTX
static void dec_predict_b_extend(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE top_bsize) {
set_offsets_extend(cm, xd, tile, top_bsize, mi_row, mi_col,
mi_row_ori, mi_col_ori);
set_ref(cm, xd, 0, mi_row_ori, mi_col_ori);
if (has_second_ref(&xd->mi[0]->mbmi))
set_ref(cm, xd, 1, mi_row_ori, mi_col_ori);
xd->mi[0]->mbmi.tx_size = b_width_log2(top_bsize);
#if !CONFIG_MASKED_INTERINTER
vp9_dec_build_inter_predictors_sb(xd, mi_row_ori, mi_col_ori, top_bsize);
#else
vp9_dec_build_inter_predictors_sb_extend(xd, mi_row, mi_col,
mi_row_ori, mi_col_ori, top_bsize);
#endif
}
static void dec_predict_b_sub8x8_extend(VP9_COMMON *const cm,
MACROBLOCKD *const xd,
const TileInfo *const tile,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE top_bsize,
PARTITION_TYPE partition) {
set_offsets_extend(cm, xd, tile, top_bsize, mi_row, mi_col,
mi_row_ori, mi_col_ori);
set_ref(cm, xd, 0, mi_row_ori, mi_col_ori);
if (has_second_ref(&xd->mi[0]->mbmi))
set_ref(cm, xd, 1, mi_row_ori, mi_col_ori);
xd->mi[0]->mbmi.tx_size = b_width_log2(top_bsize);
vp9_dec_build_inter_predictors_sby_sub8x8_extend(xd, mi_row, mi_col,
mi_row_ori, mi_col_ori,
top_bsize, partition);
vp9_dec_build_inter_predictors_sbuv_sub8x8_extend(xd,
#if CONFIG_MASKED_INTERINTER
mi_row, mi_col,
#endif
mi_row_ori, mi_col_ori,
top_bsize);
}
static void dec_predict_sb_complex(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize,
uint8_t *dst_buf[3], int dst_stride[3]) {
const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
MB_MODE_INFO *mbmi;
int i, offset = mi_row * cm->mi_stride + mi_col;
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf1, MAX_MB_PLANE * 32 * 32);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf2, MAX_MB_PLANE * 32 * 32);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf3, MAX_MB_PLANE * 32 * 32);
uint8_t *dst_buf1[3] = {tmp_buf1, tmp_buf1 + 32 * 32, tmp_buf1 + 2 * 32 * 32};
uint8_t *dst_buf2[3] = {tmp_buf2, tmp_buf2 + 32 * 32, tmp_buf2 + 2 * 32 * 32};
uint8_t *dst_buf3[3] = {tmp_buf3, tmp_buf3 + 32 * 32, tmp_buf3 + 2 * 32 * 32};
int dst_stride1[3] = {32, 32, 32};
int dst_stride2[3] = {32, 32, 32};
int dst_stride3[3] = {32, 32, 32};
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
mbmi = &xd->mi[0]->mbmi;
partition = partition_lookup[bsl][mbmi->sb_type];
subsize = get_subsize(bsize, partition);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
}
switch (partition) {
case PARTITION_NONE:
assert(bsize < top_bsize);
dec_predict_b_extend(cm, xd, tile, mi_row, mi_col, mi_row_ori, mi_col_ori,
top_bsize);
break;
case PARTITION_HORZ:
if (bsize > BLOCK_8X8) {
dec_predict_b_extend(cm, xd, tile, mi_row, mi_col, mi_row_ori,
mi_col_ori, top_bsize);
} else {
dec_predict_b_sub8x8_extend(cm, xd, tile, mi_row, mi_col,
mi_row_ori, mi_col_ori,
top_bsize, partition);
}
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = tmp_buf1 + i * 32 * 32;
xd->plane[i].dst.stride = 32;
}
dec_predict_b_extend(cm, xd, tile, mi_row + hbs, mi_col,
mi_row_ori, mi_col_ori, top_bsize);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp9_build_masked_inter_predictor_complex(dst_buf[i], dst_stride[i],
dst_buf1[i], dst_stride1[i],
i,
mi_row, mi_col,
mi_row_ori, mi_col_ori,
bsize, top_bsize,
PARTITION_HORZ);
}
}
break;
case PARTITION_VERT:
if (bsize > BLOCK_8X8) {
dec_predict_b_extend(cm, xd, tile, mi_row, mi_col, mi_row_ori,
mi_col_ori, top_bsize);
} else {
dec_predict_b_sub8x8_extend(cm, xd, tile, mi_row, mi_col,
mi_row_ori, mi_col_ori,
top_bsize, partition);
}
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = tmp_buf1 + i * 32 * 32;
xd->plane[i].dst.stride = 32;
}
dec_predict_b_extend(cm, xd, tile, mi_row, mi_col + hbs, mi_row_ori,
mi_col_ori, top_bsize);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp9_build_masked_inter_predictor_complex(dst_buf[i], dst_stride[i],
dst_buf1[i], dst_stride1[i],
i,
mi_row, mi_col,
mi_row_ori, mi_col_ori,
bsize, top_bsize,
PARTITION_VERT);
}
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
dec_predict_b_sub8x8_extend(cm, xd, tile, mi_row, mi_col,
mi_row_ori, mi_col_ori,
top_bsize, partition);
} else {
dec_predict_sb_complex(cm, xd, tile, mi_row, mi_col,
mi_row_ori, mi_col_ori, subsize, top_bsize,
dst_buf, dst_stride);
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols)
dec_predict_sb_complex(cm, xd, tile, mi_row, mi_col + hbs,
mi_row_ori, mi_col_ori, subsize, top_bsize,
dst_buf1, dst_stride1);
if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols)
dec_predict_sb_complex(cm, xd, tile, mi_row + hbs, mi_col,
mi_row_ori, mi_col_ori, subsize, top_bsize,
dst_buf2, dst_stride2);
if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols)
dec_predict_sb_complex(cm, xd, tile, mi_row + hbs, mi_col + hbs,
mi_row_ori, mi_col_ori, subsize, top_bsize,
dst_buf3, dst_stride3);
for (i = 0; i < MAX_MB_PLANE; i++) {
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
vp9_build_masked_inter_predictor_complex(dst_buf[i], dst_stride[i],
dst_buf1[i],
dst_stride1[i],
i, mi_row, mi_col,
mi_row_ori, mi_col_ori,
bsize, top_bsize,
PARTITION_VERT);
if (mi_row + hbs < cm->mi_rows) {
vp9_build_masked_inter_predictor_complex(dst_buf2[i],
dst_stride2[i],
dst_buf3[i],
dst_stride3[i],
i, mi_row, mi_col,
mi_row_ori, mi_col_ori,
bsize, top_bsize,
PARTITION_VERT);
vp9_build_masked_inter_predictor_complex(dst_buf[i],
dst_stride[i],
dst_buf2[i],
dst_stride2[i],
i, mi_row, mi_col,
mi_row_ori, mi_col_ori,
bsize, top_bsize,
PARTITION_HORZ);
}
} else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) {
vp9_build_masked_inter_predictor_complex(dst_buf[i],
dst_stride[i],
dst_buf2[i],
dst_stride2[i],
i, mi_row, mi_col,
mi_row_ori, mi_col_ori,
bsize, top_bsize,
PARTITION_HORZ);
}
}
}
break;
default:
assert(0);
}
}
#endif
static void decode_block(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col,
vp9_reader *r, BLOCK_SIZE bsize) {
const int less8x8 = bsize < BLOCK_8X8;
#if !CONFIG_SUPERTX
MB_MODE_INFO *mbmi = set_offsets(cm, xd, tile, bsize, mi_row, mi_col);
vp9_read_mode_info(cm, xd, tile, mi_row, mi_col, r);
#else
MB_MODE_INFO *mbmi;
if (!supertx_enabled) {
mbmi = set_offsets(cm, xd, tile, bsize, mi_row, mi_col);
} else {
set_mb_offsets(cm, xd, tile, bsize, mi_row, mi_col);
}
#endif
vp9_read_mode_info(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r);
#if CONFIG_SUPERTX
if (!supertx_enabled) {
#endif
if (less8x8)
bsize = BLOCK_8X8;
@@ -376,6 +699,9 @@ static void decode_block(VP9_COMMON *const cm, MACROBLOCKD *const xd,
mbmi->skip = 1; // skip loopfilter
}
}
#if CONFIG_SUPERTX
}
#endif
xd->corrupted |= vp9_reader_has_error(r);
}
@@ -406,45 +732,161 @@ static PARTITION_TYPE read_partition(VP9_COMMON *cm, MACROBLOCKD *xd, int hbs,
static void decode_partition(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
#if CONFIG_SUPERTX
int read_token, int supertx_enabled,
#endif
int mi_row, int mi_col,
vp9_reader* r, BLOCK_SIZE bsize) {
const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
#if CONFIG_SUPERTX
int skip = 0;
#if CONFIG_EXT_TX
int txfm = 0;
#endif
#endif
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
partition = read_partition(cm, xd, hbs, mi_row, mi_col, bsize, r);
subsize = get_subsize(bsize, partition);
#if CONFIG_SUPERTX
if (cm->frame_type != KEY_FRAME &&
partition != PARTITION_NONE &&
bsize <= BLOCK_32X32 &&
!supertx_enabled) {
TX_SIZE supertx_size = b_width_log2(bsize);
if (partition == PARTITION_SPLIT) {
supertx_enabled = vp9_read(r, cm->fc.supertxsplit_prob[supertx_size]);
cm->counts.supertxsplit[supertx_size][supertx_enabled]++;
} else {
supertx_enabled = vp9_read(r, cm->fc.supertx_prob[supertx_size]);
cm->counts.supertx[supertx_size][supertx_enabled]++;
}
}
if (supertx_enabled && read_token) {
int offset = mi_row * cm->mi_stride + mi_col;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[bsize],
mi_col, num_8x8_blocks_wide_lookup[bsize],
cm->mi_rows, cm->mi_cols);
set_skip_context(xd, mi_row, mi_col);
// Here we assume mbmi->segment_id = 0
skip = read_skip(cm, xd, 0, r);
if (skip)
reset_skip_context(xd, bsize);
#if CONFIG_EXT_TX
if (bsize <= BLOCK_16X16 && !skip) {
txfm = vp9_read(r, cm->fc.ext_tx_prob);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.ext_tx[txfm];
}
#endif
}
#endif
if (subsize < BLOCK_8X8) {
decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, subsize);
} else {
switch (partition) {
case PARTITION_NONE:
decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, subsize);
break;
case PARTITION_HORZ:
decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, subsize);
if (mi_row + hbs < cm->mi_rows)
decode_block(cm, xd, tile, mi_row + hbs, mi_col, r, subsize);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col, r, subsize);
break;
case PARTITION_VERT:
decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, subsize);
if (mi_col + hbs < cm->mi_cols)
decode_block(cm, xd, tile, mi_row, mi_col + hbs, r, subsize);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + hbs, r, subsize);
break;
case PARTITION_SPLIT:
decode_partition(cm, xd, tile, mi_row, mi_col, r, subsize);
decode_partition(cm, xd, tile, mi_row, mi_col + hbs, r, subsize);
decode_partition(cm, xd, tile, mi_row + hbs, mi_col, r, subsize);
decode_partition(cm, xd, tile, mi_row + hbs, mi_col + hbs, r, subsize);
decode_partition(cm, xd, tile,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row, mi_col, r, subsize);
decode_partition(cm, xd, tile,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row, mi_col + hbs, r, subsize);
decode_partition(cm, xd, tile,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row + hbs, mi_col, r, subsize);
decode_partition(cm, xd, tile,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row + hbs, mi_col + hbs, r, subsize);
break;
default:
assert(0 && "Invalid partition type");
}
}
#if CONFIG_SUPERTX
if (supertx_enabled && read_token) {
uint8_t *dst_buf[3];
int dst_stride[3], i;
vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
for (i = 0; i < MAX_MB_PLANE; i++) {
dst_buf[i] = xd->plane[i].dst.buf;
dst_stride[i] = xd->plane[i].dst.stride;
}
dec_predict_sb_complex(cm, xd, tile, mi_row, mi_col, mi_row, mi_col,
bsize, bsize, dst_buf, dst_stride);
if (!skip) {
int eobtotal = 0;
struct inter_args arg = { cm, xd, r, &eobtotal };
set_offsets_topblock(cm, xd, tile, bsize, mi_row, mi_col);
#if CONFIG_EXT_TX
xd->mi[0]->mbmi.ext_txfrm = txfm;
#endif
vp9_foreach_transformed_block(xd, bsize, reconstruct_inter_block, &arg);
if (!(subsize < BLOCK_8X8) && eobtotal == 0)
skip = 1;
}
set_param_topblock(cm, xd, bsize, mi_row, mi_col,
#if CONFIG_EXT_TX
txfm,
#endif
skip);
}
#endif
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
@@ -685,6 +1127,10 @@ static void setup_tile_info(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
while (max_ones-- && vp9_rb_read_bit(rb))
cm->log2_tile_cols++;
if (cm->log2_tile_cols > 6)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid number of tile columns");
// rows
cm->log2_tile_rows = vp9_rb_read_bit(rb);
if (cm->log2_tile_rows)
@@ -838,7 +1284,11 @@ static const uint8_t *decode_tiles(VP9Decoder *pbi,
vp9_zero(tile_data->xd.left_seg_context);
for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
mi_col += MI_BLOCK_SIZE) {
decode_partition(tile_data->cm, &tile_data->xd, &tile, mi_row, mi_col,
decode_partition(tile_data->cm, &tile_data->xd, &tile,
#if CONFIG_SUPERTX
1, 0,
#endif
mi_row, mi_col,
&tile_data->bit_reader, BLOCK_64X64);
}
}
@@ -892,6 +1342,9 @@ static int tile_worker_hook(void *arg1, void *arg2) {
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE) {
decode_partition(tile_data->cm, &tile_data->xd, tile,
#if CONFIG_SUPERTX
1, 0,
#endif
mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64);
}
}
@@ -1077,7 +1530,7 @@ static size_t read_uncompressed_header(VP9Decoder *pbi,
// Show an existing frame directly.
const int frame_to_show = cm->ref_frame_map[vp9_rb_read_literal(rb, 3)];
if (cm->frame_bufs[frame_to_show].ref_count < 1)
if (frame_to_show < 0 || cm->frame_bufs[frame_to_show].ref_count < 1)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Buffer %d does not contain a decoded frame",
frame_to_show);
@@ -1242,6 +1695,62 @@ static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data,
vp9_diff_update_prob(&r, &fc->partition_prob[j][i]);
read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
#if CONFIG_EXT_TX
vp9_diff_update_prob(&r, &fc->ext_tx_prob);
#endif
#if CONFIG_MASKED_INTERINTER
if (cm->reference_mode != SINGLE_REFERENCE) {
cm->use_masked_interinter = vp9_read_bit(&r);
if (cm->use_masked_interinter) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (get_mask_bits(i))
vp9_diff_update_prob(&r, &fc->masked_interinter_prob[i]);
}
}
} else {
cm->use_masked_interinter = 0;
}
#endif
#if CONFIG_INTERINTRA
if (cm->reference_mode != COMPOUND_REFERENCE) {
cm->use_interintra = vp9_read_bit(&r);
if (cm->use_interintra) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i)) {
vp9_diff_update_prob(&r, &fc->interintra_prob[i]);
}
}
#if CONFIG_MASKED_INTERINTRA
cm->use_masked_interintra = vp9_read_bit(&r);
if (cm->use_masked_interintra) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i) && get_mask_bits_interintra(i))
vp9_diff_update_prob(&r, &fc->masked_interintra_prob[i]);
}
}
} else {
cm->use_masked_interintra = 0;
#endif
}
} else {
cm->use_interintra = 0;
#if CONFIG_MASKED_INTERINTRA
cm->use_masked_interintra = 0;
#endif
}
#endif
#if CONFIG_COPY_CODING
for (j = 0; j < COPY_MODE_CONTEXTS; j++) {
for (i = 0; i < 1; i++)
vp9_diff_update_prob(&r, &fc->copy_mode_probs_l2[j][i]);
for (i = 0; i < 2; i++)
vp9_diff_update_prob(&r, &fc->copy_mode_probs[j][i]);
}
#endif
}
return vp9_reader_has_error(&r);
@@ -1293,6 +1802,10 @@ static void debug_check_frame_counts(const VP9_COMMON *const cm) {
assert(!memcmp(&cm->counts.tx, &zero_counts.tx, sizeof(cm->counts.tx)));
assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip)));
assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv)));
#if CONFIG_EXT_TX
assert(!memcmp(cm->counts.ext_tx, zero_counts.ext_tx,
sizeof(cm->counts.ext_tx)));
#endif
}
#endif // NDEBUG

View File

@@ -54,6 +54,36 @@ static PREDICTION_MODE read_inter_mode(VP9_COMMON *cm, vp9_reader *r, int ctx) {
return NEARESTMV + mode;
}
#if CONFIG_COPY_CODING
static COPY_MODE read_copy_mode(VP9_COMMON *cm, vp9_reader *r,
int num_candidate, int ctx) {
COPY_MODE mode;
switch (num_candidate) {
case 0:
assert(0);
break;
case 1:
mode = REF0;
break;
case 2:
mode = REF0 + vp9_read_tree(r, vp9_copy_mode_tree_l2,
cm->fc.copy_mode_probs_l2[ctx]);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.copy_mode_l2[ctx][mode - REF0];
break;
default:
mode = REF0 + vp9_read_tree(r, vp9_copy_mode_tree,
cm->fc.copy_mode_probs[ctx]);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.copy_mode[ctx][mode - REF0];
break;
}
return mode;
}
#endif
static int read_segment_id(vp9_reader *r, const struct segmentation *seg) {
return vp9_read_tree(r, vp9_segment_tree, seg->tree_probs);
}
@@ -144,7 +174,11 @@ static int read_inter_segment_id(VP9_COMMON *const cm, MACROBLOCKD *const xd,
return segment_id;
}
#if CONFIG_SUPERTX
int read_skip(VP9_COMMON *cm, const MACROBLOCKD *xd,
#else
static int read_skip(VP9_COMMON *cm, const MACROBLOCKD *xd,
#endif
int segment_id, vp9_reader *r) {
if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
@@ -175,29 +209,85 @@ static void read_intra_frame_mode_info(VP9_COMMON *const cm,
switch (bsize) {
case BLOCK_4X4:
#if !CONFIG_FILTERINTRA
for (i = 0; i < 4; ++i)
#else
for (i = 0; i < 4; ++i) {
#endif
mi->bmi[i].as_mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, i));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[i].as_mode))
mi->b_filter_info[i] =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[i].as_mode]);
else
mi->b_filter_info[i] = 0;
}
mbmi->filterbit = mi->b_filter_info[3];
#endif
mbmi->mode = mi->bmi[3].as_mode;
break;
case BLOCK_4X8:
mi->bmi[0].as_mode = mi->bmi[2].as_mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[0].as_mode))
mi->b_filter_info[0] = mi->b_filter_info[2] =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[0].as_mode]);
else
mi->b_filter_info[0] = mi->b_filter_info[2] = 0;
#endif
mi->bmi[1].as_mode = mi->bmi[3].as_mode = mbmi->mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 1));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[1].as_mode))
mi->b_filter_info[1] = mi->b_filter_info[3] = mbmi->filterbit =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[1].as_mode]);
else
mi->b_filter_info[1] = mi->b_filter_info[3] = mbmi->filterbit = 0;
#endif
break;
case BLOCK_8X4:
mi->bmi[0].as_mode = mi->bmi[1].as_mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[0].as_mode))
mi->b_filter_info[0] = mi->b_filter_info[1] =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[0].as_mode]);
else
mi->b_filter_info[0] = mi->b_filter_info[1] = 0;
#endif
mi->bmi[2].as_mode = mi->bmi[3].as_mode = mbmi->mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 2));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[2].as_mode))
mi->b_filter_info[2] = mi->b_filter_info[3] = mbmi->filterbit =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[2].as_mode]);
else
mi->b_filter_info[2] = mi->b_filter_info[3] = mbmi->filterbit = 0;
#endif
break;
default:
mbmi->mode = read_intra_mode(r,
get_y_mode_probs(mi, above_mi, left_mi, 0));
#if CONFIG_FILTERINTRA
if (is_filter_enabled(mbmi->tx_size) && is_filter_allowed(mbmi->mode))
mbmi->filterbit = vp9_read(r,
cm->fc.filterintra_prob[mbmi->tx_size][mbmi->mode]);
else
mbmi->filterbit = 0;
#endif
}
mbmi->uv_mode = read_intra_mode(r, vp9_kf_uv_mode_prob[mbmi->mode]);
#if CONFIG_FILTERINTRA
if (is_filter_enabled(get_uv_tx_size(mbmi)) &&
is_filter_allowed(mbmi->uv_mode))
mbmi->uv_filterbit = vp9_read(r,
cm->fc.filterintra_prob[get_uv_tx_size(mbmi)][mbmi->uv_mode]);
else
mbmi->uv_filterbit = 0;
#endif
}
static int read_mv_component(vp9_reader *r,
@@ -335,25 +425,97 @@ static void read_intra_block_mode_info(VP9_COMMON *const cm, MODE_INFO *mi,
switch (bsize) {
case BLOCK_4X4:
#if !CONFIG_FILTERINTRA
for (i = 0; i < 4; ++i)
#else
for (i = 0; i < 4; ++i) {
#endif
mi->bmi[i].as_mode = read_intra_mode_y(cm, r, 0);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[i].as_mode)) {
mi->b_filter_info[i] =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[i].as_mode]);
cm->counts.filterintra[0][mi->bmi[i].as_mode]
[mi->b_filter_info[i]]++;
} else {
mi->b_filter_info[i] = 0;
}
}
mbmi->filterbit = mi->b_filter_info[3];
#endif
mbmi->mode = mi->bmi[3].as_mode;
break;
case BLOCK_4X8:
mi->bmi[0].as_mode = mi->bmi[2].as_mode = read_intra_mode_y(cm, r, 0);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[0].as_mode)) {
mi->b_filter_info[0] = mi->b_filter_info[2] =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[0].as_mode]);
cm->counts.filterintra[0][mi->bmi[0].as_mode][mi->b_filter_info[0]]++;
} else {
mi->b_filter_info[0] = mi->b_filter_info[2] = 0;
}
#endif
mi->bmi[1].as_mode = mi->bmi[3].as_mode = mbmi->mode =
read_intra_mode_y(cm, r, 0);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[1].as_mode)) {
mi->b_filter_info[1] = mi->b_filter_info[3] = mbmi->filterbit =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[1].as_mode]);
cm->counts.filterintra[0][mi->bmi[1].as_mode][mi->b_filter_info[1]]++;
} else {
mi->b_filter_info[1] = mi->b_filter_info[3] = mbmi->filterbit = 0;
}
#endif
break;
case BLOCK_8X4:
mi->bmi[0].as_mode = mi->bmi[1].as_mode = read_intra_mode_y(cm, r, 0);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[0].as_mode)) {
mi->b_filter_info[0] = mi->b_filter_info[1] =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[0].as_mode]);
cm->counts.filterintra[0][mi->bmi[0].as_mode][mi->b_filter_info[0]]++;
} else {
mi->b_filter_info[0] = mi->b_filter_info[1] = 0;
}
#endif
mi->bmi[2].as_mode = mi->bmi[3].as_mode = mbmi->mode =
read_intra_mode_y(cm, r, 0);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[2].as_mode)) {
mi->b_filter_info[2] = mi->b_filter_info[3] = mbmi->filterbit =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[2].as_mode]);
cm->counts.filterintra[0][mi->bmi[2].as_mode][mi->b_filter_info[2]]++;
} else {
mi->b_filter_info[2] = mi->b_filter_info[3] = mbmi->filterbit = 0;
}
#endif
break;
default:
mbmi->mode = read_intra_mode_y(cm, r, size_group_lookup[bsize]);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mbmi->mode) && is_filter_enabled(mbmi->tx_size)) {
mbmi->filterbit = vp9_read(r,
cm->fc.filterintra_prob[mbmi->tx_size][mbmi->mode]);
cm->counts.filterintra[mbmi->tx_size][mbmi->mode][mbmi->filterbit]++;
} else {
mbmi->filterbit = 0;
}
#endif
}
mbmi->uv_mode = read_intra_mode_uv(cm, r, mbmi->mode);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mbmi->uv_mode) &&
is_filter_enabled(get_uv_tx_size(mbmi))) {
mbmi->uv_filterbit = vp9_read(r,
cm->fc.filterintra_prob[get_uv_tx_size(mbmi)][mbmi->uv_mode]);
cm->counts.filterintra[get_uv_tx_size(mbmi)]
[mbmi->uv_mode][mbmi->uv_filterbit]++;
} else {
mbmi->uv_filterbit = 0;
}
#endif
}
static INLINE int is_mv_valid(const MV *mv) {
@@ -422,6 +584,9 @@ static void read_inter_block_mode_info(VP9_COMMON *const cm,
MACROBLOCKD *const xd,
const TileInfo *const tile,
MODE_INFO *const mi,
#if CONFIG_SUPERTX && CONFIG_EXT_TX
int supertx_enabled,
#endif
int mi_row, int mi_col, vp9_reader *r) {
MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
@@ -464,6 +629,37 @@ static void read_inter_block_mode_info(VP9_COMMON *const cm,
? read_switchable_interp_filter(cm, xd, r)
: cm->interp_filter;
#if CONFIG_INTERINTRA
if ((cm->use_interintra) &&
is_interintra_allowed(bsize) &&
is_inter_mode(mbmi->mode) &&
(mbmi->ref_frame[1] <= INTRA_FRAME)) {
mbmi->ref_frame[1] = vp9_read(r, cm->fc.interintra_prob[bsize]) ?
INTRA_FRAME : NONE;
cm->counts.interintra[bsize][mbmi->ref_frame[1] == INTRA_FRAME]++;
#if CONFIG_MASKED_INTERINTRA
mbmi->use_masked_interintra = 0;
#endif
if (mbmi->ref_frame[1] == INTRA_FRAME) {
mbmi->interintra_mode =
read_intra_mode_y(cm, r, size_group_lookup[bsize]);
mbmi->interintra_uv_mode = mbmi->interintra_mode;
#if CONFIG_MASKED_INTERINTRA
if (cm->use_masked_interintra && get_mask_bits_interintra(bsize)) {
mbmi->use_masked_interintra = vp9_read(r,
cm->fc.masked_interintra_prob[bsize]);
cm->counts.masked_interintra[bsize][mbmi->use_masked_interintra]++;
if (mbmi->use_masked_interintra) {
mbmi->interintra_mask_index = vp9_read_literal(r,
get_mask_bits_interintra(bsize));
mbmi->interintra_uv_mask_index = mbmi->interintra_mask_index;
}
}
#endif
}
}
#endif
if (bsize < BLOCK_8X8) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; // 1 or 2
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; // 1 or 2
@@ -508,35 +704,160 @@ static void read_inter_block_mode_info(VP9_COMMON *const cm,
xd->corrupted |= !assign_mv(cm, mbmi->mode, mbmi->mv, nearestmv,
nearestmv, nearmv, is_compound, allow_hp, r);
}
#if CONFIG_MASKED_INTERINTER
mbmi->use_masked_interinter = 0;
if (cm->use_masked_interinter &&
cm->reference_mode != SINGLE_REFERENCE &&
is_inter_mode(mbmi->mode) &&
get_mask_bits(bsize) &&
mbmi->ref_frame[1] > INTRA_FRAME) {
mbmi->use_masked_interinter =
vp9_read(r, cm->fc.masked_interinter_prob[bsize]);
cm->counts.masked_interinter[bsize][mbmi->use_masked_interinter]++;
if (mbmi->use_masked_interinter) {
mbmi->mask_index = vp9_read_literal(r, get_mask_bits(bsize));
}
}
#endif
}
static void read_inter_frame_mode_info(VP9_COMMON *const cm,
MACROBLOCKD *const xd,
const TileInfo *const tile,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col, vp9_reader *r) {
MODE_INFO *const mi = xd->mi[0];
MB_MODE_INFO *const mbmi = &mi->mbmi;
int inter_block;
#if CONFIG_COPY_CODING
int num_candidate = 0;
MB_MODE_INFO *inter_ref_list[18] = {NULL};
#endif
mbmi->mv[0].as_int = 0;
mbmi->mv[1].as_int = 0;
#if CONFIG_COPY_CODING
if (mbmi->sb_type >= BLOCK_8X8)
num_candidate = vp9_construct_ref_inter_list(cm, xd, mbmi->sb_type,
mi_row, mi_col, inter_ref_list);
if (mbmi->sb_type >= BLOCK_8X8 && num_candidate > 0) {
int ctx = vp9_get_copy_mode_context(xd);
int is_copy = vp9_read(r, cm->fc.copy_noref_prob[ctx][mbmi->sb_type]);
++cm->counts.copy_noref[ctx][mbmi->sb_type][is_copy];
if (!is_copy) {
mbmi->copy_mode = NOREF;
} else {
mbmi->copy_mode = read_copy_mode(cm, r, num_candidate, ctx);
}
} else {
mbmi->copy_mode = NOREF;
}
if (mbmi->copy_mode != NOREF) {
BLOCK_SIZE bsize_backup = mbmi->sb_type;
int skip_backup = mbmi->skip;
COPY_MODE copy_mode_backup = mbmi->copy_mode;
#if CONFIG_SUPERTX
TX_SIZE tx_size_backup = mbmi->tx_size;
#endif
#if CONFIG_EXT_TX
EXT_TX_TYPE ext_txfrm_backup = mbmi->ext_txfrm;
#endif
inter_block = 1;
*mbmi = *inter_ref_list[mbmi->copy_mode - REF0];
#if CONFIG_MASKED_INTERINTER
mbmi->use_masked_interinter = 0;
#endif
#if CONFIG_INTERINTRA
if (mbmi->ref_frame[1] == INTRA_FRAME)
mbmi->ref_frame[1] = NONE;
#endif
#if CONFIG_SUPERTX
mbmi->tx_size = tx_size_backup;
#endif
#if CONFIG_EXT_TX
mbmi->ext_txfrm = ext_txfrm_backup;
#endif
mbmi->sb_type = bsize_backup;
mbmi->mode = NEARESTMV;
mbmi->skip = skip_backup;
mbmi->copy_mode = copy_mode_backup;
}
#endif
#if CONFIG_SUPERTX
if (!supertx_enabled) {
#endif
mbmi->segment_id = read_inter_segment_id(cm, xd, mi_row, mi_col, r);
mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r);
#if CONFIG_COPY_CODING
if (mbmi->copy_mode == NOREF)
#endif
inter_block = read_is_inter_block(cm, xd, mbmi->segment_id, r);
mbmi->tx_size = read_tx_size(cm, xd, cm->tx_mode, mbmi->sb_type,
!mbmi->skip || !inter_block, r);
#if CONFIG_EXT_TX
if (inter_block &&
mbmi->tx_size <= TX_16X16 &&
mbmi->sb_type >= BLOCK_8X8 &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif
!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) &&
!mbmi->skip) {
mbmi->ext_txfrm = vp9_read(r, cm->fc.ext_tx_prob);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.ext_tx[mbmi->ext_txfrm];
} else {
mbmi->ext_txfrm = NORM;
}
#endif
#if CONFIG_SUPERTX
} else {
const int ctx = vp9_get_intra_inter_context(xd);
mbmi->segment_id = 0;
inter_block = 1;
if (!cm->frame_parallel_decoding_mode)
#if CONFIG_COPY_CODING
if (mbmi->copy_mode == NOREF)
#endif
++cm->counts.intra_inter[ctx][1];
}
#endif
#if CONFIG_COPY_CODING
if (mbmi->copy_mode == NOREF) {
#endif
if (inter_block)
read_inter_block_mode_info(cm, xd, tile, mi, mi_row, mi_col, r);
read_inter_block_mode_info(cm, xd, tile, mi,
#if CONFIG_SUPERTX && CONFIG_EXT_TX
supertx_enabled,
#endif
mi_row, mi_col, r);
else
read_intra_block_mode_info(cm, mi, r);
#if CONFIG_COPY_CODING
}
#endif
}
void vp9_read_mode_info(VP9_COMMON *cm, MACROBLOCKD *xd,
const TileInfo *const tile,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col, vp9_reader *r) {
if (frame_is_intra_only(cm))
read_intra_frame_mode_info(cm, xd, mi_row, mi_col, r);
else
read_inter_frame_mode_info(cm, xd, tile, mi_row, mi_col, r);
read_inter_frame_mode_info(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r);
}

