Compare commits

..

89 Commits

Author SHA1 Message Date
Deb Mukherjee
6b0c636b96 Cosmetic changes in the supertx expt
Converts most negative !CONFIG_SUPERTX checks to positive ones.

Change-Id: I80b7f8c5d3483a7861f0de7fc7ebc425b9c68766
2014-11-10 17:34:00 -08:00
Yue Chen
b0aa2db2e7 Fixing rd loop bugs in supertx+ext_tx experiment
Change-Id: I891b108e591e01d5c7d588dec0bcc4b323d0b6a8
2014-11-07 16:43:12 -08:00
Yue Chen
95d0f87d6e Fixing sub-optimal rdloop when testing supertx on 8x4/4x8 blocks
Remove early termination in vp9_rd_pick_inter_mode_sub8x8() in
order to complete mode selection for 8x4/4x8 blocks which will
try supertx in a higher level function.

Change-Id: I457505257332f70d9cd8d22db52ad32ff15f7f87
2014-10-20 21:52:55 -07:00
Yue Chen
c741a4fe03 Fixing skip flag bugs in recent experiments
Bugs were in vp9_rdopt.c
Also did minor clean-ups in vp9_encodeframe.c

Change-Id: I6fec18e349cd0b810b0772e506927b423db077b6
2014-10-20 14:51:20 -07:00
Deb Mukherjee
430c389f16 Miscellaneous fixes for recent experiments
Various cleanups for ext-tx, supertx, copy-coding experiments.

Change-Id: I8703d5fee57b1310d8d1aa1f26908e9a427b0502
2014-10-14 15:59:17 -07:00
Yue Chen
d8b0d40bf6 Allow blocks to directly copy motion information from neighbors
A new set of prediction modes, called copy modes, is implemented
to allow blocks to directly copy motion information from a neighbor.
The motivation is to create regions of arbitrary shapes in which
blocks share same motion parameters and hence to save bits spent on
duplicated side information.
Compression gain:
derf: 0.894%; stdhd: 1.513%.

Change-Id: I5e026b12c902bc6985c199ec38f1b3b67ac7d930
2014-09-03 11:22:36 -07:00
Yue Chen
a4dfcd9a2d Implementing transform overlapping multiple blocks
We removed the restriction that transform blocks could not exceed
the size of prediction blocks. Smoothing masks are applied to reduce
discontinuity between prediction blocks in order to realize the
efficiency of large transform.
0.997%/0.895% bit-rate reduction is achieved on derf/stdhd set.

Change-Id: I8db241bab9fe74d864809e95f76b771ee59a2def
2014-08-15 16:56:11 -07:00
Yue Chen
be17f1b338 Merge "Migrating old experiments into new playground branch and speedup" into playground 2014-06-26 15:36:44 -07:00
Yue Chen
ffdad39324 Merge "Squash commits from master to playground" into playground 2014-06-26 15:36:24 -07:00
Yue Chen
07ac101806 Migrating old experiments into new playground branch and speedup
The old interintra experiment is slow (speed is 0.2x original codec
at speed 0).
We use best inter mode to skip some reference frame and NEWMV
search when searching best joint mode.
Quality drop: ~0.1% derf. Speed: 0.36x head.

Change-Id: If10453448284f86c14a0a41f20aeaf9ac838fa32
2014-06-26 14:22:53 -07:00
Yue Chen
a49d80bfc8 Squash commits from master to playground
Moving RD-opt related code from vp9_encoder.h to vp9_rdopt.h.

Squashed-Change-Id: I8fab776c8801e19d3f5027ed55a6aa69eee951de

gen_msvs_proj: fix in tree configure under cygwin

strip trailing '/' from paths, this is later converted to '\' which
causes execution errors for obj_int_extract/yasm. vs10+ wasn't affected
by this issue, but make the same change for consistency.

gen_msvs_proj:
+ add missing '"' to obj_int_extract call
  unlike gen_msvs_vcproj, the block is duplicated
  missed in: 1e3d9b9 build/msvs: fix builds in source dirs with spaces

Squashed-Change-Id: I76208e6cdc66dc5a0a7ffa8aa1edbefe31e4b130

Improve vp9_rb_bytes_read

Squashed-Change-Id: I69eba120eb3d8ec43b5552451c8a9bd009390795

Removing decode_one_iter() function.

When superframe index is available we completely rely on it and use frame
size values from the index.

Squashed-Change-Id: I0011d08b223303a8b912c2bcc8a02b74d0426ee0

iosbuild.sh: Add vpx_config.h and vpx_version.h to VPX.framework.

- Rename build_targets to build_framework
- Add functions for creating the vpx_config shim and obtaining
  preproc symbols.