View File

@@ -21,8 +21,16 @@ struct TileInfo;
void vp9_read_mode_info(VP9_COMMON *cm, MACROBLOCKD *xd,
const struct TileInfo *const tile,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col, vp9_reader *r);
#if CONFIG_SUPERTX
int read_skip(VP9_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, vp9_reader *r);
#endif
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -37,7 +37,6 @@ static void initialize_dec() {
if (!init_done) {
vp9_init_neighbors();
vp9_init_quant_tables();
init_done = 1;
}
}
@@ -244,8 +243,8 @@ int vp9_receive_compressed_data(VP9Decoder *pbi,
// Check if the previous frame was a frame without any references to it.
// Release frame buffer if not decoding in frame parallel mode.
if (!pbi->frame_parallel_decode && cm->new_fb_idx >= 0 &&
cm->frame_bufs[cm->new_fb_idx].ref_count == 0)
if (!pbi->frame_parallel_decode && cm->new_fb_idx >= 0
&& cm->frame_bufs[cm->new_fb_idx].ref_count == 0)
cm->release_fb_cb(cm->cb_priv,
&cm->frame_bufs[cm->new_fb_idx].raw_frame_buffer);
cm->new_fb_idx = get_free_fb(cm);
@@ -260,10 +259,10 @@ int vp9_receive_compressed_data(VP9Decoder *pbi,
// TODO(jkoleszar): Error concealment is undefined and non-normative
// at this point, but if it becomes so, [0] may not always be the correct
// thing to do here.
if (cm->frame_refs[0].idx != INT_MAX)
if (cm->frame_refs[0].idx != INT_MAX && cm->frame_refs[0].buf != NULL)
cm->frame_refs[0].buf->corrupted = 1;
if (cm->frame_bufs[cm->new_fb_idx].ref_count > 0)
if (cm->new_fb_idx > 0 && cm->frame_bufs[cm->new_fb_idx].ref_count > 0)
cm->frame_bufs[cm->new_fb_idx].ref_count--;
return -1;

View File

@@ -40,6 +40,23 @@ typedef struct VP9LfSyncData {
int sync_range;
} VP9LfSync;
// WorkerData for the FrameWorker thread. It contains all the information of
// the worker and decode structures for decoding a frame.
typedef struct FrameWorkerData {
struct VP9Decoder *pbi;
const uint8_t *data;
const uint8_t *data_end;
size_t data_size;
void *user_priv;
int result;
int worker_id;
// scratch_buffer is used in frame parallel mode only.
// It is used to make a copy of the compressed data.
uint8_t *scratch_buffer;
size_t scratch_buffer_size;
} FrameWorkerData;
// Allocate memory for loopfilter row synchronization.
void vp9_loop_filter_alloc(struct VP9Common *cm, VP9LfSync *lf_sync,
int rows, int width);

View File

@@ -10,7 +10,7 @@
#include "vp9/decoder/vp9_read_bit_buffer.h"
size_t vp9_rb_bytes_read(struct vp9_read_bit_buffer *rb) {
return rb->bit_offset / CHAR_BIT + (rb->bit_offset % CHAR_BIT > 0);
return (rb->bit_offset + CHAR_BIT - 1) / CHAR_BIT;
}
int vp9_rb_read_bit(struct vp9_read_bit_buffer *rb) {

View File

@@ -38,12 +38,32 @@ static struct vp9_token intra_mode_encodings[INTRA_MODES];
static struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS];
static struct vp9_token partition_encodings[PARTITION_TYPES];
static struct vp9_token inter_mode_encodings[INTER_MODES];
#if CONFIG_COPY_CODING
static struct vp9_token copy_mode_encodings_l2[2];
static struct vp9_token copy_mode_encodings[COPY_MODE_COUNT - 1];
#endif
#if CONFIG_SUPERTX
static int vp9_check_supertx(VP9_COMMON *cm, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
MODE_INFO **mi;
mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
return mi[0]->mbmi.tx_size == bsize_to_tx_size(bsize) &&
mi[0]->mbmi.sb_type < bsize;
}
#endif
void vp9_entropy_mode_init() {
vp9_tokens_from_tree(intra_mode_encodings, vp9_intra_mode_tree);
vp9_tokens_from_tree(switchable_interp_encodings, vp9_switchable_interp_tree);
vp9_tokens_from_tree(partition_encodings, vp9_partition_tree);
vp9_tokens_from_tree(inter_mode_encodings, vp9_inter_mode_tree);
#if CONFIG_COPY_CODING
vp9_tokens_from_tree(copy_mode_encodings_l2, vp9_copy_mode_tree_l2);
vp9_tokens_from_tree(copy_mode_encodings, vp9_copy_mode_tree);
#endif
}
static void write_intra_mode(vp9_writer *w, PREDICTION_MODE mode,
@@ -58,6 +78,21 @@ static void write_inter_mode(vp9_writer *w, PREDICTION_MODE mode,
&inter_mode_encodings[INTER_OFFSET(mode)]);
}
#if CONFIG_COPY_CODING
static void write_copy_mode(VP9_COMMON *cm, vp9_writer *w, COPY_MODE mode,
int inter_ref_count, int copy_mode_context) {
if (inter_ref_count == 2) {
vp9_write_token(w, vp9_copy_mode_tree_l2,
cm->fc.copy_mode_probs_l2[copy_mode_context],
&copy_mode_encodings_l2[mode - REF0]);
} else if (inter_ref_count > 2) {
vp9_write_token(w, vp9_copy_mode_tree,
cm->fc.copy_mode_probs[copy_mode_context],
&copy_mode_encodings[mode - REF0]);
}
}
#endif
static void encode_unsigned_max(struct vp9_write_bit_buffer *wb,
int data, int max) {
vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
@@ -225,6 +260,9 @@ static void write_ref_frames(const VP9_COMP *cpi, vp9_writer *w) {
}
static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
vp9_writer *w) {
VP9_COMMON *const cm = &cpi->common;
const nmv_context *nmvc = &cm->fc.nmvc;
@@ -239,7 +277,19 @@ static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
const int is_inter = is_inter_block(mbmi);
const int is_compound = has_second_ref(mbmi);
int skip, ref;
#if CONFIG_COPY_CODING
int copy_mode_context = vp9_get_copy_mode_context(xd);
#endif
#if CONFIG_COPY_CODING
if (bsize >= BLOCK_8X8 && mbmi->inter_ref_count > 0) {
vp9_write(w, mbmi->copy_mode != NOREF,
cm->fc.copy_noref_prob[copy_mode_context][bsize]);
if (mbmi->copy_mode != NOREF)
write_copy_mode(cm, w, mbmi->copy_mode, mbmi->inter_ref_count,
copy_mode_context);
}
#endif
if (seg->update_map) {
if (seg->temporal_update) {
const int pred_flag = mbmi->seg_id_predicted;
@@ -252,20 +302,57 @@ static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
}
}
#if CONFIG_SUPERTX
if (!supertx_enabled)
#endif
skip = write_skip(cpi, segment_id, mi, w);
#if CONFIG_SUPERTX
else
skip = mbmi->skip;
#endif
#if CONFIG_SUPERTX
if (!supertx_enabled) {
#endif
#if CONFIG_COPY_CODING
if (mbmi->copy_mode == NOREF)
#endif
if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
vp9_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
#if CONFIG_SUPERTX
}
#endif
if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif
!(is_inter &&
(skip || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
write_selected_tx_size(cpi, mbmi->tx_size, bsize, w);
}
#if CONFIG_EXT_TX
if (is_inter &&
mbmi->tx_size <= TX_16X16 &&
bsize >= BLOCK_8X8 &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif
!mbmi->skip &&
!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
vp9_write(w, mbmi->ext_txfrm, cm->fc.ext_tx_prob);
}
#endif
if (!is_inter) {
if (bsize >= BLOCK_8X8) {
write_intra_mode(w, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mode) && is_filter_enabled(mbmi->tx_size)) {
vp9_write(w, mbmi->filterbit,
cm->fc.filterintra_prob[mbmi->tx_size][mode]);
}
#endif
} else {
int idx, idy;
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
@@ -274,11 +361,28 @@ static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
for (idx = 0; idx < 2; idx += num_4x4_w) {
const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
write_intra_mode(w, b_mode, cm->fc.y_mode_prob[0]);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(b_mode)) {
vp9_write(w, mi->b_filter_info[idy * 2 + idx],
cm->fc.filterintra_prob[0][b_mode]);
}
#endif
}
}
}
write_intra_mode(w, mbmi->uv_mode, cm->fc.uv_mode_prob[mode]);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mbmi->uv_mode) &&
is_filter_enabled(get_uv_tx_size(mbmi))) {
vp9_write(w, mbmi->uv_filterbit,
cm->fc.filterintra_prob[get_uv_tx_size(mbmi)][mbmi->uv_mode]);
}
#endif
#if !CONFIG_COPY_CODING
} else {
#else
} else if (mbmi->copy_mode == NOREF) {
#endif
const int mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]];
const vp9_prob *const inter_probs = cm->fc.inter_mode_probs[mode_ctx];
write_ref_frames(cpi, w);
@@ -300,6 +404,32 @@ static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
assert(mbmi->interp_filter == cm->interp_filter);
}
#if CONFIG_INTERINTRA
if ((cm->use_interintra) &&
cpi->common.reference_mode != COMPOUND_REFERENCE &&
is_interintra_allowed(bsize) &&
is_inter_mode(mode) &&
(mbmi->ref_frame[1] <= INTRA_FRAME)) {
vp9_write(w, mbmi->ref_frame[1] == INTRA_FRAME,
cm->fc.interintra_prob[bsize]);
if (mbmi->ref_frame[1] == INTRA_FRAME) {
write_intra_mode(w, mbmi->interintra_mode,
cm->fc.y_mode_prob[size_group_lookup[bsize]]);
#if CONFIG_MASKED_INTERINTRA
if (get_mask_bits_interintra(bsize) &&
cm->use_masked_interintra) {
vp9_write(w, mbmi->use_masked_interintra,
cm->fc.masked_interintra_prob[bsize]);
if (mbmi->use_masked_interintra) {
vp9_write_literal(w, mbmi->interintra_mask_index,
get_mask_bits_interintra(bsize));
}
}
#endif
}
}
#endif
if (bsize < BLOCK_8X8) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
@@ -326,6 +456,18 @@ static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
allow_hp);
}
}
#if CONFIG_MASKED_INTERINTER
if (cm->use_masked_interinter &&
cm->reference_mode != SINGLE_REFERENCE &&
is_inter_mode(mode) &&
get_mask_bits(mbmi->sb_type) &&
mbmi->ref_frame[1] > INTRA_FRAME) {
vp9_write(w, mbmi->use_masked_interinter,
cm->fc.masked_interinter_prob[bsize]);
if (mbmi->use_masked_interinter)
vp9_write_literal(w, mbmi->mask_index, get_mask_bits(mbmi->sb_type));
}
#endif
}
}
@@ -350,6 +492,11 @@ static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8,
if (bsize >= BLOCK_8X8) {
write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mbmi->mode) && is_filter_enabled(mbmi->tx_size))
vp9_write(w, mbmi->filterbit,
cm->fc.filterintra_prob[mbmi->tx_size][mbmi->mode]);
#endif
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
@@ -360,15 +507,29 @@ static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8,
const int block = idy * 2 + idx;
write_intra_mode(w, mi->bmi[block].as_mode,
get_y_mode_probs(mi, above_mi, left_mi, block));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[block].as_mode))
vp9_write(w, mi->b_filter_info[block],
cm->fc.filterintra_prob[0][mi->bmi[block].as_mode]);
#endif
}
}
}
write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mbmi->uv_mode) &&
is_filter_enabled(get_uv_tx_size(mbmi)))
vp9_write(w, mbmi->uv_filterbit,
cm->fc.filterintra_prob[get_uv_tx_size(mbmi)][mbmi->uv_mode]);
#endif
}
static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
@@ -384,11 +545,21 @@ static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
if (frame_is_intra_only(cm)) {
write_mb_modes_kf(cpi, xd->mi, w);
} else {
#if CONFIG_SUPERTX
pack_inter_mode_mvs(cpi, m, supertx_enabled, w);
#else
pack_inter_mode_mvs(cpi, m, w);
#endif
}
#if CONFIG_SUPERTX
if (!supertx_enabled) {
#endif
assert(*tok < tok_end);
pack_mb_tokens(w, tok, tok_end);
#if CONFIG_SUPERTX
}
#endif
}
static void write_partition(VP9_COMMON *cm, MACROBLOCKD *xd,
@@ -415,6 +586,9 @@ static void write_partition(VP9_COMMON *cm, MACROBLOCKD *xd,
static void write_modes_sb(VP9_COMP *cpi,
const TileInfo *const tile,
vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
#if CONFIG_SUPERTX
int pack_token, int supertx_enabled,
#endif
int mi_row, int mi_col, BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
@@ -431,36 +605,105 @@ static void write_modes_sb(VP9_COMP *cpi,
partition = partition_lookup[bsl][m->mbmi.sb_type];
write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
subsize = get_subsize(bsize, partition);
#if CONFIG_SUPERTX
xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
set_mi_row_col(xd, tile,
mi_row, num_8x8_blocks_high_lookup[bsize],
mi_col, num_8x8_blocks_wide_lookup[bsize],
cm->mi_rows, cm->mi_cols);
if (!supertx_enabled && cm->frame_type != KEY_FRAME &&
partition != PARTITION_NONE && bsize <= BLOCK_32X32) {
TX_SIZE supertx_size = bsize_to_tx_size(bsize); // b_width_log2(bsize);
vp9_prob prob = partition == PARTITION_SPLIT ?
cm->fc.supertxsplit_prob[supertx_size] :
cm->fc.supertx_prob[supertx_size];
supertx_enabled = (xd->mi[0]->mbmi.tx_size == supertx_size);
vp9_write(w, supertx_enabled, prob);
if (supertx_enabled) {
vp9_write(w, xd->mi[0]->mbmi.skip, vp9_get_skip_prob(cm, xd));
#if CONFIG_EXT_TX
if (supertx_size <= TX_16X16 && !xd->mi[0]->mbmi.skip)
vp9_write(w, xd->mi[0]->mbmi.ext_txfrm, cm->fc.ext_tx_prob);
#endif
}
}
#endif
if (subsize < BLOCK_8X8) {
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col);
} else {
switch (partition) {
case PARTITION_NONE:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col);
break;
case PARTITION_HORZ:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col);
if (mi_row + bs < cm->mi_rows)
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + bs, mi_col);
break;
case PARTITION_VERT:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col);
if (mi_col + bs < cm->mi_cols)
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + bs);
break;
case PARTITION_SPLIT:
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row, mi_col + bs,
subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row + bs, mi_col,
subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row + bs, mi_col + bs,
subsize);
break;
default:
assert(0);
}
}
#if CONFIG_SUPERTX
if (partition != PARTITION_NONE && supertx_enabled && pack_token) {
assert(*tok < tok_end);
pack_mb_tokens(w, tok, tok_end);
}
#endif
// update partition context
if (bsize >= BLOCK_8X8 &&
@@ -478,7 +721,11 @@ static void write_modes(VP9_COMP *cpi,
vp9_zero(cpi->mb.e_mbd.left_seg_context);
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE)
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col,
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
1, 0,
#endif
mi_row, mi_col,
BLOCK_64X64);
}
}
@@ -890,14 +1137,8 @@ static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) {
}
static int get_refresh_mask(VP9_COMP *cpi) {
// Should the GF or ARF be updated using the transmitted frame or buffer
#if CONFIG_MULTIPLE_ARF
if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
!cpi->refresh_alt_ref_frame) {
#else
if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
!cpi->use_svc) {
#endif
if (!cpi->multi_arf_allowed && cpi->refresh_golden_frame &&
cpi->rc.is_src_frame_alt_ref && !cpi->use_svc) {
// Preserve the previously existing golden frame and update the frame in
// the alt ref slot instead. This is highly specific to the use of
// alt-ref as a forward reference, and this needs to be generalized as
@@ -910,15 +1151,10 @@ static int get_refresh_mask(VP9_COMP *cpi) {
(cpi->refresh_golden_frame << cpi->alt_fb_idx);
} else {
int arf_idx = cpi->alt_fb_idx;
#if CONFIG_MULTIPLE_ARF
// Determine which ARF buffer to use to encode this ARF frame.
if (cpi->multi_arf_enabled) {
int sn = cpi->sequence_number;
arf_idx = (cpi->frame_coding_order[sn] < 0) ?
cpi->arf_buffer_idx[sn + 1] :
cpi->arf_buffer_idx[sn];
if ((cpi->pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_idx = gf_group->arf_update_idx[gf_group->index];
}
#endif
return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
(cpi->refresh_golden_frame << cpi->gld_fb_idx) |
(cpi->refresh_alt_ref_frame << arf_idx);
@@ -1187,6 +1423,104 @@ static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
cm->counts.partition[i], PARTITION_TYPES, &header_bc);
vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc);
#if CONFIG_EXT_TX
vp9_cond_prob_diff_update(&header_bc, &fc->ext_tx_prob, cm->counts.ext_tx);
#endif
#if CONFIG_MASKED_INTERINTER
if (cm->reference_mode != SINGLE_REFERENCE) {
if (!cpi->dummy_packing && cm->use_masked_interinter) {
cm->use_masked_interinter = 0;
for (i = 0; i < BLOCK_SIZES; i++)
if (get_mask_bits(i) && (cm->counts.masked_interinter[i][1] > 0)) {
cm->use_masked_interinter = 1;
break;
}
}
vp9_write_bit(&header_bc, cm->use_masked_interinter);
if (cm->use_masked_interinter) {
for (i = 0; i < BLOCK_SIZES; i++)
if (get_mask_bits(i))
vp9_cond_prob_diff_update(&header_bc,
&fc->masked_interinter_prob[i],
cm->counts.masked_interinter[i]);
} else {
vp9_zero(cm->counts.masked_interinter);
}
} else {
if (!cpi->dummy_packing)
cm->use_masked_interinter = 0;
vp9_zero(cm->counts.masked_interinter);
}
#endif
#if CONFIG_INTERINTRA
if (cm->reference_mode != COMPOUND_REFERENCE) {
if (!cpi->dummy_packing && cm->use_interintra) {
cm->use_interintra = 0;
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i) && (cm->counts.interintra[i][1] > 0)) {
cm->use_interintra = 1;
break;
}
}
}
vp9_write_bit(&header_bc, cm->use_interintra);
if (cm->use_interintra) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i)) {
vp9_cond_prob_diff_update(&header_bc,
&fc->interintra_prob[i],
cm->counts.interintra[i]);
}
}
#if CONFIG_MASKED_INTERINTRA
if (!cpi->dummy_packing && cm->use_masked_interintra) {
cm->use_masked_interintra = 0;
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i) && get_mask_bits_interintra(i) &&
(cm->counts.masked_interintra[i][1] > 0)) {
cm->use_masked_interintra = 1;
break;
}
}
}
vp9_write_bit(&header_bc, cm->use_masked_interintra);
if (cm->use_masked_interintra) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i) && get_mask_bits_interintra(i))
vp9_cond_prob_diff_update(&header_bc,
&fc->masked_interintra_prob[i],
cm->counts.masked_interintra[i]);
}
} else {
vp9_zero(cm->counts.masked_interintra);
}
#endif
} else {
vp9_zero(cm->counts.interintra);
}
} else {
if (!cpi->dummy_packing)
cm->use_interintra = 0;
vp9_zero(cm->counts.interintra);
#if CONFIG_MASKED_INTERINTRA
if (!cpi->dummy_packing)
cm->use_masked_interintra = 0;
vp9_zero(cm->counts.masked_interintra);
#endif
}
#endif
#if CONFIG_COPY_CODING
for (i = 0; i < COPY_MODE_CONTEXTS; i++) {
prob_diff_update(vp9_copy_mode_tree_l2, cm->fc.copy_mode_probs_l2[i],
cm->counts.copy_mode_l2[i], 2, &header_bc);
prob_diff_update(vp9_copy_mode_tree, cm->fc.copy_mode_probs[i],
cm->counts.copy_mode[i], 3, &header_bc);
}
#endif
}
vp9_stop_encode(&header_bc);

View File

@@ -93,8 +93,6 @@ struct macroblock {
int encode_breakout;
int in_active_map;
// note that token_costs is the cost when eob node is skipped
vp9_coeff_cost token_costs[TX_SIZES];

View File

@@ -8,10 +8,10 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include <stdint.h>
#include "vp9/encoder/vp9_denoiser.h"
#include <assert.h>
#include "vpx_scale/yv12config.h"
#include "vpx/vpx_integer.h"
#include "vp9/encoder/vp9_denoiser.h"
static const int widths[] = {4, 4, 8, 8, 8, 16, 16, 16, 32, 32, 32, 64, 64};
static const int heights[] = {4, 8, 4, 8, 16, 8, 16, 32, 16, 32, 64, 32, 64};
@@ -20,30 +20,180 @@ int vp9_denoiser_filter() {
return 0;
}
void vp9_denoiser_denoise(VP9_DENOISER *denoiser,
MACROBLOCK *mb, MODE_INFO **grid,
static int update_running_avg(const uint8_t *mc_avg, int mc_avg_stride,
uint8_t *avg, int avg_stride,
const uint8_t *sig, int sig_stride,
int increase_denoising, BLOCK_SIZE bs) {
int r, c;
int diff, adj, absdiff;
int shift_inc1 = 0, shift_inc2 = 1;
int adj_val[] = {3, 4, 6};
int total_adj = 0;
if (increase_denoising) {
shift_inc1 = 1;
shift_inc2 = 2;
}
for (r = 0; r < heights[bs]; ++r) {
for (c = 0; c < widths[bs]; ++c) {
diff = mc_avg[c] - sig[c];
absdiff = abs(diff);
if (absdiff <= 3 + shift_inc1) {
avg[c] = mc_avg[c];
total_adj += diff;
} else {
switch (absdiff) {
case 4: case 5: case 6: case 7:
adj = adj_val[0];
break;
case 8: case 9: case 10: case 11:
case 12: case 13: case 14: case 15:
adj = adj_val[1];
break;
default:
adj = adj_val[2];
}
if (diff > 0) {
avg[c] = MIN(UINT8_MAX, sig[c] + adj);
total_adj += adj;
} else {
avg[c] = MAX(0, sig[c] - adj);
total_adj -= adj;
}
}
}
sig += sig_stride;
avg += avg_stride;
mc_avg += mc_avg_stride;
}
return total_adj;
}
static uint8_t *block_start(uint8_t *framebuf, int stride,
int mi_row, int mi_col) {
return framebuf + (stride * mi_row * 8) + (mi_col * 8);
}
void copy_block(uint8_t *dest, int dest_stride,
uint8_t *src, int src_stride, BLOCK_SIZE bs) {
int r, c;
for (r = 0; r < heights[bs]; ++r) {
for (c = 0; c < widths[bs]; ++c) {
dest[c] = src[c];
}
dest += dest_stride;
src += src_stride;
}
}
void vp9_denoiser_denoise(VP9_DENOISER *denoiser, MACROBLOCK *mb,
int mi_row, int mi_col, BLOCK_SIZE bs) {
return;
int decision = COPY_BLOCK;
YV12_BUFFER_CONFIG avg = denoiser->running_avg_y[INTRA_FRAME];
YV12_BUFFER_CONFIG mc_avg = denoiser->mc_running_avg_y;
uint8_t *avg_start = block_start(avg.y_buffer, avg.y_stride, mi_row, mi_col);
uint8_t *mc_avg_start = block_start(mc_avg.y_buffer, mc_avg.y_stride,
mi_row, mi_col);
struct buf_2d src = mb->plane[0].src;
update_running_avg(mc_avg_start, mc_avg.y_stride, avg_start, avg.y_stride,
mb->plane[0].src.buf, mb->plane[0].src.stride, 0, bs);
if (decision == FILTER_BLOCK) {
// TODO(tkopp)
}
if (decision == COPY_BLOCK) {
copy_block(avg_start, avg.y_stride, src.buf, src.stride, bs);
}
}
static void copy_frame(YV12_BUFFER_CONFIG dest, const YV12_BUFFER_CONFIG src) {
int r, c;
const uint8_t *srcbuf = src.y_buffer;
uint8_t *destbuf = dest.y_buffer;
assert(dest.y_width == src.y_width);
assert(dest.y_height == src.y_height);
for (r = 0; r < dest.y_height; ++r) {
for (c = 0; c < dest.y_width; ++c) {
destbuf[c] = srcbuf[c];
}
destbuf += dest.y_stride;
srcbuf += src.y_stride;
}
}
void vp9_denoiser_update_frame_info(VP9_DENOISER *denoiser,
YV12_BUFFER_CONFIG src,
FRAME_TYPE frame_type,
int refresh_alt_ref_frame,
int refresh_golden_frame,
int refresh_last_frame) {
return;
if (frame_type == KEY_FRAME) {
int i;
copy_frame(denoiser->running_avg_y[LAST_FRAME], src);
for (i = 2; i < MAX_REF_FRAMES - 1; i++) {
copy_frame(denoiser->running_avg_y[i],
denoiser->running_avg_y[LAST_FRAME]);
}
} else { /* For non key frames */
if (refresh_alt_ref_frame) {
copy_frame(denoiser->running_avg_y[ALTREF_FRAME],
denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_golden_frame) {
copy_frame(denoiser->running_avg_y[GOLDEN_FRAME],
denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_last_frame) {
copy_frame(denoiser->running_avg_y[LAST_FRAME],
denoiser->running_avg_y[INTRA_FRAME]);
}
}
}
void vp9_denoiser_update_frame_stats() {
return;
}
int vp9_denoiser_alloc(VP9_DENOISER *denoiser, int width, int height,
int border) {
int ssx, int ssy, int border) {
int i, fail;
assert(denoiser != NULL);
for (i = 0; i < MAX_REF_FRAMES; ++i) {
fail = vp9_alloc_frame_buffer(&denoiser->running_avg_y[i], width, height,
ssx, ssy, border);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
}
fail = vp9_alloc_frame_buffer(&denoiser->mc_running_avg_y, width, height,
ssx, ssy, border);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
return 0;
}
void vp9_denoiser_free(VP9_DENOISER *denoiser) {
return;
int i;
if (denoiser == NULL) {
return;
}
for (i = 0; i < MAX_REF_FRAMES; ++i) {
if (&denoiser->running_avg_y[i] != NULL) {
vp9_free_frame_buffer(&denoiser->running_avg_y[i]);
}
}
if (&denoiser->mc_running_avg_y != NULL) {
vp9_free_frame_buffer(&denoiser->mc_running_avg_y);
}
}

View File

@@ -12,6 +12,7 @@
#define VP9_ENCODER_DENOISER_H_
#include "vp9/encoder/vp9_block.h"
#include "vpx_scale/yv12config.h"
#ifdef __cplusplus
extern "C" {
@@ -23,24 +24,24 @@ enum vp9_denoiser_decision {
};
typedef struct vp9_denoiser {
struct buf_2d running_avg_y;
struct buf_2d mc_running_avg_y;
YV12_BUFFER_CONFIG running_avg_y[MAX_REF_FRAMES];
YV12_BUFFER_CONFIG mc_running_avg_y;
} VP9_DENOISER;
void vp9_denoiser_update_frame_info(VP9_DENOISER *denoiser,
YV12_BUFFER_CONFIG src,
FRAME_TYPE frame_type,
int refresh_alt_ref_frame,
int refresh_golden_frame,
int refresh_last_frame);
void vp9_denoiser_denoise(VP9_DENOISER *denoiser,
MACROBLOCK *mb, MODE_INFO **grid,
void vp9_denoiser_denoise(VP9_DENOISER *denoiser, MACROBLOCK *mb,
int mi_row, int mi_col, BLOCK_SIZE bs);
void vp9_denoiser_update_frame_stats();
int vp9_denoiser_alloc(VP9_DENOISER *denoiser, int width, int height,
int border);
int ssx, int ssy, int border);
void vp9_denoiser_free(VP9_DENOISER *denoiser);

File diff suppressed because it is too large Load Diff

View File

@@ -360,6 +360,9 @@ void vp9_xform_quant(MACROBLOCK *x, int plane, int block,
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
int i, j;
const int16_t *src_diff;
#if CONFIG_EXT_TX
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
#endif
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
src_diff = &p->src_diff[4 * (j * diff_stride + i)];
@@ -372,21 +375,45 @@ void vp9_xform_quant(MACROBLOCK *x, int plane, int block,
scan_order->iscan);
break;
case TX_16X16:
#if CONFIG_EXT_TX
if (plane != 0 || mbmi->ext_txfrm == NORM) {
#endif
vp9_fdct16x16(src_diff, coeff, diff_stride);
#if CONFIG_EXT_TX
} else {
vp9_fht16x16(src_diff, coeff, diff_stride, ADST_ADST);
}
#endif
vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
#if CONFIG_EXT_TX
if (plane != 0 || mbmi->ext_txfrm == NORM) {
#endif
vp9_fdct8x8(src_diff, coeff, diff_stride);
#if CONFIG_EXT_TX
} else {
vp9_fht8x8(src_diff, coeff, diff_stride, ADST_ADST);
}
#endif
vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
#if CONFIG_EXT_TX
if (plane != 0 || mbmi->ext_txfrm == NORM) {
#endif
x->fwd_txm4x4(src_diff, coeff, diff_stride);
#if CONFIG_EXT_TX
} else {
vp9_fht4x4(src_diff, coeff, diff_stride, ADST_ADST);
}
#endif
vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob,
@@ -409,6 +436,9 @@ static void encode_block(int plane, int block, BLOCK_SIZE plane_bsize,
int i, j;
uint8_t *dst;
ENTROPY_CONTEXT *a, *l;
#if CONFIG_EXT_TX
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
#endif
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
dst = &pd->dst.buf[4 * j * pd->dst.stride + 4 * i];
a = &ctx->ta[plane][i];
@@ -454,16 +484,43 @@ static void encode_block(int plane, int block, BLOCK_SIZE plane_bsize,
vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_16X16:
#if CONFIG_EXT_TX
if (plane != 0 || mbmi->ext_txfrm == NORM) {
#endif
vp9_idct16x16_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
#if CONFIG_EXT_TX
} else {
vp9_iht16x16_add(ADST_ADST, dqcoeff, dst, pd->dst.stride,
p->eobs[block]);
}
#endif
break;
case TX_8X8:
#if CONFIG_EXT_TX
if (plane != 0 || mbmi->ext_txfrm == NORM) {
#endif
vp9_idct8x8_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
#if CONFIG_EXT_TX
} else {
vp9_iht8x8_add(ADST_ADST, dqcoeff, dst, pd->dst.stride,
p->eobs[block]);
}
#endif
break;
case TX_4X4:
#if CONFIG_EXT_TX
if (plane != 0 || mbmi->ext_txfrm == NORM) {
#endif
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
x->itxm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
#if CONFIG_EXT_TX
} else {
vp9_iht4x4_add(ADST_ADST, dqcoeff, dst, pd->dst.stride,
p->eobs[block]);
}
#endif
break;
default:
assert(0 && "Invalid transform size");
@@ -479,6 +536,10 @@ static void encode_block_pass1(int plane, int block, BLOCK_SIZE plane_bsize,
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
int i, j;
uint8_t *dst;
#if CONFIG_EXT_TX
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
mbmi->ext_txfrm = NORM;
#endif
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
dst = &pd->dst.buf[4 * j * pd->dst.stride + 4 * i];
@@ -517,6 +578,26 @@ void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) {
}
}
#if CONFIG_SUPERTX
void vp9_encode_sb_supertx(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = {x, &ctx, &mbmi->skip};
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
BLOCK_SIZE plane_size = bsize - 3 * (plane > 0);
const struct macroblockd_plane* const pd = &xd->plane[plane];
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi) : mbmi->tx_size;
vp9_subtract_plane(x, bsize, plane);
vp9_get_entropy_contexts(bsize, tx_size, pd,
ctx.ta[plane], ctx.tl[plane]);
encode_block(plane, 0, plane_size, bsize_to_tx_size(plane_size), &arg);
}
}
#endif
static void encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct encode_b_args* const args = arg;
@@ -531,6 +612,9 @@ static void encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
const scan_order *scan_order;
TX_TYPE tx_type;
PREDICTION_MODE mode;
#if CONFIG_FILTERINTRA
int fbit = 0;
#endif
const int bwl = b_width_log2(plane_bsize);
const int diff_stride = 4 * (1 << bwl);
uint8_t *src, *dst;
@@ -544,11 +628,20 @@ static void encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
src = &p->src.buf[4 * (j * src_stride + i)];
src_diff = &p->src_diff[4 * (j * diff_stride + i)];
#if CONFIG_FILTERINTRA
if (mbmi->sb_type < BLOCK_8X8 && plane == 0)
fbit = xd->mi[0]->b_filter_info[block];
else
fbit = plane == 0 ? mbmi->filterbit : mbmi->uv_filterbit;
#endif
switch (tx_size) {
case TX_32X32:
scan_order = &vp9_default_scan_orders[TX_32X32];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
vp9_predict_intra_block(xd, block >> 6, bwl, TX_32X32, mode,
#if CONFIG_FILTERINTRA
fbit,
#endif
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride, i, j, plane);
@@ -569,6 +662,9 @@ static void encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
scan_order = &vp9_scan_orders[TX_16X16][tx_type];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
vp9_predict_intra_block(xd, block >> 4, bwl, TX_16X16, mode,
#if CONFIG_FILTERINTRA
fbit,
#endif
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride, i, j, plane);
@@ -589,6 +685,9 @@ static void encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
scan_order = &vp9_scan_orders[TX_8X8][tx_type];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
vp9_predict_intra_block(xd, block >> 2, bwl, TX_8X8, mode,
#if CONFIG_FILTERINTRA
fbit,
#endif
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride, i, j, plane);
@@ -609,6 +708,9 @@ static void encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
scan_order = &vp9_scan_orders[TX_4X4][tx_type];
mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mbmi->uv_mode;
vp9_predict_intra_block(xd, block, bwl, TX_4X4, mode,
#if CONFIG_FILTERINTRA
fbit,
#endif
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride, i, j, plane);

View File

@@ -21,6 +21,9 @@ extern "C" {
#endif
void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize);
#if CONFIG_SUPERTX
void vp9_encode_sb_supertx(MACROBLOCK *x, BLOCK_SIZE bsize);
#endif
void vp9_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize);
void vp9_xform_quant_fp(MACROBLOCK *x, int plane, int block,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size);

View File

@@ -64,6 +64,9 @@ void vp9_coef_tree_initialize();
// #define OUTPUT_YUV_REC
#ifdef OUTPUT_YUV_DENOISED
FILE *yuv_denoised_file;
#endif
#ifdef OUTPUT_YUV_SRC
FILE *yuv_file;
#endif
@@ -103,7 +106,7 @@ static INLINE void Scale2Ratio(VPX_SCALING mode, int *hr, int *hs) {
}
}
static void set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv) {
void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv) {
MACROBLOCK *const mb = &cpi->mb;
cpi->common.allow_high_precision_mv = allow_high_precision_mv;
if (cpi->common.allow_high_precision_mv) {
@@ -142,8 +145,6 @@ void vp9_initialize_enc() {
if (!init_done) {
vp9_init_neighbors();
vp9_init_quant_tables();
vp9_coef_tree_initialize();
vp9_tokenize_initialize();
vp9_init_me_luts();
@@ -173,10 +174,8 @@ static void dealloc_compressor_data(VP9_COMP *cpi) {
vp9_cyclic_refresh_free(cpi->cyclic_refresh);
cpi->cyclic_refresh = NULL;
vpx_free(cpi->active_map);
cpi->active_map = NULL;
vp9_free_frame_buffers(cm);
vp9_free_context_buffers(cm);
vp9_free_frame_buffer(&cpi->last_frame_uf);
vp9_free_frame_buffer(&cpi->scaled_source);
@@ -414,39 +413,46 @@ static void alloc_raw_frame_buffers(VP9_COMP *cpi) {
"Failed to allocate altref buffer");
}
void vp9_alloc_compressor_data(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
static void alloc_ref_frame_buffers(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
if (vp9_alloc_frame_buffers(cm, cm->width, cm->height))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
}
if (vp9_alloc_frame_buffer(&cpi->last_frame_uf,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS))
static void alloc_util_frame_buffers(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
if (vp9_realloc_frame_buffer(&cpi->last_frame_uf,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
if (vp9_alloc_frame_buffer(&cpi->scaled_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS))
if (vp9_realloc_frame_buffer(&cpi->scaled_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
if (vp9_alloc_frame_buffer(&cpi->scaled_last_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS))
if (vp9_realloc_frame_buffer(&cpi->scaled_last_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled last source buffer");
}
void vp9_alloc_compressor_data(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
vp9_alloc_context_buffers(cm, cm->width, cm->height);
vpx_free(cpi->tok);
{
unsigned int tokens = get_token_alloc(cm->mb_rows, cm->mb_cols);
CHECK_MEM_ERROR(cm, cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
}
@@ -456,41 +462,7 @@ void vp9_alloc_compressor_data(VP9_COMP *cpi) {
static void update_frame_size(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
vp9_update_frame_size(cm);
// Update size of buffers local to this frame
if (vp9_realloc_frame_buffer(&cpi->last_frame_uf,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to reallocate last frame buffer");
if (vp9_realloc_frame_buffer(&cpi->scaled_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to reallocate scaled source buffer");
if (vp9_realloc_frame_buffer(&cpi->scaled_last_source,
cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to reallocate scaled last source buffer");
{
int y_stride = cpi->scaled_source.y_stride;
if (cpi->sf.mv.search_method == NSTEP) {
vp9_init3smotion_compensation(&cpi->ss_cfg, y_stride);
} else if (cpi->sf.mv.search_method == DIAMOND) {
vp9_init_dsmotion_compensation(&cpi->ss_cfg, y_stride);
}
}
init_macroblockd(cm, xd);
}
@@ -518,6 +490,12 @@ static void set_tile_limits(VP9_COMP *cpi) {
cm->log2_tile_rows = cpi->oxcf.tile_rows;
}
static void init_buffer_indices(VP9_COMP *cpi) {
cpi->lst_fb_idx = 0;
cpi->gld_fb_idx = 1;
cpi->alt_fb_idx = 2;
}
static void init_config(struct VP9_COMP *cpi, VP9EncoderConfig *oxcf) {
VP9_COMMON *const cm = &cpi->common;
@@ -528,8 +506,6 @@ static void init_config(struct VP9_COMP *cpi, VP9EncoderConfig *oxcf) {
cm->width = oxcf->width;
cm->height = oxcf->height;
cm->subsampling_x = 0;
cm->subsampling_y = 0;
vp9_alloc_compressor_data(cpi);
// Spatial scalability.
@@ -548,10 +524,9 @@ static void init_config(struct VP9_COMP *cpi, VP9EncoderConfig *oxcf) {
vp9_change_config(cpi, oxcf);
cpi->static_mb_pct = 0;
cpi->ref_frame_flags = 0;
cpi->lst_fb_idx = 0;
cpi->gld_fb_idx = 1;
cpi->alt_fb_idx = 2;
init_buffer_indices(cpi);
set_tile_limits(cpi);
}
@@ -590,7 +565,6 @@ void vp9_change_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) {
cpi->pass = get_pass(cpi->oxcf.mode);
rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG;
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 1;
@@ -598,7 +572,7 @@ void vp9_change_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) {
cm->reset_frame_context = 0;
vp9_reset_segment_features(&cm->seg);
set_high_precision_mv(cpi, 0);
vp9_set_high_precision_mv(cpi, 0);
{
int i;
@@ -663,11 +637,7 @@ void vp9_change_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) {
(int)cpi->oxcf.target_bandwidth);
}
#if CONFIG_MULTIPLE_ARF
vp9_zero(cpi->alt_ref_source);
#else
cpi->alt_ref_source = NULL;
#endif
rc->is_src_frame_alt_ref = 0;
#if 0
@@ -683,6 +653,12 @@ void vp9_change_config(struct VP9_COMP *cpi, const VP9EncoderConfig *oxcf) {
#if CONFIG_DENOISING
vp9_denoiser_alloc(&(cpi->denoiser), cm->width, cm->height,
// TODO(tkopp) An unrelated bug causes
// cm->subsampling_{x,y} to be uninitialized at this point
// in execution. For now we assume YUV-420, which is x/y
// subsampling of 1.
1, 1,
// cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS);
#endif
}
@@ -781,10 +757,6 @@ VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf) {
CHECK_MEM_ERROR(cm, cpi->coding_context.last_frame_seg_map_copy,
vpx_calloc(cm->mi_rows * cm->mi_cols, 1));
CHECK_MEM_ERROR(cm, cpi->active_map, vpx_calloc(cm->MBs, 1));
vpx_memset(cpi->active_map, 1, cm->MBs);
cpi->active_map_enabled = 0;
for (i = 0; i < (sizeof(cpi->mbgraph_stats) /
sizeof(cpi->mbgraph_stats[0])); i++) {
CHECK_MEM_ERROR(cm, cpi->mbgraph_stats[i].mb_stats,
@@ -794,18 +766,23 @@ VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf) {
cpi->refresh_alt_ref_frame = 0;
#if CONFIG_MULTIPLE_ARF
// Turn multiple ARF usage on/off. This is a quick hack for the initial test
// version. It should eventually be set via the codec API.
cpi->multi_arf_enabled = 1;
if (cpi->multi_arf_enabled) {
cpi->sequence_number = 0;
cpi->frame_coding_order_period = 0;
vp9_zero(cpi->frame_coding_order);
vp9_zero(cpi->arf_buffer_idx);
// Note that at the moment multi_arf will not work with svc.
// For the current check in all the execution paths are defaulted to 0
// pending further tuning and testing. The code is left in place here
// as a place holder in regard to the required paths.
if (cpi->pass == 2) {
if (cpi->use_svc) {
cpi->multi_arf_allowed = 0;
cpi->multi_arf_enabled = 0;
} else {
// Disable by default for now.
cpi->multi_arf_allowed = 0;
cpi->multi_arf_enabled = 0;
}
} else {
cpi->multi_arf_allowed = 0;
cpi->multi_arf_enabled = 0;
}
#endif
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
@@ -860,6 +837,9 @@ VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf) {
cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX];
cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp);
#ifdef OUTPUT_YUV_DENOISED
yuv_denoised_file = fopen("denoised.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_SRC
yuv_file = fopen("bd.yuv", "ab");
#endif
@@ -1005,6 +985,41 @@ VP9_COMP *vp9_create_compressor(VP9EncoderConfig *oxcf) {
vp9_sub_pixel_avg_variance4x4,
vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d)
#if ((CONFIG_MASKED_INTERINTRA && CONFIG_INTERINTRA) || \
CONFIG_MASKED_INTERINTER)
#define MBFP(BT, MSDF, MVF, MSVF) \
cpi->fn_ptr[BT].msdf = MSDF; \
cpi->fn_ptr[BT].mvf = MVF; \
cpi->fn_ptr[BT].msvf = MSVF;
MBFP(BLOCK_64X64, vp9_masked_sad64x64, vp9_masked_variance64x64,
vp9_masked_sub_pixel_variance64x64)
MBFP(BLOCK_64X32, vp9_masked_sad64x32, vp9_masked_variance64x32,
vp9_masked_sub_pixel_variance64x32)
MBFP(BLOCK_32X64, vp9_masked_sad32x64, vp9_masked_variance32x64,
vp9_masked_sub_pixel_variance32x64)
MBFP(BLOCK_32X32, vp9_masked_sad32x32, vp9_masked_variance32x32,
vp9_masked_sub_pixel_variance32x32)
MBFP(BLOCK_32X16, vp9_masked_sad32x16, vp9_masked_variance32x16,
vp9_masked_sub_pixel_variance32x16)
MBFP(BLOCK_16X32, vp9_masked_sad16x32, vp9_masked_variance16x32,
vp9_masked_sub_pixel_variance16x32)
MBFP(BLOCK_16X16, vp9_masked_sad16x16, vp9_masked_variance16x16,
vp9_masked_sub_pixel_variance16x16)
MBFP(BLOCK_16X8, vp9_masked_sad16x8, vp9_masked_variance16x8,
vp9_masked_sub_pixel_variance16x8)
MBFP(BLOCK_8X16, vp9_masked_sad8x16, vp9_masked_variance8x16,
vp9_masked_sub_pixel_variance8x16)
MBFP(BLOCK_8X8, vp9_masked_sad8x8, vp9_masked_variance8x8,
vp9_masked_sub_pixel_variance8x8)
MBFP(BLOCK_4X8, vp9_masked_sad4x8, vp9_masked_variance4x8,
vp9_masked_sub_pixel_variance4x8)
MBFP(BLOCK_8X4, vp9_masked_sad8x4, vp9_masked_variance8x4,
vp9_masked_sub_pixel_variance8x4)
MBFP(BLOCK_4X4, vp9_masked_sad4x4, vp9_masked_variance4x4,
vp9_masked_sub_pixel_variance4x4)
#endif
cpi->full_search_sad = vp9_full_search_sad;
cpi->diamond_search_sad = vp9_diamond_search_sad;
cpi->refining_search_sad = vp9_refining_search_sad;
@@ -1105,6 +1120,9 @@ void vp9_remove_compressor(VP9_COMP *cpi) {
vp9_remove_common(&cpi->common);
vpx_free(cpi);
#ifdef OUTPUT_YUV_DENOISED
fclose(yuv_denoised_file);
#endif
#ifdef OUTPUT_YUV_SRC
fclose(yuv_file);
#endif
@@ -1286,13 +1304,13 @@ int vp9_update_entropy(VP9_COMP * cpi, int update) {
}
#ifdef OUTPUT_YUV_SRC
void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s) {
#if defined(OUTPUT_YUV_SRC) || defined(OUTPUT_YUV_DENOISED)
void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s, FILE *f) {
uint8_t *src = s->y_buffer;
int h = s->y_height;
do {
fwrite(src, s->y_width, 1, yuv_file);
fwrite(src, s->y_width, 1, f);
src += s->y_stride;
} while (--h);
@@ -1300,7 +1318,7 @@ void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s) {
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_file);
fwrite(src, s->uv_width, 1, f);
src += s->uv_stride;
} while (--h);
@@ -1308,7 +1326,7 @@ void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s) {
h = s->uv_height;
do {
fwrite(src, s->uv_width, 1, yuv_file);
fwrite(src, s->uv_width, 1, f);
src += s->uv_stride;
} while (--h);
}
@@ -1509,14 +1527,8 @@ void vp9_update_reference_frames(VP9_COMP *cpi) {
&cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx);
ref_cnt_fb(cm->frame_bufs,
&cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx);
}
#if CONFIG_MULTIPLE_ARF
else if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
!cpi->refresh_alt_ref_frame) {
#else
else if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
!cpi->use_svc) {
#endif
} else if (!cpi->multi_arf_allowed && cpi->refresh_golden_frame &&
cpi->rc.is_src_frame_alt_ref && !cpi->use_svc) {
/* Preserve the previously existing golden frame and update the frame in
* the alt ref slot instead. This is highly specific to the current use of
* alt-ref as a forward reference, and this needs to be generalized as
@@ -1534,14 +1546,14 @@ void vp9_update_reference_frames(VP9_COMP *cpi) {
tmp = cpi->alt_fb_idx;
cpi->alt_fb_idx = cpi->gld_fb_idx;
cpi->gld_fb_idx = tmp;
} else { /* For non key/golden frames */
} else { /* For non key/golden frames */
if (cpi->refresh_alt_ref_frame) {
int arf_idx = cpi->alt_fb_idx;
#if CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled) {
arf_idx = cpi->arf_buffer_idx[cpi->sequence_number + 1];
if ((cpi->pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_idx = gf_group->arf_update_idx[gf_group->index];
}
#endif
ref_cnt_fb(cm->frame_bufs,
&cm->ref_frame_map[arf_idx], cm->new_fb_idx);
}
@@ -1558,6 +1570,7 @@ void vp9_update_reference_frames(VP9_COMP *cpi) {
}
#if CONFIG_DENOISING
vp9_denoiser_update_frame_info(&cpi->denoiser,
*cpi->Source,
cpi->common.frame_type,
cpi->refresh_alt_ref_frame,
cpi->refresh_golden_frame,
@@ -1593,13 +1606,15 @@ static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) {
void vp9_scale_references(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
MV_REFERENCE_FRAME ref_frame;
const VP9_REFFRAME ref_mask[3] = {VP9_LAST_FLAG, VP9_GOLD_FLAG, VP9_ALT_FLAG};
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)];
const YV12_BUFFER_CONFIG *const ref = &cm->frame_bufs[idx].buf;
if (ref->y_crop_width != cm->width ||
ref->y_crop_height != cm->height) {
// Need to convert from VP9_REFFRAME to index into ref_mask (subtract 1).
if ((cpi->ref_frame_flags & ref_mask[ref_frame - 1]) &&
(ref->y_crop_width != cm->width || ref->y_crop_height != cm->height)) {
const int new_fb = get_free_fb(cm);
vp9_realloc_frame_buffer(&cm->frame_bufs[new_fb].buf,
cm->width, cm->height,
@@ -1987,6 +2002,45 @@ YV12_BUFFER_CONFIG *vp9_scale_if_required(VP9_COMMON *cm,
}
}
#if CONFIG_MASKED_INTERINTER
static void select_masked_interinter_mode(VP9_COMP *cpi) {
static const double threshold = 1/128.0;
VP9_COMMON *cm = &cpi->common;
int sum = cpi->masked_interinter_select_counts[1] +
cpi->masked_interinter_select_counts[0];
if (sum) {
double fraction = (double) cpi->masked_interinter_select_counts[1] / sum;
cm->use_masked_interinter = (fraction > threshold);
}
}
#endif
#if CONFIG_INTERINTRA
static void select_interintra_mode(VP9_COMP *cpi) {
static const double threshold = 0.007;
VP9_COMMON *cm = &cpi->common;
int sum = cpi->interintra_select_count[1] + cpi->interintra_select_count[0];
if (sum) {
double fraction = (double)cpi->interintra_select_count[1] / (double)sum;
cm->use_interintra = (fraction > threshold);
}
}
#if CONFIG_MASKED_INTERINTRA
static void select_masked_interintra_mode(VP9_COMP *cpi) {
static const double threshold = 1/100.0;
VP9_COMMON *cm = &cpi->common;
int sum = cpi->masked_interintra_select_count[1] +
cpi->masked_interintra_select_count[0];
if (sum) {
double fraction = (double)cpi->masked_interintra_select_count[1] /
(double)sum;
cm->use_masked_interintra = (fraction > threshold);
}
}
#endif
#endif
static void encode_frame_to_data_rate(VP9_COMP *cpi,
size_t *size,
uint8_t *dest,
@@ -2121,8 +2175,12 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
}
#endif
#ifdef OUTPUT_YUV_DENOISED
vp9_write_yuv_frame(&cpi->denoiser.running_avg_y[INTRA_FRAME],
yuv_denoised_file);
#endif
#ifdef OUTPUT_YUV_SRC
vp9_write_yuv_frame(cpi->Source);
vp9_write_yuv_frame(cpi->Source, yuv_file);
#endif
set_speed_features(cpi);
@@ -2133,9 +2191,23 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
if (!frame_is_intra_only(cm)) {
cm->interp_filter = DEFAULT_INTERP_FILTER;
/* TODO: Decide this more intelligently */
set_high_precision_mv(cpi, q < HIGH_PRECISION_MV_QTHRESH);
vp9_set_high_precision_mv(cpi, q < HIGH_PRECISION_MV_QTHRESH);
}
#if CONFIG_MASKED_INTERINTER
if (cm->current_video_frame == 0)
cm->use_masked_interinter = 0;
#endif
#if CONFIG_INTERINTRA
if (cm->current_video_frame == 0) {
cm->use_interintra = 1;
#if CONFIG_MASKED_INTERINTRA
cm->use_masked_interintra = 1;
#endif
}
#endif
if (cpi->sf.recode_loop == DISALLOW_RECODE) {
encode_without_recode_loop(cpi, q);
} else {
@@ -2197,6 +2269,18 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
vp9_adapt_mode_probs(cm);
vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv);
}
#if CONFIG_MASKED_INTERINTER
select_masked_interinter_mode(cpi);
#endif
#if CONFIG_INTERINTRA
select_interintra_mode(cpi);
#if CONFIG_MASKED_INTERINTRA
if (cpi->common.use_interintra)
select_masked_interintra_mode(cpi);
else
cpi->common.use_masked_interintra = 0;
#endif
#endif
}
if (cpi->refresh_golden_frame == 1)
@@ -2221,31 +2305,8 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
if (cm->frame_type == KEY_FRAME) {
// Tell the caller that the frame was coded as a key frame
*frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY;
#if CONFIG_MULTIPLE_ARF
// Reset the sequence number.
if (cpi->multi_arf_enabled) {
cpi->sequence_number = 0;
cpi->frame_coding_order_period = cpi->new_frame_coding_order_period;
cpi->new_frame_coding_order_period = -1;
}
#endif
} else {
*frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY;
#if CONFIG_MULTIPLE_ARF
/* Increment position in the coded frame sequence. */
if (cpi->multi_arf_enabled) {
++cpi->sequence_number;
if (cpi->sequence_number >= cpi->frame_coding_order_period) {
cpi->sequence_number = 0;
cpi->frame_coding_order_period = cpi->new_frame_coding_order_period;
cpi->new_frame_coding_order_period = -1;
}
cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number];
assert(cpi->this_frame_weight >= 0);
}
#endif
}
// Clear the one shot update flags for segmentation map and mode/ref loop
@@ -2299,6 +2360,16 @@ static void Pass2Encode(VP9_COMP *cpi, size_t *size,
vp9_twopass_postencode_update(cpi);
}
static void init_motion_estimation(VP9_COMP *cpi) {
int y_stride = cpi->scaled_source.y_stride;
if (cpi->sf.mv.search_method == NSTEP) {
vp9_init3smotion_compensation(&cpi->ss_cfg, y_stride);
} else if (cpi->sf.mv.search_method == DIAMOND) {
vp9_init_dsmotion_compensation(&cpi->ss_cfg, y_stride);
}
}
static void check_initial_width(VP9_COMP *cpi, int subsampling_x,
int subsampling_y) {
VP9_COMMON *const cm = &cpi->common;
@@ -2306,7 +2377,13 @@ static void check_initial_width(VP9_COMP *cpi, int subsampling_x,
if (!cpi->initial_width) {
cm->subsampling_x = subsampling_x;
cm->subsampling_y = subsampling_y;
alloc_raw_frame_buffers(cpi);
alloc_ref_frame_buffers(cpi);
alloc_util_frame_buffers(cpi);
init_motion_estimation(cpi);
cpi->initial_width = cm->width;
cpi->initial_height = cm->height;
}
@@ -2321,11 +2398,22 @@ int vp9_receive_raw_frame(VP9_COMP *cpi, unsigned int frame_flags,
int res = 0;
const int subsampling_x = sd->uv_width < sd->y_width;
const int subsampling_y = sd->uv_height < sd->y_height;
const int is_spatial_svc = cpi->use_svc &&
(cpi->svc.number_temporal_layers == 1);
check_initial_width(cpi, subsampling_x, subsampling_y);
vpx_usec_timer_start(&timer);
if (vp9_lookahead_push(cpi->lookahead,
sd, time_stamp, end_time, frame_flags))
#ifdef CONFIG_SPATIAL_SVC
if (is_spatial_svc)
res = vp9_svc_lookahead_push(cpi, cpi->lookahead, sd, time_stamp, end_time,
frame_flags);
else
#endif
res = vp9_lookahead_push(cpi->lookahead,
sd, time_stamp, end_time, frame_flags);
if (res)
res = -1;
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
@@ -2353,13 +2441,6 @@ static int frame_is_reference(const VP9_COMP *cpi) {
cm->seg.update_data;
}
#if CONFIG_MULTIPLE_ARF
int is_next_frame_arf(VP9_COMP *cpi) {
// Negative entry in frame_coding_order indicates an ARF at this position.
return cpi->frame_coding_order[cpi->sequence_number + 1] < 0 ? 1 : 0;
}
#endif
void adjust_frame_rate(VP9_COMP *cpi) {
int64_t this_duration;
int step = 0;
@@ -2398,6 +2479,46 @@ void adjust_frame_rate(VP9_COMP *cpi) {
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
}
// Returns 0 if this is not an alt ref else the offset of the source frame
// used as the arf midpoint.
static int get_arf_src_index(VP9_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
int arf_src_index = 0;
if (is_altref_enabled(&cpi->oxcf)) {
if (cpi->pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
arf_src_index = gf_group->arf_src_offset[gf_group->index];
}
} else if (rc->source_alt_ref_pending) {
arf_src_index = rc->frames_till_gf_update_due;
}
}
return arf_src_index;
}
static void check_src_altref(VP9_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
if (cpi->pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
rc->is_src_frame_alt_ref =
(gf_group->update_type[gf_group->index] == OVERLAY_UPDATE);
} else {
rc->is_src_frame_alt_ref = cpi->alt_ref_source &&
(cpi->source == cpi->alt_ref_source);
}
if (rc->is_src_frame_alt_ref) {
// Current frame is an ARF overlay frame.
cpi->alt_ref_source = NULL;
// Don't refresh the last buffer for an ARF overlay frame. It will
// become the GF so preserve last as an alternative prediction option.
cpi->refresh_last_frame = 0;
}
}
int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
size_t *size, uint8_t *dest,
int64_t *time_stamp, int64_t *time_end, int flush) {
@@ -2407,11 +2528,15 @@ int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
struct vpx_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
MV_REFERENCE_FRAME ref_frame;
int arf_src_index;
const int is_spatial_svc = cpi->use_svc &&
(cpi->svc.number_temporal_layers == 1);
if (!cpi)
return -1;
if (cpi->svc.number_spatial_layers > 1 && cpi->pass == 2) {
if (is_spatial_svc && cpi->pass == 2) {
vp9_svc_lookahead_peek(cpi, cpi->lookahead, 0, 1);
vp9_restore_layer_context(cpi);
}
@@ -2420,7 +2545,7 @@ int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
cpi->source = NULL;
cpi->last_source = NULL;
set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV);
vp9_set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV);
// Normal defaults
cm->reset_frame_context = 0;
@@ -2429,35 +2554,26 @@ int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
// Should we code an alternate reference frame.
if (is_altref_enabled(&cpi->oxcf) && rc->source_alt_ref_pending) {
int frames_to_arf;
// Should we encode an arf frame.
arf_src_index = get_arf_src_index(cpi);
if (arf_src_index) {
assert(arf_src_index <= rc->frames_to_key);
#if CONFIG_MULTIPLE_ARF
assert(!cpi->multi_arf_enabled ||
cpi->frame_coding_order[cpi->sequence_number] < 0);
if (cpi->multi_arf_enabled && (cpi->pass == 2))
frames_to_arf = (-cpi->frame_coding_order[cpi->sequence_number])
- cpi->next_frame_in_order;
#ifdef CONFIG_SPATIAL_SVC
if (is_spatial_svc)
cpi->source = vp9_svc_lookahead_peek(cpi, cpi->lookahead,
arf_src_index, 1);
else
#endif
frames_to_arf = rc->frames_till_gf_update_due;
assert(frames_to_arf <= rc->frames_to_key);
if ((cpi->source = vp9_lookahead_peek(cpi->lookahead, frames_to_arf))) {
#if CONFIG_MULTIPLE_ARF
cpi->alt_ref_source[cpi->arf_buffered] = cpi->source;
#else
cpi->source = vp9_lookahead_peek(cpi->lookahead, arf_src_index);
if (cpi->source != NULL) {
cpi->alt_ref_source = cpi->source;
#endif
if (cpi->oxcf.arnr_max_frames > 0) {
// Produce the filtered ARF frame.
// TODO(agrange) merge these two functions.
vp9_configure_arnr_filter(cpi, frames_to_arf, rc->gfu_boost);
vp9_temporal_filter_prepare(cpi, frames_to_arf);
vp9_configure_arnr_filter(cpi, arf_src_index, rc->gfu_boost);
vp9_temporal_filter_prepare(cpi, arf_src_index);
vp9_extend_frame_borders(&cpi->alt_ref_buffer);
force_src_buffer = &cpi->alt_ref_buffer;
}
@@ -2467,59 +2583,38 @@ int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
cpi->refresh_golden_frame = 0;
cpi->refresh_last_frame = 0;
rc->is_src_frame_alt_ref = 0;
#if CONFIG_MULTIPLE_ARF
if (!cpi->multi_arf_enabled)
#endif
rc->source_alt_ref_pending = 0;
rc->source_alt_ref_pending = 0;
} else {
rc->source_alt_ref_pending = 0;
}
}
if (!cpi->source) {
#if CONFIG_MULTIPLE_ARF
int i;
#endif
// Get last frame source.
if (cm->current_video_frame > 0) {
if ((cpi->last_source = vp9_lookahead_peek(cpi->lookahead, -1)) == NULL)
#ifdef CONFIG_SPATIAL_SVC
if (is_spatial_svc)
cpi->last_source = vp9_svc_lookahead_peek(cpi, cpi->lookahead, -1, 0);
else
#endif
cpi->last_source = vp9_lookahead_peek(cpi->lookahead, -1);
if (cpi->last_source == NULL)
return -1;
}
if ((cpi->source = vp9_lookahead_pop(cpi->lookahead, flush))) {
// Read in the source frame.
#ifdef CONFIG_SPATIAL_SVC
if (is_spatial_svc)
cpi->source = vp9_svc_lookahead_pop(cpi, cpi->lookahead, flush);
else
#endif
cpi->source = vp9_lookahead_pop(cpi->lookahead, flush);
if (cpi->source != NULL) {
cm->show_frame = 1;
cm->intra_only = 0;
#if CONFIG_MULTIPLE_ARF
// Is this frame the ARF overlay.
rc->is_src_frame_alt_ref = 0;
for (i = 0; i < cpi->arf_buffered; ++i) {
if (cpi->source == cpi->alt_ref_source[i]) {
rc->is_src_frame_alt_ref = 1;
cpi->refresh_golden_frame = 1;
break;
}
}
#else
rc->is_src_frame_alt_ref = cpi->alt_ref_source &&
(cpi->source == cpi->alt_ref_source);
#endif
if (rc->is_src_frame_alt_ref) {
// Current frame is an ARF overlay frame.
#if CONFIG_MULTIPLE_ARF
cpi->alt_ref_source[i] = NULL;
#else
cpi->alt_ref_source = NULL;
#endif
// Don't refresh the last buffer for an ARF overlay frame. It will
// become the GF so preserve last as an alternative prediction option.
cpi->refresh_last_frame = 0;
}
#if CONFIG_MULTIPLE_ARF
++cpi->next_frame_in_order;
#endif
// Check to see if the frame should be encoded as an arf overlay.
check_src_altref(cpi);
}
}
@@ -2527,20 +2622,17 @@ int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer
: &cpi->source->img;
if (cpi->last_source != NULL) {
cpi->unscaled_last_source = &cpi->last_source->img;
} else {
cpi->unscaled_last_source = NULL;
}
if (cpi->last_source != NULL) {
cpi->unscaled_last_source = &cpi->last_source->img;
} else {
cpi->unscaled_last_source = NULL;
}
*time_stamp = cpi->source->ts_start;
*time_end = cpi->source->ts_end;
*frame_flags = cpi->source->flags;
*frame_flags =
(cpi->source->flags & VPX_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
#if CONFIG_MULTIPLE_ARF
if (cm->frame_type != KEY_FRAME && cpi->pass == 2)
rc->source_alt_ref_pending = is_next_frame_arf(cpi);
#endif
} else {
*size = 0;
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) {
@@ -2578,16 +2670,14 @@ int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
cm->frame_bufs[cm->new_fb_idx].ref_count--;
cm->new_fb_idx = get_free_fb(cm);
#if CONFIG_MULTIPLE_ARF
/* Set up the correct ARF frame. */
if (cpi->refresh_alt_ref_frame) {
++cpi->arf_buffered;
if (!cpi->use_svc && cpi->multi_arf_allowed) {
if (cm->frame_type == KEY_FRAME) {
init_buffer_indices(cpi);
} else if (cpi->pass == 2) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
cpi->alt_fb_idx = gf_group->arf_ref_idx[gf_group->index];
}
}
if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
(cpi->pass == 2)) {
cpi->alt_fb_idx = cpi->arf_buffer_idx[cpi->sequence_number];
}
#endif
cpi->frame_flags = *frame_flags;
@@ -2606,6 +2696,9 @@ int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags,
cm->subsampling_x, cm->subsampling_y,
VP9_ENC_BORDER_IN_PIXELS, NULL, NULL, NULL);
alloc_util_frame_buffers(cpi);
init_motion_estimation(cpi);
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)];
YV12_BUFFER_CONFIG *const buf = &cm->frame_bufs[idx].buf;
@@ -2775,16 +2868,23 @@ int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest,
int vp9_set_active_map(VP9_COMP *cpi, unsigned char *map, int rows, int cols) {
if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) {
const int mi_rows = cpi->common.mi_rows;
const int mi_cols = cpi->common.mi_cols;
if (map) {
vpx_memcpy(cpi->active_map, map, rows * cols);
cpi->active_map_enabled = 1;
int r, c;
for (r = 0; r < mi_rows; r++) {
for (c = 0; c < mi_cols; c++) {
cpi->segmentation_map[r * mi_cols + c] =
!map[(r >> 1) * cols + (c >> 1)];
}
}
vp9_enable_segfeature(&cpi->common.seg, 1, SEG_LVL_SKIP);
vp9_enable_segmentation(&cpi->common.seg);
} else {
cpi->active_map_enabled = 0;
vp9_disable_segmentation(&cpi->common.seg);
}
return 0;
} else {
// cpi->active_map_enabled = 0;
return -1;
}
}
@@ -2863,3 +2963,42 @@ int vp9_get_y_sse(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b) {
int vp9_get_quantizer(VP9_COMP *cpi) {
return cpi->common.base_qindex;
}
void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags) {
if (flags & (VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_REF_ARF)) {
int ref = 7;
if (flags & VP8_EFLAG_NO_REF_LAST)
ref ^= VP9_LAST_FLAG;
if (flags & VP8_EFLAG_NO_REF_GF)
ref ^= VP9_GOLD_FLAG;
if (flags & VP8_EFLAG_NO_REF_ARF)
ref ^= VP9_ALT_FLAG;
vp9_use_as_reference(cpi, ref);
}
if (flags & (VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_FORCE_GF |
VP8_EFLAG_FORCE_ARF)) {
int upd = 7;
if (flags & VP8_EFLAG_NO_UPD_LAST)
upd ^= VP9_LAST_FLAG;
if (flags & VP8_EFLAG_NO_UPD_GF)
upd ^= VP9_GOLD_FLAG;
if (flags & VP8_EFLAG_NO_UPD_ARF)
upd ^= VP9_ALT_FLAG;
vp9_update_reference(cpi, upd);
}
if (flags & VP8_EFLAG_NO_UPD_ENTROPY) {
vp9_update_entropy(cpi, 0);
}
}

View File

@@ -32,6 +32,7 @@
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_speed_features.h"
#include "vp9/encoder/vp9_svc_layercontext.h"
#include "vp9/encoder/vp9_tokenize.h"
@@ -46,9 +47,6 @@ extern "C" {
#define DEFAULT_GF_INTERVAL 10
#define MAX_MODES 30
#define MAX_REFS 6
typedef struct {
int nmvjointcost[MV_JOINTS];
int nmvcosts[2][MV_VALS];
@@ -66,57 +64,6 @@ typedef struct {
FRAME_CONTEXT fc;
} CODING_CONTEXT;
// This enumerator type needs to be kept aligned with the mode order in
// const MODE_DEFINITION vp9_mode_order[MAX_MODES] used in the rd code.
typedef enum {
THR_NEARESTMV,
THR_NEARESTA,
THR_NEARESTG,
THR_DC,
THR_NEWMV,
THR_NEWA,
THR_NEWG,
THR_NEARMV,
THR_NEARA,
THR_COMP_NEARESTLA,
THR_COMP_NEARESTGA,
THR_TM,
THR_COMP_NEARLA,
THR_COMP_NEWLA,
THR_NEARG,
THR_COMP_NEARGA,
THR_COMP_NEWGA,
THR_ZEROMV,
THR_ZEROG,
THR_ZEROA,
THR_COMP_ZEROLA,
THR_COMP_ZEROGA,
THR_H_PRED,
THR_V_PRED,
THR_D135_PRED,
THR_D207_PRED,
THR_D153_PRED,
THR_D63_PRED,
THR_D117_PRED,
THR_D45_PRED,
} THR_MODES;
typedef enum {
THR_LAST,
THR_GOLD,
THR_ALTR,
THR_COMP_LA,
THR_COMP_GA,
THR_INTRA,
} THR_MODES_SUB8X8;
typedef enum {
// encode_breakout is disabled.
ENCODE_BREAKOUT_DISABLED = 0,
@@ -293,32 +240,6 @@ static INLINE int is_best_mode(MODE mode) {
return mode == ONE_PASS_BEST || mode == TWO_PASS_SECOND_BEST;
}
typedef struct RD_OPT {
// Thresh_mult is used to set a threshold for the rd score. A higher value
// means that we will accept the best mode so far more often. This number
// is used in combination with the current block size, and thresh_freq_fact
// to pick a threshold.
int thresh_mult[MAX_MODES];
int thresh_mult_sub8x8[MAX_REFS];
int threshes[MAX_SEGMENTS][BLOCK_SIZES][MAX_MODES];
int thresh_freq_fact[BLOCK_SIZES][MAX_MODES];
int64_t comp_pred_diff[REFERENCE_MODES];
int64_t prediction_type_threshes[MAX_REF_FRAMES][REFERENCE_MODES];
int64_t tx_select_diff[TX_MODES];
// FIXME(rbultje) can this overflow?
int tx_select_threshes[MAX_REF_FRAMES][TX_MODES];
int64_t filter_diff[SWITCHABLE_FILTER_CONTEXTS];
int64_t filter_threshes[MAX_REF_FRAMES][SWITCHABLE_FILTER_CONTEXTS];
int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS];
int64_t mask_filter;
int RDMULT;
int RDDIV;
} RD_OPT;
typedef struct VP9_COMP {
QUANTS quants;
MACROBLOCK mb;
@@ -326,11 +247,7 @@ typedef struct VP9_COMP {
VP9EncoderConfig oxcf;
struct lookahead_ctx *lookahead;
struct lookahead_entry *source;
#if CONFIG_MULTIPLE_ARF
struct lookahead_entry *alt_ref_source[REF_FRAMES];
#else
struct lookahead_entry *alt_ref_source;
#endif
struct lookahead_entry *last_source;
YV12_BUFFER_CONFIG *Source;
@@ -349,9 +266,6 @@ typedef struct VP9_COMP {
int gld_fb_idx;
int alt_fb_idx;
#if CONFIG_MULTIPLE_ARF
int alt_ref_fb_idx[REF_FRAMES - 3];
#endif
int refresh_last_frame;
int refresh_golden_frame;
int refresh_alt_ref_frame;
@@ -369,13 +283,6 @@ typedef struct VP9_COMP {
TOKENEXTRA *tok;
unsigned int tok_count[4][1 << 6];
#if CONFIG_MULTIPLE_ARF
// Position within a frame coding order (including any additional ARF frames).
unsigned int sequence_number;
// Next frame in naturally occurring order that has not yet been coded.
int next_frame_in_order;
#endif
// Ambient reconstruction err target for force key frames
int ambient_err;
@@ -425,9 +332,6 @@ typedef struct VP9_COMP {
unsigned char *complexity_map;
unsigned char *active_map;
unsigned int active_map_enabled;
CYCLIC_REFRESH *cyclic_refresh;
fractional_mv_step_fp *find_fractional_mv_step;
@@ -505,28 +409,32 @@ typedef struct VP9_COMP {
int intra_uv_mode_cost[FRAME_TYPES][INTRA_MODES];
int y_mode_costs[INTRA_MODES][INTRA_MODES][INTRA_MODES];
int switchable_interp_costs[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS];
#if CONFIG_COPY_CODING
int copy_mode_cost_l2[COPY_MODE_CONTEXTS][2];
int copy_mode_cost[COPY_MODE_CONTEXTS][COPY_MODE_COUNT - 1];
#endif
PICK_MODE_CONTEXT *leaf_tree;
PC_TREE *pc_tree;
PC_TREE *pc_root;
int partition_cost[PARTITION_CONTEXTS][PARTITION_TYPES];
#if CONFIG_MULTIPLE_ARF
// ARF tracking variables.
int multi_arf_allowed;
int multi_arf_enabled;
unsigned int frame_coding_order_period;
unsigned int new_frame_coding_order_period;
int frame_coding_order[MAX_LAG_BUFFERS * 2];
int arf_buffer_idx[MAX_LAG_BUFFERS * 3 / 2];
int arf_weight[MAX_LAG_BUFFERS];
int arf_buffered;
int this_frame_weight;
int max_arf_level;
#endif
#if CONFIG_DENOISING
VP9_DENOISER denoiser;
#endif
#if CONFIG_MASKED_INTERINTER
unsigned int masked_interinter_select_counts[2];
#endif
#if CONFIG_INTERINTRA
unsigned int interintra_select_count[2];
#if CONFIG_MASKED_INTERINTRA
unsigned int masked_interintra_select_count[2];
#endif
#endif
} VP9_COMP;
void vp9_initialize_enc();
@@ -622,10 +530,14 @@ void vp9_update_reference_frames(VP9_COMP *cpi);
int64_t vp9_rescale(int64_t val, int64_t num, int denom);
void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv);
YV12_BUFFER_CONFIG *vp9_scale_if_required(VP9_COMMON *cm,
YV12_BUFFER_CONFIG *unscaled,
YV12_BUFFER_CONFIG *scaled);
void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags);
static INLINE void set_ref_ptrs(VP9_COMMON *cm, MACROBLOCKD *xd,
MV_REFERENCE_FRAME ref0,
MV_REFERENCE_FRAME ref1) {

View File

@@ -33,7 +33,6 @@
#include "vp9/encoder/vp9_firstpass.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_variance.h"
@@ -56,14 +55,7 @@
#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001)
#define MIN_KF_BOOST 300
#if CONFIG_MULTIPLE_ARF
// Set MIN_GF_INTERVAL to 1 for the full decomposition.
#define MIN_GF_INTERVAL 2
#else
#define MIN_GF_INTERVAL 4
#endif
#define MIN_GF_INTERVAL 4
#define LONG_TERM_VBR_CORRECTION
static void swap_yv12(YV12_BUFFER_CONFIG *a, YV12_BUFFER_CONFIG *b) {
@@ -497,6 +489,8 @@ void vp9_first_pass(VP9_COMP *cpi) {
&cpi->scaled_source);
}
vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
vp9_setup_src_planes(x, cpi->Source, 0, 0);
vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL);
vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0);
@@ -504,8 +498,6 @@ void vp9_first_pass(VP9_COMP *cpi) {
xd->mi = cm->mi_grid_visible;
xd->mi[0] = cm->mi;
vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
vp9_frame_init_quantizer(cpi);
for (i = 0; i < MAX_MB_PLANE; ++i) {
@@ -615,7 +607,8 @@ void vp9_first_pass(VP9_COMP *cpi) {
&unscaled_last_source_buf_2d);
// TODO(pengchong): Replace the hard-coded threshold
if (raw_motion_error > 25) {
if (raw_motion_error > 25 ||
(cpi->use_svc && cpi->svc.number_temporal_layers == 1)) {
// Test last reference frame using the previous best mv as the
// starting point (best reference) for the search.
first_pass_motion_search(cpi, x, &best_ref_mv.as_mv, &mv.as_mv,
@@ -1221,144 +1214,6 @@ static int calc_arf_boost(VP9_COMP *cpi, int offset,
return arf_boost;
}
#if CONFIG_MULTIPLE_ARF
// Work out the frame coding order for a GF or an ARF group.
// The current implementation codes frames in their natural order for a
// GF group, and inserts additional ARFs into an ARF group using a
// binary split approach.
// NOTE: this function is currently implemented recursively.
static void schedule_frames(VP9_COMP *cpi, const int start, const int end,
const int arf_idx, const int gf_or_arf_group,
const int level) {
int i, abs_end, half_range;
int *cfo = cpi->frame_coding_order;
int idx = cpi->new_frame_coding_order_period;
// If (end < 0) an ARF should be coded at position (-end).
assert(start >= 0);
// printf("start:%d end:%d\n", start, end);
// GF Group: code frames in logical order.
if (gf_or_arf_group == 0) {
assert(end >= start);
for (i = start; i <= end; ++i) {
cfo[idx] = i;
cpi->arf_buffer_idx[idx] = arf_idx;
cpi->arf_weight[idx] = -1;
++idx;
}
cpi->new_frame_coding_order_period = idx;
return;
}
// ARF Group: Work out the ARF schedule and mark ARF frames as negative.
if (end < 0) {
// printf("start:%d end:%d\n", -end, -end);
// ARF frame is at the end of the range.
cfo[idx] = end;
// What ARF buffer does this ARF use as predictor.
cpi->arf_buffer_idx[idx] = (arf_idx > 2) ? (arf_idx - 1) : 2;
cpi->arf_weight[idx] = level;
++idx;
abs_end = -end;
} else {
abs_end = end;
}
half_range = (abs_end - start) >> 1;
// ARFs may not be adjacent, they must be separated by at least
// MIN_GF_INTERVAL non-ARF frames.
if ((start + MIN_GF_INTERVAL) >= (abs_end - MIN_GF_INTERVAL)) {
// printf("start:%d end:%d\n", start, abs_end);
// Update the coding order and active ARF.
for (i = start; i <= abs_end; ++i) {
cfo[idx] = i;
cpi->arf_buffer_idx[idx] = arf_idx;
cpi->arf_weight[idx] = -1;
++idx;
}
cpi->new_frame_coding_order_period = idx;
} else {
// Place a new ARF at the mid-point of the range.
cpi->new_frame_coding_order_period = idx;
schedule_frames(cpi, start, -(start + half_range), arf_idx + 1,
gf_or_arf_group, level + 1);
schedule_frames(cpi, start + half_range + 1, abs_end, arf_idx,
gf_or_arf_group, level + 1);
}
}
#define FIXED_ARF_GROUP_SIZE 16
void define_fixed_arf_period(VP9_COMP *cpi) {
int i;
int max_level = INT_MIN;
assert(cpi->multi_arf_enabled);
assert(cpi->oxcf.lag_in_frames >= FIXED_ARF_GROUP_SIZE);
// Save the weight of the last frame in the sequence before next
// sequence pattern overwrites it.
cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number];
assert(cpi->this_frame_weight >= 0);
cpi->twopass.gf_zeromotion_pct = 0;
// Initialize frame coding order variables.
cpi->new_frame_coding_order_period = 0;
cpi->next_frame_in_order = 0;
cpi->arf_buffered = 0;
vp9_zero(cpi->frame_coding_order);
vp9_zero(cpi->arf_buffer_idx);
vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight));
if (cpi->rc.frames_to_key <= (FIXED_ARF_GROUP_SIZE + 8)) {
// Setup a GF group close to the keyframe.
cpi->rc.source_alt_ref_pending = 0;
cpi->rc.baseline_gf_interval = cpi->rc.frames_to_key;
schedule_frames(cpi, 0, (cpi->rc.baseline_gf_interval - 1), 2, 0, 0);
} else {
// Setup a fixed period ARF group.
cpi->rc.source_alt_ref_pending = 1;
cpi->rc.baseline_gf_interval = FIXED_ARF_GROUP_SIZE;
schedule_frames(cpi, 0, -(cpi->rc.baseline_gf_interval - 1), 2, 1, 0);
}
// Replace level indicator of -1 with correct level.
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
if (cpi->arf_weight[i] > max_level) {
max_level = cpi->arf_weight[i];
}
}
++max_level;
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
if (cpi->arf_weight[i] == -1) {
cpi->arf_weight[i] = max_level;
}
}
cpi->max_arf_level = max_level;
#if 0
printf("\nSchedule: ");
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
printf("%4d ", cpi->frame_coding_order[i]);
}
printf("\n");
printf("ARFref: ");
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
printf("%4d ", cpi->arf_buffer_idx[i]);
}
printf("\n");
printf("Weight: ");
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
printf("%4d ", cpi->arf_weight[i]);
}
printf("\n");
#endif
}
#endif
// Calculate a section intra ratio used in setting max loop filter.
static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
const FIRSTPASS_STATS *end,
@@ -1428,6 +1283,18 @@ static int calculate_boost_bits(int frame_count,
return MAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), 0);
}
// Current limit on maximum number of active arfs in a GF/ARF group.
#define MAX_ACTIVE_ARFS 2
#define ARF_SLOT1 2
#define ARF_SLOT2 3
// This function indirects the choice of buffers for arfs.
// At the moment the values are fixed but this may change as part of
// the integration process with other codec features that swap buffers around.
static void get_arf_buffer_indices(unsigned char *arf_buffer_indices) {
arf_buffer_indices[0] = ARF_SLOT1;
arf_buffer_indices[1] = ARF_SLOT2;
}
static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
double group_error, int gf_arf_bits) {
RATE_CONTROL *const rc = &cpi->rc;
@@ -1435,42 +1302,85 @@ static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
TWO_PASS *twopass = &cpi->twopass;
FIRSTPASS_STATS frame_stats;
int i;
int group_frame_index = 1;
int frame_index = 1;
int target_frame_size;
int key_frame;
const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
int64_t total_group_bits = gf_group_bits;
double modified_err = 0.0;
double err_fraction;
int mid_boost_bits = 0;
int mid_frame_idx;
unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS];
key_frame = cpi->common.frame_type == KEY_FRAME ||
vp9_is_upper_layer_key_frame(cpi);
get_arf_buffer_indices(arf_buffer_indices);
// For key frames the frame target rate is already set and it
// is also the golden frame.
// NOTE: We dont bother to check for the special case of ARF overlay
// frames here, as there is clamping code for this in the function
// vp9_rc_clamp_pframe_target_size(), which applies to one and two pass
// encodes.
if (!key_frame) {
twopass->gf_group_bit_allocation[0] = gf_arf_bits;
if (rc->source_alt_ref_active) {
twopass->gf_group.update_type[0] = OVERLAY_UPDATE;
twopass->gf_group.rf_level[0] = INTER_NORMAL;
twopass->gf_group.bit_allocation[0] = 0;
twopass->gf_group.arf_update_idx[0] = arf_buffer_indices[0];
twopass->gf_group.arf_ref_idx[0] = arf_buffer_indices[0];
} else {
twopass->gf_group.update_type[0] = GF_UPDATE;
twopass->gf_group.rf_level[0] = GF_ARF_STD;
twopass->gf_group.bit_allocation[0] = gf_arf_bits;
twopass->gf_group.arf_update_idx[0] = arf_buffer_indices[0];
twopass->gf_group.arf_ref_idx[0] = arf_buffer_indices[0];
}
// Step over the golden frame / overlay frame
if (EOF == input_stats(twopass, &frame_stats))
return;
}
// Store the bits to spend on the ARF if there is one.
if (rc->source_alt_ref_pending) {
twopass->gf_group_bit_allocation[group_frame_index++] = gf_arf_bits;
}
// Deduct the boost bits for arf or gf if it is not a key frame.
// Deduct the boost bits for arf (or gf if it is not a key frame)
// from the group total.
if (rc->source_alt_ref_pending || !key_frame)
total_group_bits -= gf_arf_bits;
// Store the bits to spend on the ARF if there is one.
if (rc->source_alt_ref_pending) {
if (cpi->multi_arf_enabled) {
// A portion of the gf / arf extra bits are set asside for lower level
// boosted frames in the middle of the group.
mid_boost_bits += gf_arf_bits >> 5;
gf_arf_bits -= (gf_arf_bits >> 5);
}
twopass->gf_group.update_type[frame_index] = ARF_UPDATE;
twopass->gf_group.rf_level[frame_index] = GF_ARF_STD;
twopass->gf_group.bit_allocation[frame_index] = gf_arf_bits;
twopass->gf_group.arf_src_offset[frame_index] =
(unsigned char)(rc->baseline_gf_interval - 1);
twopass->gf_group.arf_update_idx[frame_index] = arf_buffer_indices[0];
twopass->gf_group.arf_ref_idx[frame_index] = arf_buffer_indices[0];
++frame_index;
if (cpi->multi_arf_enabled) {
// Set aside a slot for a level 1 arf.
twopass->gf_group.update_type[frame_index] = ARF_UPDATE;
twopass->gf_group.rf_level[frame_index] = GF_ARF_LOW;
twopass->gf_group.arf_src_offset[frame_index] =
(unsigned char)((rc->baseline_gf_interval >> 1) - 1);
twopass->gf_group.arf_update_idx[frame_index] = arf_buffer_indices[1];
twopass->gf_group.arf_ref_idx[frame_index] = arf_buffer_indices[0];
++frame_index;
}
}
// Define middle frame
mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1;
// Allocate bits to the other frames in the group.
for (i = 0; i < rc->baseline_gf_interval - 1; ++i) {
int arf_idx = 0;
if (EOF == input_stats(twopass, &frame_stats))
break;
@@ -1482,10 +1392,48 @@ static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
err_fraction = 0.0;
target_frame_size = (int)((double)total_group_bits * err_fraction);
if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) {
mid_boost_bits += (target_frame_size >> 4);
target_frame_size -= (target_frame_size >> 4);
if (frame_index <= mid_frame_idx)
arf_idx = 1;
}
twopass->gf_group.arf_update_idx[frame_index] = arf_buffer_indices[arf_idx];
twopass->gf_group.arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx];
target_frame_size = clamp(target_frame_size, 0,
MIN(max_bits, (int)total_group_bits));
twopass->gf_group_bit_allocation[group_frame_index++] = target_frame_size;
twopass->gf_group.update_type[frame_index] = LF_UPDATE;
twopass->gf_group.rf_level[frame_index] = INTER_NORMAL;
twopass->gf_group.bit_allocation[frame_index] = target_frame_size;
++frame_index;
}
// Note:
// We need to configure the frame at the end of the sequence + 1 that will be
// the start frame for the next group. Otherwise prior to the call to
// vp9_rc_get_second_pass_params() the data will be undefined.
twopass->gf_group.arf_update_idx[frame_index] = arf_buffer_indices[0];
twopass->gf_group.arf_ref_idx[frame_index] = arf_buffer_indices[0];
if (rc->source_alt_ref_pending) {
twopass->gf_group.update_type[frame_index] = OVERLAY_UPDATE;
twopass->gf_group.rf_level[frame_index] = INTER_NORMAL;
// Final setup for second arf and its overlay.
if (cpi->multi_arf_enabled) {
twopass->gf_group.bit_allocation[2] =
twopass->gf_group.bit_allocation[mid_frame_idx] + mid_boost_bits;
twopass->gf_group.update_type[mid_frame_idx] = OVERLAY_UPDATE;
twopass->gf_group.bit_allocation[mid_frame_idx] = 0;
}
} else {
twopass->gf_group.update_type[frame_index] = GF_UPDATE;
twopass->gf_group.rf_level[frame_index] = GF_ARF_STD;
}
}
@@ -1528,8 +1476,7 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
// Reset the GF group data structures unless this is a key
// frame in which case it will already have been done.
if (cpi->common.frame_type != KEY_FRAME) {
twopass->gf_group_index = 0;
vp9_zero(twopass->gf_group_bit_allocation);
vp9_zero(twopass->gf_group);
}
vp9_clear_system_state();
@@ -1651,24 +1598,14 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
}
}
#if CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled) {
// Initialize frame coding order variables.
cpi->new_frame_coding_order_period = 0;
cpi->next_frame_in_order = 0;
cpi->arf_buffered = 0;
vp9_zero(cpi->frame_coding_order);
vp9_zero(cpi->arf_buffer_idx);
vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight));
}
#endif
// Set the interval until the next gf.
if (cpi->common.frame_type == KEY_FRAME || rc->source_alt_ref_active)
rc->baseline_gf_interval = i - 1;
else
rc->baseline_gf_interval = i;
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
// Should we use the alternate reference frame.
if (allow_alt_ref &&
(i < cpi->oxcf.lag_in_frames) &&
@@ -1681,62 +1618,11 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
&b_boost);
rc->source_alt_ref_pending = 1;
#if CONFIG_MULTIPLE_ARF
// Set the ARF schedule.
if (cpi->multi_arf_enabled) {
schedule_frames(cpi, 0, -(rc->baseline_gf_interval - 1), 2, 1, 0);
}
#endif
} else {
rc->gfu_boost = (int)boost_score;
rc->source_alt_ref_pending = 0;
#if CONFIG_MULTIPLE_ARF
// Set the GF schedule.
if (cpi->multi_arf_enabled) {
schedule_frames(cpi, 0, rc->baseline_gf_interval - 1, 2, 0, 0);
assert(cpi->new_frame_coding_order_period ==
rc->baseline_gf_interval);
}
#endif
}
#if CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled && (cpi->common.frame_type != KEY_FRAME)) {
int max_level = INT_MIN;
// Replace level indicator of -1 with correct level.
for (i = 0; i < cpi->frame_coding_order_period; ++i) {
if (cpi->arf_weight[i] > max_level) {
max_level = cpi->arf_weight[i];
}
}
++max_level;
for (i = 0; i < cpi->frame_coding_order_period; ++i) {
if (cpi->arf_weight[i] == -1) {
cpi->arf_weight[i] = max_level;
}
}
cpi->max_arf_level = max_level;
}
#if 0
if (cpi->multi_arf_enabled) {
printf("\nSchedule: ");
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
printf("%4d ", cpi->frame_coding_order[i]);
}
printf("\n");
printf("ARFref: ");
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
printf("%4d ", cpi->arf_buffer_idx[i]);
}
printf("\n");
printf("Weight: ");
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
printf("%4d ", cpi->arf_weight[i]);
}
printf("\n");
}
#endif
#endif
// Reset the file position.
reset_fpf_position(twopass, start_pos);
@@ -1886,8 +1772,7 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
cpi->common.frame_type = KEY_FRAME;
// Reset the GF group data structures.
twopass->gf_group_index = 0;
vp9_zero(twopass->gf_group_bit_allocation);
vp9_zero(twopass->gf_group);
// Is this a forced key frame by interval.
rc->this_key_frame_forced = rc->next_key_frame_forced;
@@ -2078,7 +1963,9 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
twopass->kf_group_bits -= kf_bits;
// Save the bits to spend on the key frame.
twopass->gf_group_bit_allocation[0] = kf_bits;
twopass->gf_group.bit_allocation[0] = kf_bits;
twopass->gf_group.update_type[0] = KF_UPDATE;
twopass->gf_group.rf_level[0] = KF_STD;
// Note the total error score of the kf group minus the key frame itself.
twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
@@ -2106,6 +1993,44 @@ void vbr_rate_correction(int * this_frame_target,
}
}
// Define the reference buffers that will be updated post encode.
void configure_buffer_updates(VP9_COMP *cpi) {
TWO_PASS *const twopass = &cpi->twopass;
cpi->rc.is_src_frame_alt_ref = 0;
switch (twopass->gf_group.update_type[twopass->gf_group.index]) {
case KF_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 1;
break;
case LF_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
break;
case GF_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 0;
break;
case OVERLAY_UPDATE:
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 0;
cpi->rc.is_src_frame_alt_ref = 1;
break;
case ARF_UPDATE:
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 1;
break;
default:
assert(0);
}
}
void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
@@ -2130,14 +2055,12 @@ void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
if (!twopass->stats_in)
return;
// Increment the gf group index.
++twopass->gf_group_index;
// If this is an arf frame then we dont want to read the stats file or
// advance the input pointer as we already have what we need.
if (cpi->refresh_alt_ref_frame) {
if (twopass->gf_group.update_type[twopass->gf_group.index] == ARF_UPDATE) {
int target_rate;
target_rate = twopass->gf_group_bit_allocation[twopass->gf_group_index];
configure_buffer_updates(cpi);
target_rate = twopass->gf_group.bit_allocation[twopass->gf_group.index];
target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
rc->base_frame_target = target_rate;
#ifdef LONG_TERM_VBR_CORRECTION
@@ -2201,15 +2124,7 @@ void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
// Define a new GF/ARF group. (Should always enter here for key frames).
if (rc->frames_till_gf_update_due == 0) {
#if CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled) {
define_fixed_arf_period(cpi);
} else {
#endif
define_gf_group(cpi, &this_frame_copy);
#if CONFIG_MULTIPLE_ARF
}
#endif
define_gf_group(cpi, &this_frame_copy);
if (twopass->gf_zeromotion_pct > 995) {
// As long as max_thresh for encode breakout is small enough, it is ok
@@ -2233,7 +2148,9 @@ void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
}
}
target_rate = twopass->gf_group_bit_allocation[twopass->gf_group_index];
configure_buffer_updates(cpi);
target_rate = twopass->gf_group.bit_allocation[twopass->gf_group.index];
if (cpi->common.frame_type == KEY_FRAME)
target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate);
else
@@ -2296,4 +2213,7 @@ void vp9_twopass_postencode_update(VP9_COMP *cpi) {
twopass->kf_group_bits -= bits_used;
}
twopass->kf_group_bits = MAX(twopass->kf_group_bits, 0);
// Increment the gf group index ready for the next frame.
++twopass->gf_group.index;
}

View File

@@ -12,6 +12,7 @@
#define VP9_ENCODER_VP9_FIRSTPASS_H_
#include "vp9/encoder/vp9_lookahead.h"
#include "vp9/encoder/vp9_ratectrl.h"
#ifdef __cplusplus
extern "C" {
@@ -39,6 +40,25 @@ typedef struct {
int64_t spatial_layer_id;
} FIRSTPASS_STATS;
typedef enum {
KF_UPDATE = 0,
LF_UPDATE = 1,
GF_UPDATE = 2,
ARF_UPDATE = 3,
OVERLAY_UPDATE = 4,
FRAME_UPDATE_TYPES = 5
} FRAME_UPDATE_TYPE;
typedef struct {
unsigned char index;
RATE_FACTOR_LEVEL rf_level[(MAX_LAG_BUFFERS * 2) + 1];
FRAME_UPDATE_TYPE update_type[(MAX_LAG_BUFFERS * 2) + 1];
unsigned char arf_src_offset[(MAX_LAG_BUFFERS * 2) + 1];
unsigned char arf_update_idx[(MAX_LAG_BUFFERS * 2) + 1];
unsigned char arf_ref_idx[(MAX_LAG_BUFFERS * 2) + 1];
int bit_allocation[(MAX_LAG_BUFFERS * 2) + 1];
} GF_GROUP;
typedef struct {
unsigned int section_intra_rating;
unsigned int next_iiratio;
@@ -68,8 +88,7 @@ typedef struct {
int active_worst_quality;
int gf_group_index;
int gf_group_bit_allocation[MAX_LAG_BUFFERS * 2];
GF_GROUP gf_group;
} TWO_PASS;
struct VP9_COMP;

View File

@@ -18,18 +18,6 @@
#include "vp9/encoder/vp9_extend.h"
#include "vp9/encoder/vp9_lookahead.h"
// The max of past frames we want to keep in the queue.
#define MAX_PRE_FRAMES 1
struct lookahead_ctx {
unsigned int max_sz; /* Absolute size of the queue */
unsigned int sz; /* Number of buffers currently in the queue */
unsigned int read_idx; /* Read index */
unsigned int write_idx; /* Write index */
struct lookahead_entry *buf; /* Buffer list */
};
/* Return the buffer at the given absolute index and increment the index */
static struct lookahead_entry *pop(struct lookahead_ctx *ctx,
unsigned int *idx) {

View File

@@ -14,6 +14,11 @@
#include "vpx_scale/yv12config.h"
#include "vpx/vpx_integer.h"
#ifdef CONFIG_SPATIAL_SVC
#include "vpx/vp8cx.h"
#include "vpx/vpx_encoder.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
@@ -25,10 +30,22 @@ struct lookahead_entry {
int64_t ts_start;
int64_t ts_end;
unsigned int flags;
#ifdef CONFIG_SPATIAL_SVC
vpx_svc_parameters_t svc_params[VPX_SS_MAX_LAYERS];
#endif
};
// The max of past frames we want to keep in the queue.
#define MAX_PRE_FRAMES 1
struct lookahead_ctx;
struct lookahead_ctx {
unsigned int max_sz; /* Absolute size of the queue */
unsigned int sz; /* Number of buffers currently in the queue */
unsigned int read_idx; /* Read index */
unsigned int write_idx; /* Write index */
struct lookahead_entry *buf; /* Buffer list */
};
/**\brief Initializes the lookahead stage
*

View File

@@ -64,6 +64,9 @@ static unsigned int do_16x16_motion_iteration(VP9_COMP *cpi,
xd->mi[0]->mbmi.mode = NEWMV;
xd->mi[0]->mbmi.mv[0].as_mv = *dst_mv;
#if CONFIG_INTERINTRA
xd->mi[0]->mbmi.ref_frame[1] = NONE;
#endif
vp9_build_inter_predictors_sby(xd, mb_row, mb_col, BLOCK_16X16);
/* restore UMV window */
@@ -141,6 +144,9 @@ static int find_best_16x16_intra(VP9_COMP *cpi, PREDICTION_MODE *pbest_mode) {
xd->mi[0]->mbmi.mode = mode;
vp9_predict_intra_block(xd, 0, 2, TX_16X16, mode,
#if CONFIG_FILTERINTRA
0,
#endif
x->plane[0].src.buf, x->plane[0].src.stride,
xd->plane[0].dst.buf, xd->plane[0].dst.stride,
0, 0, 0);

View File

@@ -1640,3 +1640,354 @@ int vp9_full_pixel_search(VP9_COMP *cpi, MACROBLOCK *x,
return var;
}
#if ((CONFIG_MASKED_INTERINTRA && CONFIG_INTERINTRA) || \
CONFIG_MASKED_INTERINTER)
/* returns subpixel variance error function */
#define DIST(r, c) \
vfp->msvf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z, \
src_stride, mask, mask_stride, &sse)
/* checks if (r, c) has better score than previous best */
#define MVC(r, c) \
(mvcost ? \
((mvjcost[((r) != rr) * 2 + ((c) != rc)] + \
mvcost[0][((r) - rr)] + mvcost[1][((c) - rc)]) * \
error_per_bit + 4096) >> 13 : 0)
#define CHECK_BETTER(v, r, c) \
if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \
thismse = (DIST(r, c)); \
if ((v = MVC(r, c) + thismse) < besterr) { \
besterr = v; \
br = r; \
bc = c; \
*distortion = thismse; \
*sse1 = sse; \
} \
} else { \
v = INT_MAX; \
}
int vp9_find_best_masked_sub_pixel_tree(const MACROBLOCK *x,
uint8_t *mask, int mask_stride,
MV *bestmv, const MV *ref_mv,
int allow_hp,
int error_per_bit,
const vp9_variance_fn_ptr_t *vfp,
int forced_stop,
int iters_per_step,
int *mvjcost, int *mvcost[2],
int *distortion,
unsigned int *sse1, int is_second) {
const uint8_t *const z = x->plane[0].src.buf;
const int src_stride = x->plane[0].src.stride;
const MACROBLOCKD *xd = &x->e_mbd;
unsigned int besterr = INT_MAX;
unsigned int sse;
unsigned int whichdir;
int thismse;
unsigned int halfiters = iters_per_step;
unsigned int quarteriters = iters_per_step;
unsigned int eighthiters = iters_per_step;
const int y_stride = xd->plane[0].pre[is_second].stride;
const int offset = bestmv->row * y_stride + bestmv->col;
const uint8_t *const y = xd->plane[0].pre[is_second].buf;
int rr = ref_mv->row;
int rc = ref_mv->col;
int br = bestmv->row * 8;
int bc = bestmv->col * 8;
int hstep = 4;
const int minc = MAX(x->mv_col_min * 8, ref_mv->col - MV_MAX);
const int maxc = MIN(x->mv_col_max * 8, ref_mv->col + MV_MAX);
const int minr = MAX(x->mv_row_min * 8, ref_mv->row - MV_MAX);
const int maxr = MIN(x->mv_row_max * 8, ref_mv->row + MV_MAX);
int tr = br;
int tc = bc;
// central mv
bestmv->row *= 8;
bestmv->col *= 8;
// calculate central point error
besterr = vfp->mvf(y + offset, y_stride, z, src_stride, mask, mask_stride,
sse1);
*distortion = besterr;
besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit);
// 1/2 pel
FIRST_LEVEL_CHECKS;
if (halfiters > 1) {
SECOND_LEVEL_CHECKS;
}
tr = br;
tc = bc;
// Note forced_stop: 0 - full, 1 - qtr only, 2 - half only
if (forced_stop != 2) {
hstep >>= 1;
FIRST_LEVEL_CHECKS;
if (quarteriters > 1) {
SECOND_LEVEL_CHECKS;
}
tr = br;
tc = bc;
}
if (allow_hp && vp9_use_mv_hp(ref_mv) && forced_stop == 0) {
hstep >>= 1;
FIRST_LEVEL_CHECKS;
if (eighthiters > 1) {
SECOND_LEVEL_CHECKS;
}
tr = br;
tc = bc;
}
// These lines insure static analysis doesn't warn that
// tr and tc aren't used after the above point.
(void) tr;
(void) tc;
bestmv->row = br;
bestmv->col = bc;
if ((abs(bestmv->col - ref_mv->col) > (MAX_FULL_PEL_VAL << 3)) ||
(abs(bestmv->row - ref_mv->row) > (MAX_FULL_PEL_VAL << 3)))
return INT_MAX;
return besterr;
}
#undef DIST
#undef MVC
#undef CHECK_BETTER
int vp9_get_masked_mvpred_var(const MACROBLOCK *x,
uint8_t *mask, int mask_stride,
const MV *best_mv, const MV *center_mv,
const vp9_variance_fn_ptr_t *vfp,
int use_mvcost, int is_second) {
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[is_second];
const MV mv = {best_mv->row * 8, best_mv->col * 8};
unsigned int unused;
return vfp->mvf(what->buf, what->stride,
get_buf_from_mv(in_what, best_mv), in_what->stride,
mask, mask_stride, &unused) +
(use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost,
x->mvcost, x->errorperbit) : 0);
}
int vp9_masked_refining_search_sad_c(const MACROBLOCK *x,
uint8_t *mask, int mask_stride,
MV *ref_mv, int error_per_bit,
int search_range,
const vp9_variance_fn_ptr_t *fn_ptr,
const MV *center_mv, int is_second) {
const MV neighbors[4] = {{ -1, 0}, {0, -1}, {0, 1}, {1, 0}};
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[is_second];
const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
unsigned int best_sad = fn_ptr->msdf(what->buf, what->stride,
get_buf_from_mv(in_what, ref_mv),
in_what->stride, mask, mask_stride) +
mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit);
int i, j;
for (i = 0; i < search_range; i++) {
int best_site = -1;
for (j = 0; j < 4; j++) {
const MV mv = {ref_mv->row + neighbors[j].row,
ref_mv->col + neighbors[j].col};
if (is_mv_in(x, &mv)) {
unsigned int sad = fn_ptr->msdf(what->buf, what->stride,
get_buf_from_mv(in_what, &mv), in_what->stride, mask, mask_stride);
if (sad < best_sad) {
sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit);
if (sad < best_sad) {
best_sad = sad;
best_site = j;
}
}
}
}
if (best_site == -1) {
break;
} else {
ref_mv->row += neighbors[best_site].row;
ref_mv->col += neighbors[best_site].col;
}
}
return best_sad;
}
int vp9_masked_diamond_search_sad_c(const MACROBLOCK *x,
const search_site_config *cfg,
uint8_t *mask, int mask_stride,
MV *ref_mv, MV *best_mv,
int search_param, int sad_per_bit, int *num00,
const vp9_variance_fn_ptr_t *fn_ptr,
const MV *center_mv, int is_second) {
const MACROBLOCKD *const xd = &x->e_mbd;
const struct buf_2d *const what = &x->plane[0].src;
const struct buf_2d *const in_what = &xd->plane[0].pre[is_second];
// search_param determines the length of the initial step and hence the number
// of iterations
// 0 = initial step (MAX_FIRST_STEP) pel : 1 = (MAX_FIRST_STEP/2) pel, 2 =
// (MAX_FIRST_STEP/4) pel... etc.
const search_site *const ss = &cfg->ss[search_param * cfg->searches_per_step];
const int tot_steps = (cfg->ss_count / cfg->searches_per_step) - search_param;
const MV fcenter_mv = {center_mv->row >> 3, center_mv->col >> 3};
const uint8_t *best_address, *in_what_ref;
int best_sad = INT_MAX;
int best_site = 0;
int last_site = 0;
int i, j, step;
clamp_mv(ref_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max);
in_what_ref = get_buf_from_mv(in_what, ref_mv);
best_address = in_what_ref;
*num00 = 0;
*best_mv = *ref_mv;
// Check the starting position
best_sad = fn_ptr->msdf(what->buf, what->stride,
best_address, in_what->stride,
mask, mask_stride) +
mvsad_err_cost(x, best_mv, &fcenter_mv, sad_per_bit);
i = 1;
for (step = 0; step < tot_steps; step++) {
for (j = 0; j < cfg->searches_per_step; j++) {
const MV mv = {best_mv->row + ss[i].mv.row,
best_mv->col + ss[i].mv.col};
if (is_mv_in(x, &mv)) {
int sad = fn_ptr->msdf(what->buf, what->stride,
best_address + ss[i].offset, in_what->stride,
mask, mask_stride);
if (sad < best_sad) {
sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit);
if (sad < best_sad) {
best_sad = sad;
best_site = i;
}
}
}
i++;
}
if (best_site != last_site) {
best_mv->row += ss[best_site].mv.row;
best_mv->col += ss[best_site].mv.col;
best_address += ss[best_site].offset;
last_site = best_site;
#if defined(NEW_DIAMOND_SEARCH)
while (1) {
const MV this_mv = {best_mv->row + ss[best_site].mv.row,
best_mv->col + ss[best_site].mv.col};
if (is_mv_in(x, &this_mv)) {
int sad = fn_ptr->msdf(what->buf, what->stride,
best_address + ss[best_site].offset,
in_what->stride, mask, mask_stride);
if (sad < best_sad) {
sad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit);
if (sad < best_sad) {
best_sad = sad;
best_mv->row += ss[best_site].mv.row;
best_mv->col += ss[best_site].mv.col;
best_address += ss[best_site].offset;
continue;
}
}
}
break;
}
#endif
} else if (best_address == in_what_ref) {
(*num00)++;
}
}
return best_sad;
}
int vp9_masked_full_pixel_diamond(const VP9_COMP *cpi, MACROBLOCK *x,
uint8_t *mask, int mask_stride,
MV *mvp_full, int step_param,
int sadpb, int further_steps, int do_refine,
const vp9_variance_fn_ptr_t *fn_ptr,
const MV *ref_mv, MV *dst_mv,
int is_second) {
MV temp_mv;
int thissme, n, num00 = 0;
int bestsme = vp9_masked_diamond_search_sad_c(x, &cpi->ss_cfg,
mask, mask_stride,
mvp_full, &temp_mv,
step_param, sadpb, &n,
fn_ptr, ref_mv, is_second);
if (bestsme < INT_MAX)
bestsme = vp9_get_masked_mvpred_var(x, mask, mask_stride, &temp_mv, ref_mv,
fn_ptr, 1, is_second);
*dst_mv = temp_mv;
// If there won't be more n-step search, check to see if refining search is
// needed.
if (n > further_steps)
do_refine = 0;
while (n < further_steps) {
++n;
if (num00) {
num00--;
} else {
thissme = vp9_masked_diamond_search_sad_c(x, &cpi->ss_cfg,
mask, mask_stride,
mvp_full, &temp_mv,
step_param + n, sadpb, &num00,
fn_ptr, ref_mv, is_second);
if (thissme < INT_MAX)
thissme = vp9_get_masked_mvpred_var(x, mask, mask_stride,
&temp_mv, ref_mv, fn_ptr, 1,
is_second);
// check to see if refining search is needed.
if (num00 > further_steps - n)
do_refine = 0;
if (thissme < bestsme) {
bestsme = thissme;
*dst_mv = temp_mv;
}
}
}
// final 1-away diamond refining search
if (do_refine) {
const int search_range = 8;
MV best_mv = *dst_mv;
thissme = vp9_masked_refining_search_sad_c(x, mask, mask_stride,
&best_mv, sadpb, search_range,
fn_ptr, ref_mv, is_second);
if (thissme < INT_MAX)
thissme = vp9_get_masked_mvpred_var(x, mask, mask_stride,
&best_mv, ref_mv, fn_ptr, 1,
is_second);
if (thissme < bestsme) {
bestsme = thissme;
*dst_mv = best_mv;
}
}
return bestsme;
}
#endif

View File

@@ -153,6 +153,29 @@ int vp9_full_pixel_search(struct VP9_COMP *cpi, MACROBLOCK *x,
int step_param, int error_per_bit,
const MV *ref_mv, MV *tmp_mv,
int var_max, int rd);
#if ((CONFIG_MASKED_INTERINTRA && CONFIG_INTERINTRA) || \
CONFIG_MASKED_INTERINTER)
int vp9_find_best_masked_sub_pixel_tree(const MACROBLOCK *x,
uint8_t *mask, int mask_stride,
MV *bestmv, const MV *ref_mv,
int allow_hp,
int error_per_bit,
const vp9_variance_fn_ptr_t *vfp,
int forced_stop,
int iters_per_step,
int *mvjcost, int *mvcost[2],
int *distortion,
unsigned int *sse1, int is_second);
int vp9_masked_full_pixel_diamond(const struct VP9_COMP *cpi, MACROBLOCK *x,
uint8_t *mask, int mask_stride,
MV *mvp_full, int step_param,
int sadpb, int further_steps, int do_refine,
const vp9_variance_fn_ptr_t *fn_ptr,
const MV *ref_mv, MV *dst_mv,
int is_second);
#endif
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -23,9 +23,89 @@
#include "vp9/common/vp9_reconintra.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_pickmode.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rdopt.h"
static int mv_refs_rt(const VP9_COMMON *cm, const MACROBLOCKD *xd,
const TileInfo *const tile,
MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame,
int_mv *mv_ref_list,
int mi_row, int mi_col) {
const int *ref_sign_bias = cm->ref_frame_sign_bias;
int i, refmv_count = 0;
const POSITION *const mv_ref_search = mv_ref_blocks[mi->mbmi.sb_type];
int different_ref_found = 0;
int context_counter = 0;
int const_motion = 0;
// Blank the reference vector list
vpx_memset(mv_ref_list, 0, sizeof(*mv_ref_list) * MAX_MV_REF_CANDIDATES);
// The nearest 2 blocks are treated differently
// if the size < 8x8 we get the mv from the bmi substructure,
// and we also need to keep a mode count.
for (i = 0; i < 2; ++i) {
const POSITION *const mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MODE_INFO *const candidate_mi = xd->mi[mv_ref->col + mv_ref->row *
xd->mi_stride];
const MB_MODE_INFO *const candidate = &candidate_mi->mbmi;
// Keep counts for entropy encoding.
context_counter += mode_2_counter[candidate->mode];
different_ref_found = 1;
if (candidate->ref_frame[0] == ref_frame)
ADD_MV_REF_LIST(get_sub_block_mv(candidate_mi, 0, mv_ref->col, -1));
}
}
const_motion = 1;
// Check the rest of the neighbors in much the same way
// as before except we don't need to keep track of sub blocks or
// mode counts.
for (; i < MVREF_NEIGHBOURS && !refmv_count; ++i) {
const POSITION *const mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row *
xd->mi_stride]->mbmi;
different_ref_found = 1;
if (candidate->ref_frame[0] == ref_frame)
ADD_MV_REF_LIST(candidate->mv[0]);
}
}
// Since we couldn't find 2 mvs from the same reference frame
// go back through the neighbors and find motion vectors from
// different reference frames.
if (different_ref_found && !refmv_count) {
for (i = 0; i < MVREF_NEIGHBOURS; ++i) {
const POSITION *mv_ref = &mv_ref_search[i];
if (is_inside(tile, mi_col, mi_row, cm->mi_rows, mv_ref)) {
const MB_MODE_INFO *const candidate = &xd->mi[mv_ref->col + mv_ref->row
* xd->mi_stride]->mbmi;
// If the candidate is INTRA we don't want to consider its mv.
IF_DIFF_REF_FRAME_ADD_MV(candidate);
}
}
}
Done:
mi->mbmi.mode_context[ref_frame] = counter_to_context[context_counter];
// Clamp vectors
for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i)
clamp_mv_ref(&mv_ref_list[i].as_mv, xd);
return const_motion;
}
static void full_pixel_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int_mv *tmp_mv, int *rate_mv) {
@@ -172,15 +252,31 @@ static void model_rd_for_sb_y(VP9_COMP *cpi, BLOCK_SIZE bsize,
else
x->skip_txfm = 0;
// TODO(jingning) This is a temporary solution to account for frames with
// light changes. Need to customize the rate-distortion modeling for non-RD
// mode decision.
if ((sse >> 3) > var)
sse = var;
vp9_model_rd_from_var_lapndz(var + sse, 1 << num_pels_log2_lookup[bsize],
ac_quant >> 3, &rate, &dist);
*out_rate_sum = rate;
vp9_model_rd_from_var_lapndz(sse - var, 1 << num_pels_log2_lookup[bsize],
dc_quant >> 3, &rate, &dist);
*out_rate_sum = rate >> 1;
*out_dist_sum = dist << 3;
vp9_model_rd_from_var_lapndz(var, 1 << num_pels_log2_lookup[bsize],
ac_quant >> 3, &rate, &dist);
*out_rate_sum += rate;
*out_dist_sum += dist << 4;
}
static int get_pred_buffer(PRED_BUFFER *p, int len) {
int i;
for (i = 0; i < len; i++) {
if (!p[i].in_use) {
p[i].in_use = 1;
return i;
}
}
return -1;
}
static void free_pred_buffer(PRED_BUFFER *p) {
p->in_use = 0;
}
// TODO(jingning) placeholder for inter-frame non-RD mode decision.
@@ -228,6 +324,32 @@ int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
int bsl = mi_width_log2_lookup[bsize];
const int pred_filter_search = (((mi_row + mi_col) >> bsl) +
get_chessboard_index(cm)) % 2;
int const_motion[MAX_REF_FRAMES] = { 0 };
// For speed 6, the result of interp filter is reused later in actual encoding
// process.
int bh = num_4x4_blocks_high_lookup[bsize] << 2;
int bw = num_4x4_blocks_wide_lookup[bsize] << 2;
int pixels_in_block = bh * bw;
// tmp[3] points to dst buffer, and the other 3 point to allocated buffers.
PRED_BUFFER tmp[4];
DECLARE_ALIGNED_ARRAY(16, uint8_t, pred_buf, 3 * 64 * 64);
struct buf_2d orig_dst = pd->dst;
PRED_BUFFER *best_pred = NULL;
PRED_BUFFER *this_mode_pred = NULL;
int i;
if (cpi->sf.reuse_inter_pred_sby) {
for (i = 0; i < 3; i++) {
tmp[i].data = &pred_buf[pixels_in_block * i];
tmp[i].stride = bw;
tmp[i].in_use = 0;
}
tmp[3].data = pd->dst.buf;
tmp[3].stride = pd->dst.stride;
tmp[3].in_use = 0;
}
x->skip_encode = cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH;
@@ -241,18 +363,36 @@ int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
mbmi->ref_frame[0] = NONE;
mbmi->ref_frame[1] = NONE;
mbmi->tx_size = MIN(max_txsize_lookup[bsize],
tx_mode_to_biggest_tx_size[cpi->common.tx_mode]);
mbmi->interp_filter = cpi->common.interp_filter == SWITCHABLE ?
EIGHTTAP : cpi->common.interp_filter;
tx_mode_to_biggest_tx_size[cm->tx_mode]);
mbmi->interp_filter = cm->interp_filter == SWITCHABLE ?
EIGHTTAP : cm->interp_filter;
mbmi->skip = 0;
mbmi->segment_id = segment_id;
for (ref_frame = LAST_FRAME; ref_frame <= LAST_FRAME ; ++ref_frame) {
x->pred_mv_sad[ref_frame] = INT_MAX;
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
vp9_setup_buffer_inter(cpi, x, tile,
ref_frame, bsize, mi_row, mi_col,
frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
int_mv *const candidates = mbmi->ref_mvs[ref_frame];
const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
vp9_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col,
sf, sf);
if (cm->coding_use_prev_mi)
vp9_find_mv_refs(cm, xd, tile, xd->mi[0], ref_frame,
candidates, mi_row, mi_col);
else
const_motion[ref_frame] = mv_refs_rt(cm, xd, tile, xd->mi[0],
ref_frame, candidates,
mi_row, mi_col);
vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, candidates,
&frame_mv[NEARESTMV][ref_frame],
&frame_mv[NEARMV][ref_frame]);
if (!vp9_is_scaled(sf) && bsize >= BLOCK_8X8)
vp9_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride,
ref_frame, bsize);
}
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
frame_mv[ZEROMV][ref_frame].as_int = 0;
@@ -286,6 +426,10 @@ int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
int rate_mv = 0;
if (const_motion[ref_frame] &&
(this_mode == NEARMV || this_mode == ZEROMV))
continue;
if (!(cpi->sf.inter_mode_mask[bsize] & (1 << this_mode)))
continue;
@@ -324,6 +468,16 @@ int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
// Search for the best prediction filter type, when the resulting
// motion vector is at sub-pixel accuracy level for luma component, i.e.,
// the last three bits are all zeros.
if (cpi->sf.reuse_inter_pred_sby) {
if (this_mode == NEARESTMV) {
this_mode_pred = &tmp[3];
} else {
this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
pd->dst.buf = this_mode_pred->data;
pd->dst.stride = bw;
}
}
if ((this_mode == NEWMV || filter_ref == SWITCHABLE) &&
pred_filter_search &&
((mbmi->mv[0].as_mv.row & 0x07) != 0 ||
@@ -334,6 +488,7 @@ int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
unsigned int pf_sse[3];
int64_t best_cost = INT64_MAX;
INTERP_FILTER best_filter = SWITCHABLE, filter;
PRED_BUFFER *current_pred = this_mode_pred;
for (filter = EIGHTTAP; filter <= EIGHTTAP_SHARP; ++filter) {
int64_t cost;
@@ -345,12 +500,28 @@ int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
vp9_get_switchable_rate(cpi) + pf_rate[filter],
pf_dist[filter]);
if (cost < best_cost) {
best_filter = filter;
best_cost = cost;
skip_txfm = x->skip_txfm;
best_filter = filter;
best_cost = cost;
skip_txfm = x->skip_txfm;
if (cpi->sf.reuse_inter_pred_sby) {
if (this_mode_pred != current_pred) {
free_pred_buffer(this_mode_pred);
this_mode_pred = current_pred;
}
if (filter < EIGHTTAP_SHARP) {
current_pred = &tmp[get_pred_buffer(tmp, 3)];
pd->dst.buf = current_pred->data;
pd->dst.stride = bw;
}
}
}
}
if (cpi->sf.reuse_inter_pred_sby && this_mode_pred != current_pred)
free_pred_buffer(current_pred);
mbmi->interp_filter = best_filter;
rate = pf_rate[mbmi->interp_filter];
dist = pf_dist[mbmi->interp_filter];
@@ -370,31 +541,35 @@ int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
// Skipping checking: test to see if this block can be reconstructed by
// prediction only.
if (!x->in_active_map) {
x->skip = 1;
} else if (cpi->allow_encode_breakout && x->encode_breakout) {
if (cpi->allow_encode_breakout) {
const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]);
unsigned int var = var_y, sse = sse_y;
// Skipping threshold for ac.
unsigned int thresh_ac;
// Skipping threshold for dc.
unsigned int thresh_dc;
// Set a maximum for threshold to avoid big PSNR loss in low bit rate
// case. Use extreme low threshold for static frames to limit skipping.
const unsigned int max_thresh = 36000;
// The encode_breakout input
const unsigned int min_thresh =
MIN(((unsigned int)x->encode_breakout << 4), max_thresh);
if (x->encode_breakout > 0) {
// Set a maximum for threshold to avoid big PSNR loss in low bit rate
// case. Use extreme low threshold for static frames to limit
// skipping.
const unsigned int max_thresh = 36000;
// The encode_breakout input
const unsigned int min_thresh =
MIN(((unsigned int)x->encode_breakout << 4), max_thresh);
// Calculate threshold according to dequant value.
thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) / 9;
thresh_ac = clamp(thresh_ac, min_thresh, max_thresh);
// Calculate threshold according to dequant value.
thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) / 9;
thresh_ac = clamp(thresh_ac, min_thresh, max_thresh);
// Adjust ac threshold according to partition size.
thresh_ac >>= 8 - (b_width_log2_lookup[bsize] +
b_height_log2_lookup[bsize]);
// Adjust ac threshold according to partition size.
thresh_ac >>=
8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6);
thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6);
} else {
thresh_ac = 0;
thresh_dc = 0;
}
// Y skipping condition checking for ac and dc.
if (var <= thresh_ac && (sse - var) <= thresh_dc) {
@@ -451,6 +626,16 @@ int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
best_pred_filter = mbmi->interp_filter;
best_ref_frame = ref_frame;
skip_txfm = x->skip_txfm;
if (cpi->sf.reuse_inter_pred_sby) {
if (best_pred != NULL)
free_pred_buffer(best_pred);
best_pred = this_mode_pred;
}
} else {
if (cpi->sf.reuse_inter_pred_sby)
free_pred_buffer(this_mode_pred);
}
if (x->skip)
@@ -458,6 +643,19 @@ int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
}
}
// If best prediction is not in dst buf, then copy the prediction block from
// temp buf to dst buf.
if (cpi->sf.reuse_inter_pred_sby && best_pred->data != orig_dst.buf) {
uint8_t *copy_from, *copy_to;
pd->dst = orig_dst;
copy_to = pd->dst.buf;
copy_from = best_pred->data;
vp9_convolve_copy(copy_from, bw, copy_to, pd->dst.stride, NULL, 0, NULL, 0,
bw, bh);
}
mbmi->mode = best_mode;
mbmi->interp_filter = best_pred_filter;
@@ -469,18 +667,51 @@ int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
// Perform intra prediction search, if the best SAD is above a certain
// threshold.
if (!x->skip && best_rd > inter_mode_thresh &&
bsize < cpi->sf.max_intra_bsize) {
for (this_mode = DC_PRED; this_mode <= DC_PRED; ++this_mode) {
vp9_predict_intra_block(xd, 0, b_width_log2(bsize),
mbmi->tx_size, this_mode,
&p->src.buf[0], p->src.stride,
&pd->dst.buf[0], pd->dst.stride, 0, 0, 0);
bsize <= cpi->sf.max_intra_bsize) {
int i, j;
const int step = 1 << mbmi->tx_size;
const int width = num_4x4_blocks_wide_lookup[bsize];
const int height = num_4x4_blocks_high_lookup[bsize];
int rate2 = 0;
int64_t dist2 = 0;
const int dst_stride = pd->dst.stride;
const int src_stride = p->src.stride;
int block_idx = 0;
for (this_mode = DC_PRED; this_mode <= DC_PRED; ++this_mode) {
if (cpi->sf.reuse_inter_pred_sby) {
pd->dst.buf = tmp[0].data;
pd->dst.stride = bw;
}
for (j = 0; j < height; j += step) {
for (i = 0; i < width; i += step) {
vp9_predict_intra_block(xd, block_idx, b_width_log2(bsize),
mbmi->tx_size, this_mode,
#if CONFIG_FILTERINTRA
0,
#endif
&p->src.buf[4 * (j * dst_stride + i)],
src_stride,
&pd->dst.buf[4 * (j * dst_stride + i)],
dst_stride, i, j, 0);
model_rd_for_sb_y(cpi, bsize, x, xd, &rate, &dist, &var_y, &sse_y);
rate2 += rate;
dist2 += dist;
++block_idx;
}
}
rate = rate2;
dist = dist2;
model_rd_for_sb_y(cpi, bsize, x, xd, &rate, &dist, &var_y, &sse_y);
rate += cpi->mbmode_cost[this_mode];
rate += intra_cost_penalty;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, dist);
if (cpi->sf.reuse_inter_pred_sby)
pd->dst = orig_dst;
if (this_rd + intra_mode_cost < best_rd) {
best_rd = this_rd;
*returnrate = rate;
@@ -494,9 +725,9 @@ int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
}
}
}
#if CONFIG_DENOISING
vp9_denoiser_denoise(&cpi->denoiser, x, cpi->common.mi_grid_visible, mi_row,
mi_col, bsize);
vp9_denoiser_denoise(&cpi->denoiser, x, mi_row, mi_col, bsize);
#endif
return INT64_MAX;

View File

@@ -17,6 +17,12 @@
extern "C" {
#endif
typedef struct {
uint8_t *data;
int stride;
int in_use;
} PRED_BUFFER;
int64_t vp9_pick_inter_mode(VP9_COMP *cpi, MACROBLOCK *x,
const struct TileInfo *const tile,
int mi_row, int mi_col,

View File

@@ -186,6 +186,8 @@ static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
}
void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
int i;
if (pass == 0 && oxcf->rc_mode == VPX_CBR) {
rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
@@ -227,9 +229,9 @@ void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
rc->tot_q = 0.0;
rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q);
rc->rate_correction_factor = 1.0;
rc->key_frame_rate_correction_factor = 1.0;
rc->gf_rate_correction_factor = 1.0;
for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
rc->rate_correction_factors[i] = 1.0;
}
}
int vp9_rc_drop_frame(VP9_COMP *cpi) {
@@ -271,28 +273,40 @@ int vp9_rc_drop_frame(VP9_COMP *cpi) {
}
static double get_rate_correction_factor(const VP9_COMP *cpi) {
const RATE_CONTROL *const rc = &cpi->rc;
if (cpi->common.frame_type == KEY_FRAME) {
return cpi->rc.key_frame_rate_correction_factor;
return rc->rate_correction_factors[KF_STD];
} else if (cpi->pass == 2) {
RATE_FACTOR_LEVEL rf_lvl =
cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
return rc->rate_correction_factors[rf_lvl];
} else {
if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
!cpi->rc.is_src_frame_alt_ref &&
!rc->is_src_frame_alt_ref &&
!(cpi->use_svc && cpi->oxcf.rc_mode == VPX_CBR))
return cpi->rc.gf_rate_correction_factor;
return rc->rate_correction_factors[GF_ARF_STD];
else
return cpi->rc.rate_correction_factor;
return rc->rate_correction_factors[INTER_NORMAL];
}
}
static void set_rate_correction_factor(VP9_COMP *cpi, double factor) {
RATE_CONTROL *const rc = &cpi->rc;
if (cpi->common.frame_type == KEY_FRAME) {
cpi->rc.key_frame_rate_correction_factor = factor;
rc->rate_correction_factors[KF_STD] = factor;
} else if (cpi->pass == 2) {
RATE_FACTOR_LEVEL rf_lvl =
cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
rc->rate_correction_factors[rf_lvl] = factor;
} else {
if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
!cpi->rc.is_src_frame_alt_ref &&
!rc->is_src_frame_alt_ref &&
!(cpi->use_svc && cpi->oxcf.rc_mode == VPX_CBR))
cpi->rc.gf_rate_correction_factor = factor;
rc->rate_correction_factors[GF_ARF_STD] = factor;
else
cpi->rc.rate_correction_factor = factor;
rc->rate_correction_factors[INTER_NORMAL] = factor;
}
}
@@ -628,8 +642,8 @@ static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
if (frame_is_intra_only(cm)) {
active_best_quality = rc->best_quality;
#if !CONFIG_MULTIPLE_ARF
// Handle the special case for key frames forced when we have75 reached
// Handle the special case for key frames forced when we have reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping.
if (rc->this_key_frame_forced) {
@@ -660,13 +674,6 @@ static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
active_best_quality += vp9_compute_qdelta(rc, q_val,
q_val * q_adj_factor);
}
#else
double current_q;
// Force the KF quantizer to be 30% of the active_worst_quality.
current_q = vp9_convert_qindex_to_q(active_worst_quality);
active_best_quality = active_worst_quality
+ vp9_compute_qdelta(rc, current_q, current_q * 0.3);
#endif
} else if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
// Use the lower of active_worst_quality and recent
@@ -768,23 +775,7 @@ static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
q = *top_index;
}
}
#if CONFIG_MULTIPLE_ARF
// Force the quantizer determined by the coding order pattern.
if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
cpi->oxcf.rc_mode != VPX_Q) {
double new_q;
double current_q = vp9_convert_qindex_to_q(active_worst_quality);
int level = cpi->this_frame_weight;
assert(level >= 0);
new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level)));
q = active_worst_quality +
vp9_compute_qdelta(rc, current_q, new_q);
*bottom_index = q;
*top_index = q;
printf("frame:%d q:%d\n", cm->current_video_frame, q);
}
#endif
assert(*top_index <= rc->worst_quality &&
*top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
@@ -805,7 +796,6 @@ static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
int q;
if (frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) {
#if !CONFIG_MULTIPLE_ARF
// Handle the special case for key frames forced when we have75 reached
// the maximum key frame interval. Here force the Q to a range
// based on the ambient Q to reduce the risk of popping.
@@ -840,13 +830,6 @@ static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
active_best_quality += vp9_compute_qdelta(rc, q_val,
q_val * q_adj_factor);
}
#else
double current_q;
// Force the KF quantizer to be 30% of the active_worst_quality.
current_q = vp9_convert_qindex_to_q(active_worst_quality);
active_best_quality = active_worst_quality
+ vp9_compute_qdelta(rc, current_q, current_q * 0.3);
#endif
} else if (!rc->is_src_frame_alt_ref &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
// Use the lower of active_worst_quality and recent
@@ -909,21 +892,20 @@ static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
*bottom_index = active_best_quality;
#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
vp9_clear_system_state();
{
int qdelta = 0;
vp9_clear_system_state();
// Limit Q range for the adaptive loop.
if ((cm->frame_type == KEY_FRAME || vp9_is_upper_layer_key_frame(cpi)) &&
!rc->this_key_frame_forced) {
qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
active_worst_quality, 2.0);
} else if (!rc->is_src_frame_alt_ref &&
(oxcf->rc_mode != VPX_CBR) &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
active_worst_quality, 1.75);
}
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
1.00, // INTER_NORMAL
1.00, // INTER_HIGH
1.50, // GF_ARF_LOW
1.75, // GF_ARF_STD
2.00, // KF_STD
};
const double rate_factor =
rate_factor_deltas[gf_group->rf_level[gf_group->index]];
int qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
active_worst_quality, rate_factor);
*top_index = active_worst_quality + qdelta;
*top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
}
@@ -945,23 +927,7 @@ static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
q = *top_index;
}
}
#if CONFIG_MULTIPLE_ARF
// Force the quantizer determined by the coding order pattern.
if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
cpi->oxcf.rc_mode != VPX_Q) {
double new_q;
double current_q = vp9_convert_qindex_to_q(active_worst_quality);
int level = cpi->this_frame_weight;
assert(level >= 0);
new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level)));
q = active_worst_quality +
vp9_compute_qdelta(rc, current_q, new_q);
*bottom_index = q;
*top_index = q;
printf("frame:%d q:%d\n", cm->current_video_frame, q);
}
#endif
assert(*top_index <= rc->worst_quality &&
*top_index >= rc->best_quality);
assert(*bottom_index <= rc->worst_quality &&
@@ -1026,11 +992,8 @@ static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
RATE_CONTROL *const rc = &cpi->rc;
rc->frames_since_golden = 0;
#if CONFIG_MULTIPLE_ARF
if (!cpi->multi_arf_enabled)
#endif
// Clear the alternate reference update pending flag.
rc->source_alt_ref_pending = 0;
// Mark the alt ref as done (setting to 0 means no further alt refs pending).
rc->source_alt_ref_pending = 0;
// Set the alternate reference frame active flag
rc->source_alt_ref_active = 1;
@@ -1044,8 +1007,13 @@ static void update_golden_frame_stats(VP9_COMP *cpi) {
// this frame refreshes means next frames don't unless specified by user
rc->frames_since_golden = 0;
if (!rc->source_alt_ref_pending)
if (cpi->pass == 2) {
if (!rc->source_alt_ref_pending &&
cpi->twopass.gf_group.rf_level[0] == GF_ARF_STD)
rc->source_alt_ref_active = 0;
} else if (!rc->source_alt_ref_pending) {
rc->source_alt_ref_active = 0;
}
// Decrement count down till next gf
if (rc->frames_till_gf_update_due > 0)
@@ -1388,6 +1356,8 @@ void vp9_rc_set_gf_max_interval(const VP9EncoderConfig *const oxcf,
// Extended interval for genuinely static scenes
rc->static_scene_max_gf_interval = oxcf->key_freq >> 1;
if (rc->static_scene_max_gf_interval > (MAX_LAG_BUFFERS * 2))
rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2;
if (is_altref_enabled(oxcf)) {
if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1)

View File

@@ -23,6 +23,15 @@ extern "C" {
// Bits Per MB at different Q (Multiplied by 512)
#define BPER_MB_NORMBITS 9
typedef enum {
INTER_NORMAL = 0,
INTER_HIGH = 1,
GF_ARF_LOW = 2,
GF_ARF_STD = 3,
KF_STD = 4,
RATE_FACTOR_LEVELS = 5
} RATE_FACTOR_LEVEL;
typedef struct {
// Rate targetting variables
int base_frame_target; // A baseline frame target before adjustment
@@ -37,9 +46,7 @@ typedef struct {
int last_boost;
int kf_boost;
double rate_correction_factor;
double key_frame_rate_correction_factor;
double gf_rate_correction_factor;
double rate_correction_factors[RATE_FACTOR_LEVELS];
int frames_since_golden;
int frames_till_gf_update_due;

File diff suppressed because it is too large Load Diff

View File

@@ -13,7 +13,10 @@
#include <limits.h>
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/encoder/vp9_block.h"
#include "vp9/encoder/vp9_context_tree.h"
#ifdef __cplusplus
extern "C" {
@@ -30,21 +33,125 @@ extern "C" {
#define INVALID_MV 0x80008000
#if !CONFIG_INTERINTRA
#define MAX_MODES 30
#else
#define MAX_MODES 42
#endif
#define MAX_REFS 6
// This enumerator type needs to be kept aligned with the mode order in
// const MODE_DEFINITION vp9_mode_order[MAX_MODES] used in the rd code.
typedef enum {
THR_NEARESTMV,
THR_NEARESTA,
THR_NEARESTG,
THR_DC,
THR_NEWMV,
THR_NEWA,
THR_NEWG,
THR_NEARMV,
THR_NEARA,
THR_COMP_NEARESTLA,
THR_COMP_NEARESTGA,
THR_TM,
THR_COMP_NEARLA,
THR_COMP_NEWLA,
THR_NEARG,
THR_COMP_NEARGA,
THR_COMP_NEWGA,
THR_ZEROMV,
THR_ZEROG,
THR_ZEROA,
THR_COMP_ZEROLA,
THR_COMP_ZEROGA,
THR_H_PRED,
THR_V_PRED,
THR_D135_PRED,
THR_D207_PRED,
THR_D153_PRED,
THR_D63_PRED,
THR_D117_PRED,
THR_D45_PRED,
#if CONFIG_INTERINTRA
THR_COMP_INTERINTRA_ZEROL,
THR_COMP_INTERINTRA_NEARESTL,
THR_COMP_INTERINTRA_NEARL,
THR_COMP_INTERINTRA_NEWL,
THR_COMP_INTERINTRA_ZEROG,
THR_COMP_INTERINTRA_NEARESTG,
THR_COMP_INTERINTRA_NEARG,
THR_COMP_INTERINTRA_NEWG,
THR_COMP_INTERINTRA_ZEROA,
THR_COMP_INTERINTRA_NEARESTA,
THR_COMP_INTERINTRA_NEARA,
THR_COMP_INTERINTRA_NEWA,
#endif
} THR_MODES;
typedef enum {
THR_LAST,
THR_GOLD,
THR_ALTR,
THR_COMP_LA,
THR_COMP_GA,
THR_INTRA,
} THR_MODES_SUB8X8;
typedef struct RD_OPT {
// Thresh_mult is used to set a threshold for the rd score. A higher value
// means that we will accept the best mode so far more often. This number
// is used in combination with the current block size, and thresh_freq_fact
// to pick a threshold.
int thresh_mult[MAX_MODES];
int thresh_mult_sub8x8[MAX_REFS];
int threshes[MAX_SEGMENTS][BLOCK_SIZES][MAX_MODES];
int thresh_freq_fact[BLOCK_SIZES][MAX_MODES];
int64_t comp_pred_diff[REFERENCE_MODES];
int64_t prediction_type_threshes[MAX_REF_FRAMES][REFERENCE_MODES];
int64_t tx_select_diff[TX_MODES];
// FIXME(rbultje) can this overflow?
int tx_select_threshes[MAX_REF_FRAMES][TX_MODES];
int64_t filter_diff[SWITCHABLE_FILTER_CONTEXTS];
int64_t filter_threshes[MAX_REF_FRAMES][SWITCHABLE_FILTER_CONTEXTS];
int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS];
int64_t mask_filter;
int RDMULT;
int RDDIV;
} RD_OPT;
struct TileInfo;
struct VP9_COMP;
struct macroblock;
int vp9_compute_rd_mult(const VP9_COMP *cpi, int qindex);
int vp9_compute_rd_mult(const struct VP9_COMP *cpi, int qindex);
void vp9_initialize_rd_consts(VP9_COMP *cpi);
void vp9_initialize_rd_consts(struct VP9_COMP *cpi);
void vp9_initialize_me_consts(VP9_COMP *cpi, int qindex);
void vp9_initialize_me_consts(struct VP9_COMP *cpi, int qindex);
void vp9_model_rd_from_var_lapndz(unsigned int var, unsigned int n,
unsigned int qstep, int *rate,
int64_t *dist);
int vp9_get_switchable_rate(const VP9_COMP *cpi);
int vp9_get_switchable_rate(const struct VP9_COMP *cpi);
void vp9_setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x,
void vp9_setup_buffer_inter(struct VP9_COMP *cpi, struct macroblock *x,
const TileInfo *const tile,
MV_REFERENCE_FRAME ref_frame,
BLOCK_SIZE block_size,
@@ -53,26 +160,43 @@ void vp9_setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x,
int_mv frame_near_mv[MAX_REF_FRAMES],
struct buf_2d yv12_mb[4][MAX_MB_PLANE]);
const YV12_BUFFER_CONFIG *vp9_get_scaled_ref_frame(const VP9_COMP *cpi,
const YV12_BUFFER_CONFIG *vp9_get_scaled_ref_frame(const struct VP9_COMP *cpi,
int ref_frame);
void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
void vp9_rd_pick_intra_mode_sb(struct VP9_COMP *cpi, struct macroblock *x,
int *r, int64_t *d, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, int64_t best_rd);
int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x,
int64_t vp9_rd_pick_inter_mode_sb(struct VP9_COMP *cpi, struct macroblock *x,
const struct TileInfo *const tile,
int mi_row, int mi_col,
int *returnrate,
#if CONFIG_SUPERTX
int *returnrate_nocoef,
#endif
int64_t *returndistortion,
BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far);
int64_t vp9_rd_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x,
int64_t vp9_rd_pick_inter_mode_sb_seg_skip(struct VP9_COMP *cpi,
struct macroblock *x,
const TileInfo *const tile,
int mi_row, int mi_col,
int *returnrate,
int64_t *returndistortion,
BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far);
int64_t vp9_rd_pick_inter_mode_sub8x8(struct VP9_COMP *cpi,
struct macroblock *x,
const struct TileInfo *const tile,
int mi_row, int mi_col,
int *returnrate,
#if CONFIG_SUPERTX
int *returnrate_nocoef,
#endif
int64_t *returndistortion,
BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
@@ -85,15 +209,40 @@ void vp9_get_entropy_contexts(BLOCK_SIZE bsize, TX_SIZE tx_size,
ENTROPY_CONTEXT t_above[16],
ENTROPY_CONTEXT t_left[16]);
void vp9_set_rd_speed_thresholds(VP9_COMP *cpi);
void vp9_set_rd_speed_thresholds(struct VP9_COMP *cpi);
void vp9_set_rd_speed_thresholds_sub8x8(VP9_COMP *cpi);
void vp9_set_rd_speed_thresholds_sub8x8(struct VP9_COMP *cpi);
static INLINE int rd_less_than_thresh(int64_t best_rd, int thresh,
int thresh_fact) {
return best_rd < ((int64_t)thresh * thresh_fact >> 5) || thresh == INT_MAX;
}
void vp9_mv_pred(struct VP9_COMP *cpi, MACROBLOCK *x,
uint8_t *ref_y_buffer, int ref_y_stride,
int ref_frame, BLOCK_SIZE block_size);
void vp9_setup_pred_block(const MACROBLOCKD *xd,
struct buf_2d dst[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col,
const struct scale_factors *scale,
const struct scale_factors *scale_uv);
#if CONFIG_SUPERTX
void txfm_rd_in_plane_supertx(MACROBLOCK *x,
int *rate, int64_t *distortion,
int *skippable, int64_t *sse,
int64_t ref_best_rd, int plane,
BLOCK_SIZE bsize, TX_SIZE tx_size,
int use_fast_coef_casting);
void txfm_rd_in_plane(MACROBLOCK *x,
int *rate, int64_t *distortion,
int *skippable, int64_t *sse,
int64_t ref_best_rd, int plane,
BLOCK_SIZE bsize, TX_SIZE tx_size,
int use_fast_coef_casting);
#endif
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -131,3 +131,47 @@ sadMxN(4, 4)
sadMxNxK(4, 4, 3)
sadMxNxK(4, 4, 8)
sadMxNx4D(4, 4)
#if ((CONFIG_MASKED_INTERINTRA && CONFIG_INTERINTRA) || \
CONFIG_MASKED_INTERINTER)
static INLINE unsigned int masked_sad(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride,
const uint8_t *m, int m_stride,
int width, int height) {
int y, x;
unsigned int sad = 0;
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++)
sad += m[x] * abs(a[x] - b[x]);
a += a_stride;
b += b_stride;
m += m_stride;
}
sad = (sad + 31) >> 6;
return sad;
}
#define MASKSADMxN(m, n) \
unsigned int vp9_masked_sad##m##x##n##_c(const uint8_t *src, int src_stride, \
const uint8_t *ref, int ref_stride, \
const uint8_t *msk, int msk_stride) { \
return masked_sad(src, src_stride, ref, ref_stride, msk, msk_stride, m, n); \
}
MASKSADMxN(64, 64)
MASKSADMxN(64, 32)
MASKSADMxN(32, 64)
MASKSADMxN(32, 32)
MASKSADMxN(32, 16)
MASKSADMxN(16, 32)
MASKSADMxN(16, 16)
MASKSADMxN(16, 8)
MASKSADMxN(8, 16)
MASKSADMxN(8, 8)
MASKSADMxN(8, 4)
MASKSADMxN(4, 8)
MASKSADMxN(4, 4)
#endif

View File

@@ -84,16 +84,17 @@ static void set_good_speed_feature(VP9_COMP *cpi, VP9_COMMON *cm,
if (speed >= 2) {
if (MIN(cm->width, cm->height) >= 720) {
sf->lf_motion_threshold = LOW_MOITION_THRESHOLD;
sf->lf_motion_threshold = LOW_MOTION_THRESHOLD;
sf->last_partitioning_redo_frequency = 3;
sf->disable_split_mask = cm->show_frame ? DISABLE_ALL_SPLIT
: DISABLE_ALL_INTER_SPLIT;
} else {
sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY;
sf->last_partitioning_redo_frequency = 2;
sf->lf_motion_threshold = NO_MOITION_THRESHOLD;
sf->lf_motion_threshold = NO_MOTION_THRESHOLD;
}
sf->adaptive_pred_interp_filter = 2;
sf->adaptive_pred_interp_filter = 0;
sf->reference_masking = 1;
sf->mode_search_skip_flags = FLAG_SKIP_INTRA_DIRMISMATCH |
FLAG_SKIP_INTRA_BESTINTER |
@@ -114,7 +115,7 @@ static void set_good_speed_feature(VP9_COMP *cpi, VP9_COMMON *cm,
else
sf->disable_split_mask = DISABLE_ALL_INTER_SPLIT;
sf->lf_motion_threshold = LOW_MOITION_THRESHOLD;
sf->lf_motion_threshold = LOW_MOTION_THRESHOLD;
sf->last_partitioning_redo_frequency = 3;
sf->recode_loop = ALLOW_RECODE_KFMAXBW;
sf->adaptive_rd_thresh = 3;
@@ -198,7 +199,7 @@ static void set_rt_speed_feature(VP9_COMP *cpi, SPEED_FEATURES *sf,
sf->comp_inter_joint_search_thresh = BLOCK_SIZES;
sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX;
sf->use_lastframe_partitioning = LAST_FRAME_PARTITION_LOW_MOTION;
sf->lf_motion_threshold = LOW_MOITION_THRESHOLD;
sf->lf_motion_threshold = LOW_MOTION_THRESHOLD;
sf->adjust_partitioning_from_last_frame = 1;
sf->last_partitioning_redo_frequency = 3;
sf->use_lp32x32fdct = 1;
@@ -249,6 +250,8 @@ static void set_rt_speed_feature(VP9_COMP *cpi, SPEED_FEATURES *sf,
}
if (speed >= 5) {
sf->auto_min_max_partition_size = (cm->frame_type == KEY_FRAME) ?
RELAXED_NEIGHBORING_MIN_MAX : STRICT_NEIGHBORING_MIN_MAX;
sf->max_partition_size = BLOCK_32X32;
sf->min_partition_size = BLOCK_8X8;
sf->partition_check =
@@ -270,6 +273,10 @@ static void set_rt_speed_feature(VP9_COMP *cpi, SPEED_FEATURES *sf,
sf->source_var_thresh = 360;
sf->tx_size_search_method = USE_TX_8X8;
sf->max_intra_bsize = BLOCK_8X8;
// This feature is only enabled when partition search is disabled.
sf->reuse_inter_pred_sby = 1;
}
if (speed >= 7) {
@@ -335,6 +342,7 @@ void vp9_set_speed_features(VP9_COMP *cpi) {
for (i = 0; i < BLOCK_SIZES; ++i)
sf->inter_mode_mask[i] = INTER_ALL;
sf->max_intra_bsize = BLOCK_64X64;
sf->reuse_inter_pred_sby = 0;
// This setting only takes effect when partition_search_type is set
// to FIXED_PARTITION.
sf->always_this_block_size = BLOCK_16X16;

View File

@@ -44,8 +44,8 @@ typedef enum {
} SUBPEL_SEARCH_METHODS;
typedef enum {
NO_MOITION_THRESHOLD = 0,
LOW_MOITION_THRESHOLD = 7
NO_MOTION_THRESHOLD = 0,
LOW_MOTION_THRESHOLD = 7
} MOTION_THRESHOLD;
typedef enum {
@@ -353,6 +353,11 @@ typedef struct SPEED_FEATURES {
// The threshold used in SOURCE_VAR_BASED_PARTITION search type.
unsigned int source_var_thresh;
// When partition is pre-set, the inter prediction result from pick_inter_mode
// can be reused in final block encoding process. It is enabled only for real-
// time mode speed 6.
int reuse_inter_pred_sby;
} SPEED_FEATURES;
struct VP9_COMP;

View File

@@ -12,6 +12,7 @@
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_svc_layercontext.h"
#include "vp9/encoder/vp9_extend.h"
void vp9_init_layer_context(VP9_COMP *const cpi) {
SVC *const svc = &cpi->svc;
@@ -31,6 +32,7 @@ void vp9_init_layer_context(VP9_COMP *const cpi) {
for (layer = 0; layer < layer_end; ++layer) {
LAYER_CONTEXT *const lc = &svc->layer_context[layer];
RATE_CONTROL *const lrc = &lc->rc;
int i;
lc->current_video_frame_in_layer = 0;
lrc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
lrc->ni_av_qi = oxcf->worst_allowed_q;
@@ -42,8 +44,10 @@ void vp9_init_layer_context(VP9_COMP *const cpi) {
lrc->ni_frames = 0;
lrc->decimation_count = 0;
lrc->decimation_factor = 0;
lrc->rate_correction_factor = 1.0;
lrc->key_frame_rate_correction_factor = 1.0;
for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
lrc->rate_correction_factors[i] = 1.0;
}
if (svc->number_temporal_layers > 1) {
lc->target_bandwidth = oxcf->ts_target_bitrate[layer];
@@ -206,3 +210,101 @@ int vp9_is_upper_layer_key_frame(const VP9_COMP *const cpi) {
cpi->svc.spatial_layer_id > 0 &&
cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame;
}
int vp9_svc_lookahead_push(const VP9_COMP *const cpi, struct lookahead_ctx *ctx,
YV12_BUFFER_CONFIG *src, int64_t ts_start,
int64_t ts_end, unsigned int flags) {
struct lookahead_entry *buf;
int i, index;
if (vp9_lookahead_push(ctx, src, ts_start, ts_end, flags))
return 1;
index = ctx->write_idx - 1;
if (index < 0)
index += ctx->max_sz;
buf = ctx->buf + index;
if (buf == NULL)
return 1;
// Store svc parameters for each layer
for (i = 0; i < cpi->svc.number_spatial_layers; ++i)
buf->svc_params[i] = cpi->svc.layer_context[i].svc_params_received;
return 0;
}
static int copy_svc_params(VP9_COMP *const cpi, struct lookahead_entry *buf) {
int layer_id;
vpx_svc_parameters_t *layer_param;
vpx_enc_frame_flags_t flags;
// Find the next layer to be encoded
for (layer_id = 0; layer_id < cpi->svc.number_spatial_layers; ++layer_id) {
if (buf->svc_params[layer_id].spatial_layer >=0)
break;
}
if (layer_id == cpi->svc.number_spatial_layers)
return 1;
layer_param = &buf->svc_params[layer_id];
buf->flags = flags = layer_param->flags;
cpi->svc.spatial_layer_id = layer_param->spatial_layer;
cpi->svc.temporal_layer_id = layer_param->temporal_layer;
cpi->lst_fb_idx = layer_param->lst_fb_idx;
cpi->gld_fb_idx = layer_param->gld_fb_idx;
cpi->alt_fb_idx = layer_param->alt_fb_idx;
if (vp9_set_size_literal(cpi, layer_param->width, layer_param->height) != 0)
return VPX_CODEC_INVALID_PARAM;
cpi->oxcf.worst_allowed_q =
vp9_quantizer_to_qindex(layer_param->max_quantizer);
cpi->oxcf.best_allowed_q =
vp9_quantizer_to_qindex(layer_param->min_quantizer);
vp9_change_config(cpi, &cpi->oxcf);
vp9_set_high_precision_mv(cpi, 1);
// Retrieve the encoding flags for each layer and apply it to encoder.
// It includes reference frame flags and update frame flags.
vp9_apply_encoding_flags(cpi, flags);
return 0;
}
struct lookahead_entry *vp9_svc_lookahead_peek(VP9_COMP *const cpi,
struct lookahead_ctx *ctx,
int index, int copy_params) {
struct lookahead_entry *buf = vp9_lookahead_peek(ctx, index);
if (buf != NULL && copy_params != 0) {
if (copy_svc_params(cpi, buf) != 0)
return NULL;
}
return buf;
}
struct lookahead_entry *vp9_svc_lookahead_pop(VP9_COMP *const cpi,
struct lookahead_ctx *ctx,
int drain) {
struct lookahead_entry *buf = NULL;
if (ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) {
buf = vp9_svc_lookahead_peek(cpi, ctx, 0, 1);
if (buf != NULL) {
// Only remove the buffer when pop the highest layer. Simply set the
// spatial_layer to -1 for lower layers.
buf->svc_params[cpi->svc.spatial_layer_id].spatial_layer = -1;
if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) {
vp9_lookahead_pop(ctx, drain);
}
}
}
return buf;
}

View File

@@ -28,6 +28,7 @@ typedef struct {
struct vpx_fixed_buf rc_twopass_stats_in;
unsigned int current_video_frame_in_layer;
int is_key_frame;
vpx_svc_parameters_t svc_params_received;
} LAYER_CONTEXT;
typedef struct {
@@ -74,6 +75,23 @@ void vp9_inc_frame_in_layer(SVC *svc);
// Check if current layer is key frame in spatial upper layer
int vp9_is_upper_layer_key_frame(const struct VP9_COMP *const cpi);
// Copy the source image, flags and svc parameters into a new framebuffer
// with the expected stride/border
int vp9_svc_lookahead_push(const struct VP9_COMP *const cpi,
struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src,
int64_t ts_start, int64_t ts_end,
unsigned int flags);
// Get the next source buffer to encode
struct lookahead_entry *vp9_svc_lookahead_pop(struct VP9_COMP *const cpi,
struct lookahead_ctx *ctx,
int drain);
// Get a future source buffer to encode
struct lookahead_entry *vp9_svc_lookahead_peek(struct VP9_COMP *const cpi,
struct lookahead_ctx *ctx,
int index, int copy_params);
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -334,3 +334,41 @@ void vp9_tokenize_sb(VP9_COMP *cpi, TOKENEXTRA **t, int dry_run,
*t = t_backup;
}
}
#if CONFIG_SUPERTX
void vp9_tokenize_sb_supertx(VP9_COMP *cpi, TOKENEXTRA **t, int dry_run,
BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
TOKENEXTRA *t_backup = *t;
const int ctx = vp9_get_skip_context(xd);
const int skip_inc = !vp9_segfeature_active(&cm->seg, mbmi->segment_id,
SEG_LVL_SKIP);
struct tokenize_b_args arg = {cpi, xd, t};
int plane;
if (mbmi->skip) {
if (!dry_run)
cm->counts.skip[ctx][1] += skip_inc;
reset_skip_context(xd, bsize);
if (dry_run)
*t = t_backup;
return;
}
if (!dry_run) {
cm->counts.skip[ctx][0] += skip_inc;
for (plane = 0; plane < MAX_MB_PLANE; plane++) {
BLOCK_SIZE plane_size = plane ? (bsize - 3) : bsize;
tokenize_b(plane, 0, plane_size, b_width_log2(plane_size), &arg);
}
} else {
for (plane = 0; plane < MAX_MB_PLANE; plane++) {
BLOCK_SIZE plane_size = plane ? (bsize - 3) : bsize;
set_entropy_context_b(plane, 0, plane_size, b_width_log2(plane_size),
&arg);
}
*t = t_backup;
}
}
#endif

View File

@@ -46,6 +46,10 @@ struct VP9_COMP;
void vp9_tokenize_sb(struct VP9_COMP *cpi, TOKENEXTRA **t, int dry_run,
BLOCK_SIZE bsize);
#if CONFIG_SUPERTX
void vp9_tokenize_sb_supertx(struct VP9_COMP *cpi, TOKENEXTRA **t, int dry_run,
BLOCK_SIZE bsize);
#endif
extern const int16_t *vp9_dct_value_cost_ptr;
/* TODO: The Token field should be broken out into a separate char array to

View File

@@ -266,3 +266,98 @@ void vp9_comp_avg_pred(uint8_t *comp_pred, const uint8_t *pred, int width,
ref += ref_stride;
}
}
#if ((CONFIG_MASKED_INTERINTRA && CONFIG_INTERINTRA) || \
CONFIG_MASKED_INTERINTER)
void masked_variance(const uint8_t *a, int a_stride,
const uint8_t *b, int b_stride,
const uint8_t *m, int m_stride,
int w, int h, unsigned int *sse, int *sum) {
int i, j;
*sum = 0;
*sse = 0;
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
const int diff = (a[j] - b[j]) * (m[j]);
*sum += diff;
*sse += diff * diff;
}
a += a_stride;
b += b_stride;
m += m_stride;
}
*sum = (*sum >= 0) ? ((*sum + 31) >> 6) : -((-*sum + 31) >> 6);
*sse = (*sse + 2047) >> 12;
}
#define MASK_VAR(W, H) \
unsigned int vp9_masked_variance##W##x##H##_c(const uint8_t *a, int a_stride, \
const uint8_t *b, int b_stride, \
const uint8_t *m, int m_stride, \
unsigned int *sse) { \
int sum; \
masked_variance(a, a_stride, b, b_stride, m, m_stride, W, H, sse, &sum); \
return *sse - (((int64_t)sum * sum) / (W * H)); \
}
#define MASK_SUBPIX_VAR(W, H) \
unsigned int vp9_masked_sub_pixel_variance##W##x##H##_c( \
const uint8_t *src, int src_stride, \
int xoffset, int yoffset, \
const uint8_t *dst, int dst_stride, \
const uint8_t *msk, int msk_stride, \
unsigned int *sse) { \
uint16_t fdata3[(H + 1) * W]; \
uint8_t temp2[H * W]; \
\
var_filter_block2d_bil_first_pass(src, fdata3, src_stride, 1, H + 1, W, \
BILINEAR_FILTERS_2TAP(xoffset)); \
var_filter_block2d_bil_second_pass(fdata3, temp2, W, W, H, W, \
BILINEAR_FILTERS_2TAP(yoffset)); \
\
return vp9_masked_variance##W##x##H##_c(temp2, W, dst, dst_stride, \
msk, msk_stride, sse); \
}
MASK_VAR(4, 4)
MASK_SUBPIX_VAR(4, 4)
MASK_VAR(4, 8)
MASK_SUBPIX_VAR(4, 8)
MASK_VAR(8, 4)
MASK_SUBPIX_VAR(8, 4)
MASK_VAR(8, 8)
MASK_SUBPIX_VAR(8, 8)
MASK_VAR(8, 16)
MASK_SUBPIX_VAR(8, 16)
MASK_VAR(16, 8)
MASK_SUBPIX_VAR(16, 8)
MASK_VAR(16, 16)
MASK_SUBPIX_VAR(16, 16)
MASK_VAR(16, 32)
MASK_SUBPIX_VAR(16, 32)
MASK_VAR(32, 16)
MASK_SUBPIX_VAR(32, 16)
MASK_VAR(32, 32)
MASK_SUBPIX_VAR(32, 32)
MASK_VAR(32, 64)
MASK_SUBPIX_VAR(32, 64)
MASK_VAR(64, 32)
MASK_SUBPIX_VAR(64, 32)
MASK_VAR(64, 64)
MASK_SUBPIX_VAR(64, 64)
#endif

View File

@@ -67,6 +67,32 @@ typedef unsigned int (*vp9_subp_avg_variance_fn_t)(const uint8_t *src_ptr,
unsigned int *sse,
const uint8_t *second_pred);
#if ((CONFIG_MASKED_INTERINTRA && CONFIG_INTERINTRA) || \
CONFIG_MASKED_INTERINTER)
typedef unsigned int(*vp9_masked_sad_fn_t)(const uint8_t *src_ptr,
int source_stride,
const uint8_t *ref_ptr,
int ref_stride,
const uint8_t *msk_ptr,
int msk_stride);
typedef unsigned int (*vp9_masked_variance_fn_t)(const uint8_t *src_ptr,
int source_stride,
const uint8_t *ref_ptr,
int ref_stride,
const uint8_t *msk_ptr,
int msk_stride,
unsigned int *sse);
typedef unsigned int (*vp9_masked_subpixvariance_fn_t)(const uint8_t *src_ptr,
int source_stride,
int xoffset,
int yoffset,
const uint8_t *ref_ptr,
int Refstride,
const uint8_t *msk_ptr,
int msk_stride,
unsigned int *sse);
#endif
typedef struct vp9_variance_vtable {
vp9_sad_fn_t sdf;
vp9_sad_avg_fn_t sdaf;
@@ -76,6 +102,12 @@ typedef struct vp9_variance_vtable {
vp9_sad_multi_fn_t sdx3f;
vp9_sad_multi_fn_t sdx8f;
vp9_sad_multi_d_fn_t sdx4df;
#if ((CONFIG_MASKED_INTERINTRA && CONFIG_INTERINTRA) || \
CONFIG_MASKED_INTERINTER)
vp9_masked_sad_fn_t msdf;
vp9_masked_variance_fn_t mvf;
vp9_masked_subpixvariance_fn_t msvf;
#endif
} vp9_variance_fn_ptr_t;
void vp9_comp_avg_pred(uint8_t *comp_pred, const uint8_t *pred, int width,

View File

@@ -88,8 +88,8 @@ struct vpx_codec_alg_priv {
size_t pending_frame_magnitude;
vpx_image_t preview_img;
vp8_postproc_cfg_t preview_ppcfg;
vpx_codec_pkt_list_decl(64) pkt_list;
unsigned int fixed_kf_cntr;
vpx_codec_pkt_list_decl(128) pkt_list;
unsigned int fixed_kf_cntr;
};
static VP9_REFFRAME ref_frame_to_vp9_reframe(vpx_ref_frame_type_t frame) {
@@ -795,42 +795,7 @@ static vpx_codec_err_t encoder_encode(vpx_codec_alg_priv_t *ctx,
return VPX_CODEC_INVALID_PARAM;
}
if (flags & (VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_REF_ARF)) {
int ref = 7;
if (flags & VP8_EFLAG_NO_REF_LAST)
ref ^= VP9_LAST_FLAG;
if (flags & VP8_EFLAG_NO_REF_GF)
ref ^= VP9_GOLD_FLAG;
if (flags & VP8_EFLAG_NO_REF_ARF)
ref ^= VP9_ALT_FLAG;
vp9_use_as_reference(ctx->cpi, ref);
}
if (flags & (VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_FORCE_GF |
VP8_EFLAG_FORCE_ARF)) {
int upd = 7;
if (flags & VP8_EFLAG_NO_UPD_LAST)
upd ^= VP9_LAST_FLAG;
if (flags & VP8_EFLAG_NO_UPD_GF)
upd ^= VP9_GOLD_FLAG;
if (flags & VP8_EFLAG_NO_UPD_ARF)
upd ^= VP9_ALT_FLAG;
vp9_update_reference(ctx->cpi, upd);
}
if (flags & VP8_EFLAG_NO_UPD_ENTROPY) {
vp9_update_entropy(ctx->cpi, 0);
}
vp9_apply_encoding_flags(ctx->cpi, flags);
// Handle fixed keyframe intervals
if (ctx->cfg.kf_mode == VPX_KF_AUTO &&
@@ -843,7 +808,7 @@ static vpx_codec_err_t encoder_encode(vpx_codec_alg_priv_t *ctx,
// Initialize the encoder instance on the first frame.
if (res == VPX_CODEC_OK && ctx->cpi != NULL) {
unsigned int lib_flags;
unsigned int lib_flags = 0;
YV12_BUFFER_CONFIG sd;
int64_t dst_time_stamp, dst_end_time_stamp;
size_t size, cx_data_sz;
@@ -853,9 +818,6 @@ static vpx_codec_err_t encoder_encode(vpx_codec_alg_priv_t *ctx,
if (ctx->base.init_flags & VPX_CODEC_USE_PSNR)
((VP9_COMP *)ctx->cpi)->b_calculate_psnr = 1;
// Convert API flags to internal codec lib flags
lib_flags = (flags & VPX_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0;
/* vp9 use 10,000,000 ticks/second as time stamp */
dst_time_stamp = (pts * 10000000 * ctx->cfg.g_timebase.num)
/ ctx->cfg.g_timebase.den;
@@ -865,7 +827,9 @@ static vpx_codec_err_t encoder_encode(vpx_codec_alg_priv_t *ctx,
if (img != NULL) {
res = image2yuvconfig(img, &sd);
if (vp9_receive_raw_frame(ctx->cpi, lib_flags,
// Store the original flags in to the frame buffer. Will extract the
// key frame flag when we actually encode this frame.
if (vp9_receive_raw_frame(ctx->cpi, flags,
&sd, dst_time_stamp, dst_end_time_stamp)) {
VP9_COMP *cpi = (VP9_COMP *)ctx->cpi;
res = update_error_state(ctx, &cpi->common.error);
@@ -874,7 +838,6 @@ static vpx_codec_err_t encoder_encode(vpx_codec_alg_priv_t *ctx,
cx_data = ctx->cx_data;
cx_data_sz = ctx->cx_data_sz;
lib_flags = 0;
/* Any pending invisible frames? */
if (ctx->pending_cx_data) {
@@ -902,7 +865,12 @@ static vpx_codec_err_t encoder_encode(vpx_codec_alg_priv_t *ctx,
VP9_COMP *const cpi = (VP9_COMP *)ctx->cpi;
// Pack invisible frames with the next visible frame
if (cpi->common.show_frame == 0) {
if (cpi->common.show_frame == 0
#ifdef CONFIG_SPATIAL_SVC
|| (cpi->use_svc && cpi->svc.number_temporal_layers == 1 &&
cpi->svc.spatial_layer_id < cpi->svc.number_spatial_layers - 1)
#endif
) {
if (ctx->pending_cx_data == 0)
ctx->pending_cx_data = cx_data;
ctx->pending_cx_data_sz += size;
@@ -925,7 +893,12 @@ static vpx_codec_err_t encoder_encode(vpx_codec_alg_priv_t *ctx,
/ ctx->cfg.g_timebase.num / 10000000);
pkt.data.frame.flags = lib_flags << 16;
if (lib_flags & FRAMEFLAGS_KEY)
if (lib_flags & FRAMEFLAGS_KEY
#ifdef CONFIG_SPATIAL_SVC
|| (cpi->use_svc && cpi->svc.number_temporal_layers == 1 &&
cpi->svc.layer_context[0].is_key_frame)
#endif
)
pkt.data.frame.flags |= VPX_FRAME_IS_KEY;
if (cpi->common.show_frame == 0) {
@@ -1165,24 +1138,19 @@ static vpx_codec_err_t ctrl_set_svc_parameters(vpx_codec_alg_priv_t *ctx,
VP9_COMP *const cpi = ctx->cpi;
vpx_svc_parameters_t *const params = va_arg(args, vpx_svc_parameters_t *);
if (params == NULL)
if (params == NULL || params->spatial_layer < 0 ||
params->spatial_layer >= cpi->svc.number_spatial_layers)
return VPX_CODEC_INVALID_PARAM;
cpi->svc.spatial_layer_id = params->spatial_layer;
cpi->svc.temporal_layer_id = params->temporal_layer;
if (params->spatial_layer == 0) {
int i;
for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
cpi->svc.layer_context[i].svc_params_received.spatial_layer = -1;
}
}
cpi->lst_fb_idx = params->lst_fb_idx;
cpi->gld_fb_idx = params->gld_fb_idx;
cpi->alt_fb_idx = params->alt_fb_idx;
if (vp9_set_size_literal(ctx->cpi, params->width, params->height) != 0)
return VPX_CODEC_INVALID_PARAM;
ctx->cfg.rc_max_quantizer = params->max_quantizer;
ctx->cfg.rc_min_quantizer = params->min_quantizer;
set_encoder_config(&ctx->oxcf, &ctx->cfg, &ctx->extra_cfg);
vp9_change_config(ctx->cpi, &ctx->oxcf);
cpi->svc.layer_context[params->spatial_layer].svc_params_received =
*params;
return VPX_CODEC_OK;
}

View File

@@ -32,7 +32,6 @@ struct vpx_codec_alg_priv {
vpx_codec_priv_t base;
vpx_codec_dec_cfg_t cfg;
vp9_stream_info_t si;
struct VP9Decoder *pbi;
int postproc_cfg_set;
vp8_postproc_cfg_t postproc_cfg;
vpx_decrypt_cb decrypt_cb;
@@ -42,6 +41,11 @@ struct vpx_codec_alg_priv {
int frame_parallel_decode; // frame-based threading.
int last_show_frame; // Index of last output frame.
VP9Worker *frame_workers;
int num_frame_workers;
int next_submit_thread_id;
int next_output_thread_id;
// External frame buffer info to save for VP9 common.
void *ext_priv; // Private data associated with the external frame buffers.
vpx_get_frame_buffer_cb_fn_t get_ext_fb_cb;
@@ -85,11 +89,17 @@ static vpx_codec_err_t decoder_init(vpx_codec_ctx_t *ctx,
}
static vpx_codec_err_t decoder_destroy(vpx_codec_alg_priv_t *ctx) {
if (ctx->pbi) {
vp9_decoder_remove(ctx->pbi);
ctx->pbi = NULL;
if (ctx->frame_workers != NULL) {
int i;
for (i = 0; i < ctx->num_frame_workers; ++i) {
VP9Worker *const worker = &ctx->frame_workers[i];
FrameWorkerData *const worker_data = (FrameWorkerData *)worker->data1;
vp9_decoder_remove(worker_data->pbi);
vpx_free(worker_data);
}
}
vpx_free(ctx->frame_workers);
vpx_free(ctx);
return VPX_CODEC_OK;
@@ -102,9 +112,6 @@ static vpx_codec_err_t decoder_peek_si_internal(const uint8_t *data,
void *decrypt_state) {
uint8_t clear_buffer[9];
if (data_sz <= 8)
return VPX_CODEC_UNSUP_BITSTREAM;
if (data + data_sz <= data)
return VPX_CODEC_INVALID_PARAM;
@@ -125,12 +132,16 @@ static vpx_codec_err_t decoder_peek_si_internal(const uint8_t *data,
if (frame_marker != VP9_FRAME_MARKER)
return VPX_CODEC_UNSUP_BITSTREAM;
if (version > 1) return VPX_CODEC_UNSUP_BITSTREAM;
if (vp9_rb_read_bit(&rb)) { // show an existing frame
return VPX_CODEC_OK;
}
if (data_sz <= 8)
return VPX_CODEC_UNSUP_BITSTREAM;
si->is_kf = !vp9_rb_read_bit(&rb);
if (si->is_kf) {
const int sRGB = 7;
@@ -187,32 +198,42 @@ static vpx_codec_err_t decoder_get_si(vpx_codec_alg_priv_t *ctx,
return VPX_CODEC_OK;
}
static void set_error_detail(vpx_codec_alg_priv_t *ctx,
const char *const error) {
ctx->base.err_detail = error;
}
static vpx_codec_err_t update_error_state(vpx_codec_alg_priv_t *ctx,
const struct vpx_internal_error_info *error) {
if (error->error_code)
ctx->base.err_detail = error->has_detail ? error->detail : NULL;
set_error_detail(ctx, error->has_detail ? error->detail : NULL);
return error->error_code;
}
static void init_buffer_callbacks(vpx_codec_alg_priv_t *ctx) {
VP9_COMMON *const cm = &ctx->pbi->common;
int i;
cm->new_fb_idx = -1;
for (i = 0; i < ctx->num_frame_workers; ++i) {
VP9Worker *const worker = &ctx->frame_workers[i];
FrameWorkerData *const worker_data = (FrameWorkerData *)worker->data1;
VP9_COMMON *const cm = &worker_data->pbi->common;
if (ctx->get_ext_fb_cb != NULL && ctx->release_ext_fb_cb != NULL) {
cm->get_fb_cb = ctx->get_ext_fb_cb;
cm->release_fb_cb = ctx->release_ext_fb_cb;
cm->cb_priv = ctx->ext_priv;
} else {
cm->get_fb_cb = vp9_get_frame_buffer;
cm->release_fb_cb = vp9_release_frame_buffer;
cm->new_fb_idx = -1;
if (ctx->get_ext_fb_cb != NULL && ctx->release_ext_fb_cb != NULL) {
cm->get_fb_cb = ctx->get_ext_fb_cb;
cm->release_fb_cb = ctx->release_ext_fb_cb;
cm->cb_priv = ctx->ext_priv;
} else {
cm->get_fb_cb = vp9_get_frame_buffer;
cm->release_fb_cb = vp9_release_frame_buffer;
if (vp9_alloc_internal_frame_buffers(&cm->int_frame_buffers))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to initialize internal frame buffers");
if (vp9_alloc_internal_frame_buffers(&cm->int_frame_buffers))
vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR,
"Failed to initialize internal frame buffers");
cm->cb_priv = &cm->int_frame_buffers;
cm->cb_priv = &cm->int_frame_buffers;
}
}
}
@@ -231,15 +252,58 @@ static void set_ppflags(const vpx_codec_alg_priv_t *ctx,
flags->noise_level = ctx->postproc_cfg.noise_level;
}
static void init_decoder(vpx_codec_alg_priv_t *ctx) {
ctx->pbi = vp9_decoder_create();
if (ctx->pbi == NULL)
return;
static int frame_worker_hook(void *arg1, void *arg2) {
FrameWorkerData *const worker_data = (FrameWorkerData *)arg1;
const uint8_t *data = worker_data->data;
(void)arg2;
worker_data->result = vp9_receive_compressed_data(worker_data->pbi,
worker_data->data_size,
&data);
worker_data->data_end = data;
return !worker_data->result;
}
static vpx_codec_err_t init_decoder(vpx_codec_alg_priv_t *ctx) {
int i;
ctx->pbi->max_threads = ctx->cfg.threads;
ctx->pbi->inv_tile_order = ctx->invert_tile_order;
ctx->pbi->frame_parallel_decode = ctx->frame_parallel_decode;
ctx->last_show_frame = -1;
ctx->next_submit_thread_id = 0;
ctx->next_output_thread_id = 0;
ctx->num_frame_workers =
(ctx->frame_parallel_decode == 1) ? ctx->cfg.threads: 1;
ctx->frame_workers = (VP9Worker *)
vpx_malloc(ctx->num_frame_workers * sizeof(*ctx->frame_workers));
if (ctx->frame_workers == NULL) {
set_error_detail(ctx, "Failed to allocate frame_workers");
return VPX_CODEC_MEM_ERROR;
}
for (i = 0; i < ctx->num_frame_workers; ++i) {
VP9Worker *const worker = &ctx->frame_workers[i];
FrameWorkerData *worker_data = NULL;
vp9_worker_init(worker);
worker->data1 = vpx_memalign(32, sizeof(FrameWorkerData));
if (worker->data1 == NULL) {
set_error_detail(ctx, "Failed to allocate worker_data");
return VPX_CODEC_MEM_ERROR;
}
worker_data = (FrameWorkerData *)worker->data1;
worker_data->pbi = vp9_decoder_create();
if (worker_data->pbi == NULL) {
set_error_detail(ctx, "Failed to allocate worker_data");
return VPX_CODEC_MEM_ERROR;
}
// If decoding in serial mode, FrameWorker thread could create tile worker
// thread or loopfilter thread.
worker_data->pbi->max_threads =
(ctx->frame_parallel_decode == 0) ? ctx->cfg.threads : 0;
worker_data->pbi->inv_tile_order = ctx->invert_tile_order;
worker_data->pbi->frame_parallel_decode = ctx->frame_parallel_decode;
worker->hook = (VP9WorkerHook)frame_worker_hook;
}
// If postprocessing was enabled by the application and a
// configuration has not been provided, default it.
@@ -248,14 +312,14 @@ static void init_decoder(vpx_codec_alg_priv_t *ctx) {
set_default_ppflags(&ctx->postproc_cfg);
init_buffer_callbacks(ctx);
return VPX_CODEC_OK;
}
static vpx_codec_err_t decode_one(vpx_codec_alg_priv_t *ctx,
const uint8_t **data, unsigned int data_sz,
void *user_priv, int64_t deadline) {
vp9_ppflags_t flags = {0};
VP9_COMMON *cm = NULL;
(void)deadline;
// Determine the stream parameters. Note that we rely on peek_si to
@@ -272,22 +336,35 @@ static vpx_codec_err_t decode_one(vpx_codec_alg_priv_t *ctx,
return VPX_CODEC_ERROR;
}
// Initialize the decoder instance on the first frame
if (ctx->pbi == NULL) {
init_decoder(ctx);
if (ctx->pbi == NULL)
return VPX_CODEC_ERROR;
// Initialize the decoder workers on the first frame
if (ctx->frame_workers == NULL) {
const vpx_codec_err_t res = init_decoder(ctx);
if (res != VPX_CODEC_OK)
return res;
}
// Set these even if already initialized. The caller may have changed the
// decrypt config between frames.
ctx->pbi->decrypt_cb = ctx->decrypt_cb;
ctx->pbi->decrypt_state = ctx->decrypt_state;
if (!ctx->frame_parallel_decode) {
VP9Worker *const worker = ctx->frame_workers;
FrameWorkerData *const worker_data = (FrameWorkerData *)worker->data1;
worker_data->data = *data;
worker_data->data_size = data_sz;
worker_data->user_priv = user_priv;
cm = &ctx->pbi->common;
// Set these even if already initialized. The caller may have changed the
// decrypt config between frames.
worker_data->pbi->decrypt_cb = ctx->decrypt_cb;
worker_data->pbi->decrypt_state = ctx->decrypt_state;
if (vp9_receive_compressed_data(ctx->pbi, data_sz, data))
return update_error_state(ctx, &cm->error);
vp9_worker_execute(worker);
if (worker->had_error)
return update_error_state(ctx, &worker_data->pbi->common.error);
// Update data pointer after decode.
*data = worker_data->data_end;
} else {
// TODO(hkuang): Implement frame parallel decode.
return VPX_CODEC_INCAPABLE;
}
if (ctx->base.init_flags & VPX_CODEC_USE_POSTPROC)
set_ppflags(ctx, &flags);
@@ -306,10 +383,17 @@ static INLINE uint8_t read_marker(vpx_decrypt_cb decrypt_cb,
return *data;
}
static void parse_superframe_index(const uint8_t *data, size_t data_sz,
uint32_t sizes[8], int *count,
vpx_decrypt_cb decrypt_cb,
void *decrypt_state) {
static vpx_codec_err_t parse_superframe_index(const uint8_t *data,
size_t data_sz,
uint32_t sizes[8], int *count,
vpx_decrypt_cb decrypt_cb,
void *decrypt_state) {
// A chunk ending with a byte matching 0xc0 is an invalid chunk unless
// it is a super frame index. If the last byte of real video compression
// data is 0xc0 the encoder must add a 0 byte. If we have the marker but
// not the associated matching marker byte at the front of the index we have
// an invalid bitstream and need to return an error.
uint8_t marker;
assert(data_sz);
@@ -321,56 +405,45 @@ static void parse_superframe_index(const uint8_t *data, size_t data_sz,
const uint32_t mag = ((marker >> 3) & 0x3) + 1;
const size_t index_sz = 2 + mag * frames;
if (data_sz >= index_sz) {
uint8_t marker2 = read_marker(decrypt_cb, decrypt_state,
data + data_sz - index_sz);
// This chunk is marked as having a superframe index but doesn't have
// enough data for it, thus it's an invalid superframe index.
if (data_sz < index_sz)
return VPX_CODEC_CORRUPT_FRAME;
if (marker == marker2) {
// Found a valid superframe index.
uint32_t i, j;
const uint8_t *x = &data[data_sz - index_sz + 1];
{
const uint8_t marker2 = read_marker(decrypt_cb, decrypt_state,
data + data_sz - index_sz);
// Frames has a maximum of 8 and mag has a maximum of 4.
uint8_t clear_buffer[32];
assert(sizeof(clear_buffer) >= frames * mag);
if (decrypt_cb) {
decrypt_cb(decrypt_state, x, clear_buffer, frames * mag);
x = clear_buffer;
}
// This chunk is marked as having a superframe index but doesn't have
// the matching marker byte at the front of the index therefore it's an
// invalid chunk.
if (marker != marker2)
return VPX_CODEC_CORRUPT_FRAME;
}
for (i = 0; i < frames; ++i) {
uint32_t this_sz = 0;
{
// Found a valid superframe index.
uint32_t i, j;
const uint8_t *x = &data[data_sz - index_sz + 1];
for (j = 0; j < mag; ++j)
this_sz |= (*x++) << (j * 8);
sizes[i] = this_sz;
}
*count = frames;
// Frames has a maximum of 8 and mag has a maximum of 4.
uint8_t clear_buffer[32];
assert(sizeof(clear_buffer) >= frames * mag);
if (decrypt_cb) {
decrypt_cb(decrypt_state, x, clear_buffer, frames * mag);
x = clear_buffer;
}
for (i = 0; i < frames; ++i) {
uint32_t this_sz = 0;
for (j = 0; j < mag; ++j)
this_sz |= (*x++) << (j * 8);
sizes[i] = this_sz;
}
*count = frames;
}
}
}
static vpx_codec_err_t decode_one_iter(vpx_codec_alg_priv_t *ctx,
const uint8_t **data_start_ptr,
const uint8_t *data_end,
uint32_t frame_size, void *user_priv,
long deadline) {
const vpx_codec_err_t res = decode_one(ctx, data_start_ptr, frame_size,
user_priv, deadline);
if (res != VPX_CODEC_OK)
return res;
// Account for suboptimal termination by the encoder.
while (*data_start_ptr < data_end) {
const uint8_t marker = read_marker(ctx->decrypt_cb, ctx->decrypt_state,
*data_start_ptr);
if (marker)
break;
(*data_start_ptr)++;
}
return VPX_CODEC_OK;
}
@@ -378,7 +451,7 @@ static vpx_codec_err_t decoder_decode(vpx_codec_alg_priv_t *ctx,
const uint8_t *data, unsigned int data_sz,
void *user_priv, long deadline) {
const uint8_t *data_start = data;
const uint8_t *const data_end = data + data_sz;
const uint8_t * const data_end = data + data_sz;
vpx_codec_err_t res;
uint32_t frame_sizes[8];
int frame_count;
@@ -386,32 +459,86 @@ static vpx_codec_err_t decoder_decode(vpx_codec_alg_priv_t *ctx,
if (data == NULL || data_sz == 0)
return VPX_CODEC_INVALID_PARAM;
parse_superframe_index(data, data_sz, frame_sizes, &frame_count,
ctx->decrypt_cb, ctx->decrypt_state);
res = parse_superframe_index(data, data_sz, frame_sizes, &frame_count,
ctx->decrypt_cb, ctx->decrypt_state);
if (res != VPX_CODEC_OK)
return res;
if (frame_count > 0) {
int i;
if (ctx->frame_parallel_decode) {
// Decode in frame parallel mode. When decoding in this mode, the frame
// passed to the decoder must be either a normal frame or a superframe with
// superframe index so the decoder could get each frame's start position
// in the superframe.
if (frame_count > 0) {
int i;
for (i = 0; i < frame_count; ++i) {
const uint32_t frame_size = frame_sizes[i];
if (data_start < data ||
frame_size > (uint32_t)(data_end - data_start)) {
ctx->base.err_detail = "Invalid frame size in index";
return VPX_CODEC_CORRUPT_FRAME;
for (i = 0; i < frame_count; ++i) {
const uint8_t *data_start_copy = data_start;
const uint32_t frame_size = frame_sizes[i];
vpx_codec_err_t res;
if (data_start < data
|| frame_size > (uint32_t) (data_end - data_start)) {
set_error_detail(ctx, "Invalid frame size in index");
return VPX_CODEC_CORRUPT_FRAME;
}
res = decode_one(ctx, &data_start_copy, frame_size, user_priv,
deadline);
if (res != VPX_CODEC_OK)
return res;
data_start += frame_size;
}
res = decode_one_iter(ctx, &data_start, data_end, frame_size,
user_priv, deadline);
} else {
res = decode_one(ctx, &data_start, data_sz, user_priv, deadline);
if (res != VPX_CODEC_OK)
return res;
// Extra data detected after the frame.
if (data_start < data_end - 1) {
set_error_detail(ctx, "Fail to decode frame in parallel mode");
return VPX_CODEC_INCAPABLE;
}
}
} else {
while (data_start < data_end) {
res = decode_one_iter(ctx, &data_start, data_end,
(uint32_t)(data_end - data_start),
user_priv, deadline);
if (res != VPX_CODEC_OK)
return res;
// Decode in serial mode.
if (frame_count > 0) {
int i;
for (i = 0; i < frame_count; ++i) {
const uint8_t *data_start_copy = data_start;
const uint32_t frame_size = frame_sizes[i];
vpx_codec_err_t res;
if (data_start < data
|| frame_size > (uint32_t) (data_end - data_start)) {
set_error_detail(ctx, "Invalid frame size in index");
return VPX_CODEC_CORRUPT_FRAME;
}
res = decode_one(ctx, &data_start_copy, frame_size, user_priv,
deadline);
if (res != VPX_CODEC_OK)
return res;
data_start += frame_size;
}
} else {
while (data_start < data_end) {
const uint32_t frame_size = (uint32_t) (data_end - data_start);
const vpx_codec_err_t res = decode_one(ctx, &data_start, frame_size,
user_priv, deadline);
if (res != VPX_CODEC_OK)
return res;
// Account for suboptimal termination by the encoder.
while (data_start < data_end) {
const uint8_t marker = read_marker(ctx->decrypt_cb,
ctx->decrypt_state, data_start);
if (marker)
break;
++data_start;
}
}
}
}
@@ -424,13 +551,15 @@ static vpx_image_t *decoder_get_frame(vpx_codec_alg_priv_t *ctx,
// iter acts as a flip flop, so an image is only returned on the first
// call to get_frame.
if (*iter == NULL && ctx->pbi != NULL) {
if (*iter == NULL && ctx->frame_workers != NULL) {
YV12_BUFFER_CONFIG sd;
vp9_ppflags_t flags = {0, 0, 0};
if (vp9_get_raw_frame(ctx->pbi, &sd, &flags) == 0) {
VP9_COMMON *cm = &ctx->pbi->common;
yuvconfig2image(&ctx->img, &sd, NULL);
VP9Worker *const worker = &ctx->frame_workers[ctx->next_output_thread_id];
FrameWorkerData *const worker_data = (FrameWorkerData *)worker->data1;
if (vp9_get_raw_frame(worker_data->pbi, &sd, &flags) == 0) {
VP9_COMMON *const cm = &worker_data->pbi->common;
yuvconfig2image(&ctx->img, &sd, worker_data->user_priv);
ctx->img.fb_priv = cm->frame_bufs[cm->new_fb_idx].raw_frame_buffer.priv;
img = &ctx->img;
*iter = img;
@@ -442,7 +571,7 @@ static vpx_image_t *decoder_get_frame(vpx_codec_alg_priv_t *ctx,
&cm->frame_bufs[ctx->last_show_frame].raw_frame_buffer);
}
}
ctx->last_show_frame = ctx->pbi->common.new_fb_idx;
ctx->last_show_frame = worker_data->pbi->common.new_fb_idx;
}
}
@@ -455,7 +584,7 @@ static vpx_codec_err_t decoder_set_fb_fn(
vpx_release_frame_buffer_cb_fn_t cb_release, void *cb_priv) {
if (cb_get == NULL || cb_release == NULL) {
return VPX_CODEC_INVALID_PARAM;
} else if (ctx->pbi == NULL) {
} else if (ctx->frame_workers == NULL) {
// If the decoder has already been initialized, do not accept changes to
// the frame buffer functions.
ctx->get_ext_fb_cb = cb_get;
@@ -471,12 +600,19 @@ static vpx_codec_err_t ctrl_set_reference(vpx_codec_alg_priv_t *ctx,
va_list args) {
vpx_ref_frame_t *const data = va_arg(args, vpx_ref_frame_t *);
// Only support this function in serial decode.
if (ctx->frame_parallel_decode) {
set_error_detail(ctx, "Not supported in frame parallel decode");
return VPX_CODEC_INCAPABLE;
}
if (data) {
vpx_ref_frame_t *const frame = (vpx_ref_frame_t *)data;
YV12_BUFFER_CONFIG sd;
VP9Worker *const worker = ctx->frame_workers;
FrameWorkerData *const worker_data = (FrameWorkerData *)worker->data1;
image2yuvconfig(&frame->img, &sd);
return vp9_set_reference_dec(&ctx->pbi->common,
return vp9_set_reference_dec(&worker_data->pbi->common,
(VP9_REFFRAME)frame->frame_type, &sd);
} else {
return VPX_CODEC_INVALID_PARAM;
@@ -487,13 +623,19 @@ static vpx_codec_err_t ctrl_copy_reference(vpx_codec_alg_priv_t *ctx,
va_list args) {
vpx_ref_frame_t *data = va_arg(args, vpx_ref_frame_t *);
// Only support this function in serial decode.
if (ctx->frame_parallel_decode) {
set_error_detail(ctx, "Not supported in frame parallel decode");
return VPX_CODEC_INCAPABLE;
}
if (data) {
vpx_ref_frame_t *frame = (vpx_ref_frame_t *)data;
vpx_ref_frame_t *frame = (vpx_ref_frame_t *) data;
YV12_BUFFER_CONFIG sd;
VP9Worker *const worker = ctx->frame_workers;
FrameWorkerData *const worker_data = (FrameWorkerData *)worker->data1;
image2yuvconfig(&frame->img, &sd);
return vp9_copy_reference_dec(ctx->pbi,
return vp9_copy_reference_dec(worker_data->pbi,
(VP9_REFFRAME)frame->frame_type, &sd);
} else {
return VPX_CODEC_INVALID_PARAM;
@@ -504,11 +646,18 @@ static vpx_codec_err_t ctrl_get_reference(vpx_codec_alg_priv_t *ctx,
va_list args) {
vp9_ref_frame_t *data = va_arg(args, vp9_ref_frame_t *);
// Only support this function in serial decode.
if (ctx->frame_parallel_decode) {
set_error_detail(ctx, "Not supported in frame parallel decode");
return VPX_CODEC_INCAPABLE;
}
if (data) {
YV12_BUFFER_CONFIG* fb;
vp9_get_reference_dec(ctx->pbi, data->idx, &fb);
yuvconfig2image(&data->img, fb, NULL);
VP9Worker *const worker = ctx->frame_workers;
FrameWorkerData *const worker_data = (FrameWorkerData *)worker->data1;
vp9_get_reference_dec(worker_data->pbi, data->idx, &fb);
yuvconfig2image(&data->img, fb, worker_data->user_priv);
return VPX_CODEC_OK;
} else {
return VPX_CODEC_INVALID_PARAM;
@@ -545,11 +694,20 @@ static vpx_codec_err_t ctrl_get_last_ref_updates(vpx_codec_alg_priv_t *ctx,
va_list args) {
int *const update_info = va_arg(args, int *);
// Only support this function in serial decode.
if (ctx->frame_parallel_decode) {
set_error_detail(ctx, "Not supported in frame parallel decode");
return VPX_CODEC_INCAPABLE;
}
if (update_info) {
if (ctx->pbi)
*update_info = ctx->pbi->refresh_frame_flags;
else
if (ctx->frame_workers) {
VP9Worker *const worker = ctx->frame_workers;
FrameWorkerData *const worker_data = (FrameWorkerData *)worker->data1;
*update_info = worker_data->pbi->refresh_frame_flags;
} else {
return VPX_CODEC_ERROR;
}
return VPX_CODEC_OK;
} else {
return VPX_CODEC_INVALID_PARAM;
@@ -561,11 +719,20 @@ static vpx_codec_err_t ctrl_get_frame_corrupted(vpx_codec_alg_priv_t *ctx,
va_list args) {
int *corrupted = va_arg(args, int *);
// Only support this function in serial decode.
if (ctx->frame_parallel_decode) {
set_error_detail(ctx, "Not supported in frame parallel decode");
return VPX_CODEC_INCAPABLE;
}
if (corrupted) {
if (ctx->pbi)
*corrupted = ctx->pbi->common.frame_to_show->corrupted;
else
if (ctx->frame_workers) {
VP9Worker *const worker = ctx->frame_workers;
FrameWorkerData *const worker_data = (FrameWorkerData *)worker->data1;
*corrupted = worker_data->pbi->common.frame_to_show->corrupted;
} else {
return VPX_CODEC_ERROR;
}
return VPX_CODEC_OK;
} else {
return VPX_CODEC_INVALID_PARAM;
@@ -576,9 +743,17 @@ static vpx_codec_err_t ctrl_get_display_size(vpx_codec_alg_priv_t *ctx,
va_list args) {
int *const display_size = va_arg(args, int *);
// Only support this function in serial decode.
if (ctx->frame_parallel_decode) {
set_error_detail(ctx, "Not supported in frame parallel decode");
return VPX_CODEC_INCAPABLE;
}
if (display_size) {
if (ctx->pbi) {
const VP9_COMMON *const cm = &ctx->pbi->common;
if (ctx->frame_workers) {
VP9Worker *const worker = ctx->frame_workers;
FrameWorkerData *const worker_data = (FrameWorkerData *)worker->data1;
const VP9_COMMON *const cm = &worker_data->pbi->common;
display_size[0] = cm->display_width;
display_size[1] = cm->display_height;
} else {

View File

@@ -105,11 +105,9 @@ VP9_CX_SRCS-$(HAVE_SSE3) += encoder/x86/vp9_sad_sse3.asm
ifeq ($(CONFIG_USE_X86INC),yes)
VP9_CX_SRCS-$(HAVE_MMX) += encoder/x86/vp9_dct_mmx.asm
VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_error_sse2.asm
VP9_CX_SRCS-$(HAVE_AVX2) += encoder/x86/vp9_error_intrin_avx2.c
VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_sad_sse2.asm
VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_subtract_sse2.asm
VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_variance_sse2.c
VP9_CX_SRCS-$(HAVE_AVX2) += encoder/x86/vp9_variance_avx2.c
VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_subpel_variance.asm
endif
@@ -124,7 +122,9 @@ VP9_CX_SRCS-$(ARCH_X86_64) += encoder/x86/vp9_ssim_opt_x86_64.asm
VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_dct_sse2.c
VP9_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp9_dct32x32_sse2.c
VP9_CX_SRCS-$(HAVE_AVX2) += encoder/x86/vp9_dct_avx2.c
VP9_CX_SRCS-$(HAVE_AVX2) += encoder/x86/vp9_dct32x32_avx2.c
VP9_CX_SRCS-$(HAVE_AVX2) += encoder/x86/vp9_dct_avx2.c
VP9_CX_SRCS-$(HAVE_AVX2) += encoder/x86/vp9_error_intrin_avx2.c
VP9_CX_SRCS-$(HAVE_AVX2) += encoder/x86/vp9_variance_avx2.c
VP9_CX_SRCS-yes := $(filter-out $(VP9_CX_SRCS_REMOVE-yes),$(VP9_CX_SRCS-yes))

View File

@@ -24,6 +24,7 @@
#include "vpx/svc_context.h"
#include "vpx/vp8cx.h"
#include "vpx/vpx_encoder.h"
#include "vpx_mem/vpx_mem.h"
#ifdef __MINGW32__
#define strtok_r strtok_s
@@ -47,6 +48,14 @@ _CRTIMP char *__cdecl strtok_s(char *str, const char *delim, char **context);
static const char *DEFAULT_QUANTIZER_VALUES = "60,53,39,33,27";
static const char *DEFAULT_SCALE_FACTORS = "4/16,5/16,7/16,11/16,16/16";
// One encoded frame
typedef struct FrameData {
void *buf; // compressed data buffer
size_t size; // length of compressed data
vpx_codec_frame_flags_t flags; /**< flags for this frame */
struct FrameData *next;
} FrameData;
typedef struct SvcInternal {
char options[OPTION_BUFFER_SIZE]; // set by vpx_svc_set_options
char quantizers[OPTION_BUFFER_SIZE]; // set by vpx_svc_set_quantizers
@@ -72,15 +81,15 @@ typedef struct SvcInternal {
// state variables
int encode_frame_count;
int frame_received;
int frame_within_gop;
vpx_enc_frame_flags_t enc_frame_flags;
int layers;
int layer;
int is_keyframe;
size_t frame_size;
size_t buffer_size;
void *buffer;
FrameData *frame_list;
FrameData *frame_temp;
char *rc_stats_buf;
size_t rc_stats_buf_size;
@@ -90,128 +99,54 @@ typedef struct SvcInternal {
vpx_codec_ctx_t *codec_ctx;
} SvcInternal;
// Superframe is used to generate an index of individual frames (i.e., layers)
struct Superframe {
int count;
uint32_t sizes[SUPERFRAME_SLOTS];
uint32_t magnitude;
uint8_t buffer[SUPERFRAME_BUFFER_SIZE];
size_t index_size;
};
// One encoded frame layer
struct LayerData {
void *buf; // compressed data buffer
size_t size; // length of compressed data
struct LayerData *next;
};
// create LayerData from encoder output
static struct LayerData *ld_create(void *buf, size_t size) {
struct LayerData *const layer_data =
(struct LayerData *)malloc(sizeof(*layer_data));
if (layer_data == NULL) {
// create FrameData from encoder output
static struct FrameData *fd_create(void *buf, size_t size,
vpx_codec_frame_flags_t flags) {
struct FrameData *const frame_data =
(struct FrameData *)vpx_malloc(sizeof(*frame_data));
if (frame_data == NULL) {
return NULL;
}
layer_data->buf = malloc(size);
if (layer_data->buf == NULL) {
free(layer_data);
frame_data->buf = vpx_malloc(size);
if (frame_data->buf == NULL) {
vpx_free(frame_data);
return NULL;
}
memcpy(layer_data->buf, buf, size);
layer_data->size = size;
return layer_data;
vpx_memcpy(frame_data->buf, buf, size);
frame_data->size = size;
frame_data->flags = flags;
return frame_data;
}
// free LayerData
static void ld_free(struct LayerData *layer_data) {
if (layer_data) {
if (layer_data->buf) {
free(layer_data->buf);
layer_data->buf = NULL;
}
free(layer_data);
// free FrameData
static void fd_free(struct FrameData *p) {
if (p) {
if (p->buf)
vpx_free(p->buf);
vpx_free(p);
}
}
// add layer data to list
static void ld_list_add(struct LayerData **list, struct LayerData *layer_data) {
struct LayerData **p = list;
// add FrameData to list
static void fd_list_add(struct FrameData **list, struct FrameData *layer_data) {
struct FrameData **p = list;
while (*p != NULL) p = &(*p)->next;
*p = layer_data;
layer_data->next = NULL;
}
// get accumulated size of layer data
static size_t ld_list_get_buffer_size(struct LayerData *list) {
struct LayerData *p;
size_t size = 0;
for (p = list; p != NULL; p = p->next) {
size += p->size;
}
return size;
}
// copy layer data to buffer
static void ld_list_copy_to_buffer(struct LayerData *list, uint8_t *buffer) {
struct LayerData *p;
for (p = list; p != NULL; p = p->next) {
buffer[0] = 1;
memcpy(buffer, p->buf, p->size);
buffer += p->size;
}
}
// free layer data list
static void ld_list_free(struct LayerData *list) {
struct LayerData *p = list;
// free FrameData list
static void fd_free_list(struct FrameData *list) {
struct FrameData *p = list;
while (p) {
list = list->next;
ld_free(p);
fd_free(p);
p = list;
}
}
static void sf_create_index(struct Superframe *sf) {
uint8_t marker = 0xc0;
int i;
uint32_t mag, mask;
uint8_t *bufp;
if (sf->count == 0 || sf->count >= 8) return;
// Add the number of frames to the marker byte
marker |= sf->count - 1;
// Choose the magnitude
for (mag = 0, mask = 0xff; mag < 4; ++mag) {
if (sf->magnitude < mask) break;
mask <<= 8;
mask |= 0xff;
}
marker |= mag << 3;
// Write the index
sf->index_size = 2 + (mag + 1) * sf->count;
bufp = sf->buffer;
*bufp++ = marker;
for (i = 0; i < sf->count; ++i) {
int this_sz = sf->sizes[i];
uint32_t j;
for (j = 0; j <= mag; ++j) {
*bufp++ = this_sz & 0xff;
this_sz >>= 8;
}
}
*bufp++ = marker;
}
static SvcInternal *get_svc_internal(SvcContext *svc_ctx) {
if (svc_ctx == NULL) return NULL;
if (svc_ctx->internal == NULL) {
@@ -574,8 +509,6 @@ vpx_codec_err_t vpx_svc_init(SvcContext *svc_ctx, vpx_codec_ctx_t *codec_ctx,
// modify encoder configuration
enc_cfg->ss_number_layers = si->layers;
enc_cfg->ts_number_layers = 1; // Temporal layers not used in this encoder.
// Lag in frames not currently supported
enc_cfg->g_lag_in_frames = 0;
// TODO(ivanmaltz): determine if these values need to be set explicitly for
// svc, or if the normal default/override mechanism can be used
@@ -608,6 +541,34 @@ vpx_codec_err_t vpx_svc_init(SvcContext *svc_ctx, vpx_codec_ctx_t *codec_ctx,
return VPX_CODEC_OK;
}
static void accumulate_frame_size_for_each_layer(SvcInternal *const si,
const uint8_t *const buf,
const size_t size) {
uint8_t marker = buf[size - 1];
if ((marker & 0xe0) == 0xc0) {
const uint32_t frames = (marker & 0x7) + 1;
const uint32_t mag = ((marker >> 3) & 0x3) + 1;
const size_t index_sz = 2 + mag * frames;
uint8_t marker2 = buf[size - index_sz];
if (size >= index_sz && marker2 == marker) {
// found a valid superframe index
uint32_t i, j;
const uint8_t *x = &buf[size - index_sz + 1];
// frames has a maximum of 8 and mag has a maximum of 4.
for (i = 0; i < frames; i++) {
uint32_t this_sz = 0;
for (j = 0; j < mag; j++)
this_sz |= (*x++) << (j * 8);
si->bytes_sum[i] += this_sz;
}
}
}
}
// SVC Algorithm flags - these get mapped to VP8_EFLAG_* defined in vp8cx.h
// encoder should reference the last frame
@@ -846,15 +807,12 @@ vpx_codec_err_t vpx_svc_encode(SvcContext *svc_ctx, vpx_codec_ctx_t *codec_ctx,
vpx_codec_err_t res;
vpx_codec_iter_t iter;
const vpx_codec_cx_pkt_t *cx_pkt;
struct LayerData *cx_layer_list = NULL;
struct LayerData *layer_data;
struct Superframe superframe;
int layer_for_psnr = 0;
SvcInternal *const si = get_svc_internal(svc_ctx);
if (svc_ctx == NULL || codec_ctx == NULL || si == NULL) {
return VPX_CODEC_INVALID_PARAM;
}
memset(&superframe, 0, sizeof(superframe));
svc_log_reset(svc_ctx);
si->rc_stats_buf_used = 0;
@@ -863,7 +821,6 @@ vpx_codec_err_t vpx_svc_encode(SvcContext *svc_ctx, vpx_codec_ctx_t *codec_ctx,
si->frame_within_gop = 0;
}
si->is_keyframe = (si->frame_within_gop == 0);
si->frame_size = 0;
if (rawimg != NULL) {
svc_log(svc_ctx, SVC_LOG_DEBUG,
@@ -872,124 +829,90 @@ vpx_codec_err_t vpx_svc_encode(SvcContext *svc_ctx, vpx_codec_ctx_t *codec_ctx,
si->frame_within_gop);
}
// encode each layer
for (si->layer = 0; si->layer < si->layers; ++si->layer) {
if (svc_ctx->encoding_mode == ALT_INTER_LAYER_PREDICTION_IP &&
si->is_keyframe && (si->layer == 1 || si->layer == 3)) {
svc_log(svc_ctx, SVC_LOG_DEBUG, "Skip encoding layer %d\n", si->layer);
continue;
}
if (rawimg != NULL) {
if (rawimg != NULL) {
// encode each layer
for (si->layer = 0; si->layer < si->layers; ++si->layer) {
if (svc_ctx->encoding_mode == ALT_INTER_LAYER_PREDICTION_IP &&
si->is_keyframe && (si->layer == 1 || si->layer == 3)) {
svc_log(svc_ctx, SVC_LOG_DEBUG, "Skip encoding layer %d\n", si->layer);
continue;
}
calculate_enc_frame_flags(svc_ctx);
set_svc_parameters(svc_ctx, codec_ctx);
}
}
res = vpx_codec_encode(codec_ctx, rawimg, pts, (uint32_t)duration,
si->enc_frame_flags, deadline);
if (res != VPX_CODEC_OK) {
return res;
}
// save compressed data
iter = NULL;
while ((cx_pkt = vpx_codec_get_cx_data(codec_ctx, &iter))) {
switch (cx_pkt->kind) {
case VPX_CODEC_CX_FRAME_PKT: {
const uint32_t frame_pkt_size = (uint32_t)(cx_pkt->data.frame.sz);
si->bytes_sum[si->layer] += frame_pkt_size;
svc_log(svc_ctx, SVC_LOG_DEBUG,
"SVC frame: %d, layer: %d, size: %u\n",
si->encode_frame_count, si->layer, frame_pkt_size);
layer_data =
ld_create(cx_pkt->data.frame.buf, (size_t)frame_pkt_size);
if (layer_data == NULL) {
svc_log(svc_ctx, SVC_LOG_ERROR, "Error allocating LayerData\n");
return VPX_CODEC_OK;
res = vpx_codec_encode(codec_ctx, rawimg, pts, (uint32_t)duration, 0,
deadline);
if (res != VPX_CODEC_OK) {
return res;
}
// save compressed data
iter = NULL;
while ((cx_pkt = vpx_codec_get_cx_data(codec_ctx, &iter))) {
switch (cx_pkt->kind) {
case VPX_CODEC_CX_FRAME_PKT: {
fd_list_add(&si->frame_list, fd_create(cx_pkt->data.frame.buf,
cx_pkt->data.frame.sz,
cx_pkt->data.frame.flags));
accumulate_frame_size_for_each_layer(si, cx_pkt->data.frame.buf,
cx_pkt->data.frame.sz);
svc_log(svc_ctx, SVC_LOG_DEBUG, "SVC frame: %d, kf: %d, size: %d, "
"pts: %d\n", si->frame_received,
(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY) ? 1 : 0,
(int)cx_pkt->data.frame.sz, (int)cx_pkt->data.frame.pts);
++si->frame_received;
layer_for_psnr = 0;
break;
}
case VPX_CODEC_PSNR_PKT: {
int i;
svc_log(svc_ctx, SVC_LOG_DEBUG,
"SVC frame: %d, layer: %d, PSNR(Total/Y/U/V): "
"%2.3f %2.3f %2.3f %2.3f \n",
si->frame_received, layer_for_psnr,
cx_pkt->data.psnr.psnr[0], cx_pkt->data.psnr.psnr[1],
cx_pkt->data.psnr.psnr[2], cx_pkt->data.psnr.psnr[3]);
svc_log(svc_ctx, SVC_LOG_DEBUG,
"SVC frame: %d, layer: %d, SSE(Total/Y/U/V): "
"%2.3f %2.3f %2.3f %2.3f \n",
si->frame_received, layer_for_psnr,
cx_pkt->data.psnr.sse[0], cx_pkt->data.psnr.sse[1],
cx_pkt->data.psnr.sse[2], cx_pkt->data.psnr.sse[3]);
for (i = 0; i < COMPONENTS; i++) {
si->psnr_sum[layer_for_psnr][i] += cx_pkt->data.psnr.psnr[i];
si->sse_sum[layer_for_psnr][i] += cx_pkt->data.psnr.sse[i];
}
++layer_for_psnr;
break;
}
case VPX_CODEC_STATS_PKT: {
size_t new_size = si->rc_stats_buf_used +
cx_pkt->data.twopass_stats.sz;
if (new_size > si->rc_stats_buf_size) {
char *p = (char*)realloc(si->rc_stats_buf, new_size);
if (p == NULL) {
svc_log(svc_ctx, SVC_LOG_ERROR, "Error allocating stats buf\n");
return VPX_CODEC_MEM_ERROR;
}
ld_list_add(&cx_layer_list, layer_data);
si->rc_stats_buf = p;
si->rc_stats_buf_size = new_size;
}
// save layer size in superframe index
superframe.sizes[superframe.count++] = frame_pkt_size;
superframe.magnitude |= frame_pkt_size;
break;
}
case VPX_CODEC_PSNR_PKT: {
int i;
svc_log(svc_ctx, SVC_LOG_DEBUG,
"SVC frame: %d, layer: %d, PSNR(Total/Y/U/V): "
"%2.3f %2.3f %2.3f %2.3f \n",
si->encode_frame_count, si->layer,
cx_pkt->data.psnr.psnr[0], cx_pkt->data.psnr.psnr[1],
cx_pkt->data.psnr.psnr[2], cx_pkt->data.psnr.psnr[3]);
svc_log(svc_ctx, SVC_LOG_DEBUG,
"SVC frame: %d, layer: %d, SSE(Total/Y/U/V): "
"%2.3f %2.3f %2.3f %2.3f \n",
si->encode_frame_count, si->layer,
cx_pkt->data.psnr.sse[0], cx_pkt->data.psnr.sse[1],
cx_pkt->data.psnr.sse[2], cx_pkt->data.psnr.sse[3]);
for (i = 0; i < COMPONENTS; i++) {
si->psnr_sum[si->layer][i] += cx_pkt->data.psnr.psnr[i];
si->sse_sum[si->layer][i] += cx_pkt->data.psnr.sse[i];
}
break;
}
case VPX_CODEC_STATS_PKT: {
size_t new_size = si->rc_stats_buf_used +
cx_pkt->data.twopass_stats.sz;
if (new_size > si->rc_stats_buf_size) {
char *p = (char*)realloc(si->rc_stats_buf, new_size);
if (p == NULL) {
svc_log(svc_ctx, SVC_LOG_ERROR, "Error allocating stats buf\n");
break;
}
si->rc_stats_buf = p;
si->rc_stats_buf_size = new_size;
}
memcpy(si->rc_stats_buf + si->rc_stats_buf_used,
cx_pkt->data.twopass_stats.buf, cx_pkt->data.twopass_stats.sz);
si->rc_stats_buf_used += cx_pkt->data.twopass_stats.sz;
break;
}
default: {
break;
}
memcpy(si->rc_stats_buf + si->rc_stats_buf_used,
cx_pkt->data.twopass_stats.buf, cx_pkt->data.twopass_stats.sz);
si->rc_stats_buf_used += cx_pkt->data.twopass_stats.sz;
break;
}
default: {
break;
}
}
if (rawimg == NULL) {
break;
}
}
if (codec_ctx->config.enc->g_pass != VPX_RC_FIRST_PASS) {
// add superframe index to layer data list
sf_create_index(&superframe);
layer_data = ld_create(superframe.buffer, superframe.index_size);
ld_list_add(&cx_layer_list, layer_data);
// get accumulated size of layer data
si->frame_size = ld_list_get_buffer_size(cx_layer_list);
if (si->frame_size > 0) {
// all layers encoded, create single buffer with concatenated layers
if (si->frame_size > si->buffer_size) {
free(si->buffer);
si->buffer = malloc(si->frame_size);
if (si->buffer == NULL) {
ld_list_free(cx_layer_list);
return VPX_CODEC_MEM_ERROR;
}
si->buffer_size = si->frame_size;
}
// copy layer data into packet
ld_list_copy_to_buffer(cx_layer_list, (uint8_t *)si->buffer);
ld_list_free(cx_layer_list);
svc_log(svc_ctx, SVC_LOG_DEBUG, "SVC frame: %d, kf: %d, size: %d, "
"pts: %d\n", si->encode_frame_count, si->is_keyframe,
(int)si->frame_size, (int)pts);
}
}
if (rawimg != NULL) {
++si->frame_within_gop;
++si->encode_frame_count;
@@ -1004,16 +927,27 @@ const char *vpx_svc_get_message(const SvcContext *svc_ctx) {
return si->message_buffer;
}
void *vpx_svc_get_buffer(const SvcContext *svc_ctx) {
const SvcInternal *const si = get_const_svc_internal(svc_ctx);
if (svc_ctx == NULL || si == NULL) return NULL;
return si->buffer;
// We will maintain a list of output frame buffers since with lag_in_frame
// we need to output all frame buffers at the end. vpx_svc_get_buffer() will
// remove a frame buffer from the list the put it to a temporal pointer, which
// will be removed at the next vpx_svc_get_buffer() or when closing encoder.
void *vpx_svc_get_buffer(SvcContext *svc_ctx) {
SvcInternal *const si = get_svc_internal(svc_ctx);
if (svc_ctx == NULL || si == NULL || si->frame_list == NULL) return NULL;
if (si->frame_temp)
fd_free(si->frame_temp);
si->frame_temp = si->frame_list;
si->frame_list = si->frame_list->next;
return si->frame_temp->buf;
}
size_t vpx_svc_get_frame_size(const SvcContext *svc_ctx) {
const SvcInternal *const si = get_const_svc_internal(svc_ctx);
if (svc_ctx == NULL || si == NULL) return 0;
return si->frame_size;
if (svc_ctx == NULL || si == NULL || si->frame_list == NULL) return 0;
return si->frame_list->size;
}
int vpx_svc_get_encode_frame_count(const SvcContext *svc_ctx) {
@@ -1024,8 +958,8 @@ int vpx_svc_get_encode_frame_count(const SvcContext *svc_ctx) {
int vpx_svc_is_keyframe(const SvcContext *svc_ctx) {
const SvcInternal *const si = get_const_svc_internal(svc_ctx);
if (svc_ctx == NULL || si == NULL) return 0;
return si->is_keyframe;
if (svc_ctx == NULL || si == NULL || si->frame_list == NULL) return 0;
return (si->frame_list->flags & VPX_FRAME_IS_KEY) != 0;
}
void vpx_svc_set_keyframe(SvcContext *svc_ctx) {
@@ -1112,7 +1046,8 @@ void vpx_svc_release(SvcContext *svc_ctx) {
// SvcInternal if it was not already allocated
si = (SvcInternal *)svc_ctx->internal;
if (si != NULL) {
free(si->buffer);
fd_free(si->frame_temp);
fd_free_list(si->frame_list);
if (si->rc_stats_buf) {
free(si->rc_stats_buf);
}

View File

@@ -104,14 +104,16 @@ const char *vpx_svc_dump_statistics(SvcContext *svc_ctx);
const char *vpx_svc_get_message(const SvcContext *svc_ctx);
/**
* return size of encoded data to be returned by vpx_svc_get_buffer
* return size of encoded data to be returned by vpx_svc_get_buffer.
* it needs to be called before vpx_svc_get_buffer.
*/
size_t vpx_svc_get_frame_size(const SvcContext *svc_ctx);
/**
* return buffer with encoded data
* return buffer with encoded data. encoder will maintain a list of frame
* buffers. each call of vpx_svc_get_buffer() will return one frame.
*/
void *vpx_svc_get_buffer(const SvcContext *svc_ctx);
void *vpx_svc_get_buffer(SvcContext *svc_ctx);
/**
* return size of two pass rate control stats data to be returned by