Squashed-Change-Id: Ieca6938b9779077eefa26bf4cfee64286d1840b0

Implemented vp9_denoiser_{alloc,free}()

Squashed-Change-Id: I79eba79f7c52eec19ef2356278597e06620d5e27

Update running avg for VP9 denoiser

Squashed-Change-Id: I9577d648542064052795bf5770428fbd5c276b7b

Changed buf_2ds in vp9 denoiser to YV12 buffers

Changed alloc, free, and running average code as necessary.

Squashed-Change-Id: Ifc4d9ccca462164214019963b3768a457791b9c1

sse4 regular quantize

Squashed-Change-Id: Ibd95df0adf9cc9143006ee9032b4cb2ebfd5dd1b

Modify non-rd intra mode checking

Speed 6 uses small tx size, namely 8x8. max_intra_bsize needs to
be modified accordingly to ensure valid intra mode checking.
Borg test on RTC set showed an overall PSNR gain of 0.335% in speed
-6.

This also changes speed -5 encoding by allowing DC_PRED checking
for block32x32. Borg test on RTC set showed a slight PSNR gain of
0.145%, and no noticeable speed change.

Squashed-Change-Id: I1502978d8fbe265b3bb235db0f9c35ba0703cd45

Implemented COPY_BLOCK case for vp9 denoiser

Squashed-Change-Id: Ie89ad1e3aebbd474e1a0db69c1961b4d1ddcd33e

Improved vp9 denoiser running avg update.

Squashed-Change-Id: Ie0aa41fb7957755544321897b3bb2dd92f392027

Separate rate-distortion modeling for DC and AC coefficients

This is the first step to rework the rate-distortion modeling used
in rtc coding mode. The overall goal is to make the modeling
customized for the statistics encountered in the rtc coding.

This commit makes encoder to perform rate-distortion modeling for
DC and AC coefficients separately. No speed changes observed.
The coding performance for pedestrian_area_1080p is largely
improved:

speed -5, from 79558 b/f, 37.871 dB -> 79598 b/f, 38.600 dB
speed -6, from 79515 b/f, 37.822 dB -> 79544 b/f, 38.130 dB

Overall performance for rtc set at speed -6 is improved by 0.67%.

Squashed-Change-Id: I9153444567e5f75ccdcaac043c2365992c005c0c

Add superframe support for frame parallel decoding.

A superframe is a bunch of frames that bundled as one frame. It is mostly
used to combine one or more non-displayable frames and one displayable frame.

For frame parallel decoding, libvpx decoder will only support decoding one
normal frame or a super frame with superframe index.

If an application pass a superframe without superframe index or a chunk
of displayable frames without superframe index to libvpx decoder, libvpx
will not decode it in frame parallel mode. But libvpx decoder still could
decode it in serial mode.

Squashed-Change-Id: I04c9f2c828373d64e880a8c7bcade5307015ce35

Fixes in VP9 alloc, free, and COPY_FRAME case

Squashed-Change-Id: I1216f17e2206ef521fe219b6d72d8e41d1ba1147

Remove labels from quantize

Use break instead of goto for early exit. Unbreaks Visual Studio
builds.

Squashed-Change-Id: I96dee43a3c82145d4abe0d6a99af6e6e1a3991b5

Added CFLAG for outputting vp9 denoised signal

Squashed-Change-Id: Iab9b4e11cad927f3282e486c203564e1a658f377

Allow key frame more flexibility in mode search

This commit allows the key frame to search through more prediction
modes and more flexible block sizes. No speed change observed. The
coding performance for rtc set is improved by 1.7% for speed -5 and
3.0% for speed -6.

Squashed-Change-Id: Ifd1bc28558017851b210b4004f2d80838938bcc5

VP9 denoiser bugfixes

s/stdint.h/vpx\/vpx_int.h

Added missing 'break;'s

Also included other minor changes, mostly cosmetic.

Squashed-Change-Id: I852bba3e85e794f1d4af854c45c16a23a787e6a3

Don't return value for void functions

Clears "warning: 'return' with a value, in function returning void"

Squashed-Change-Id: I93972610d67e243ec772a1021d2fdfcfc689c8c2

Include type defines

Clears error: unknown type name 'uint8_t'

Squashed-Change-Id: I9b6eff66a5c69bc24aeaeb5ade29255a164ef0e2

Validate error checking code in decoder.

This patch adds a mechanism for insuring error checking on invalid files
by creating a unit test that runs the decoder and tests that the error
code matches what's expected on each frame in the decoder.

Disabled for now as this unit test will segfault with existing code.

Squashed-Change-Id: I896f9686d9ebcbf027426933adfbea7b8c5d956e

Introduce FrameWorker for decoding.

When decoding in serial mode, there will be only
one FrameWorker doing decoding. When decoding in
parallel mode, there will be several FrameWorkers
doing decoding in parallel.

Squashed-Change-Id: If53fc5c49c7a0bf5e773f1ce7008b8a62fdae257

Add back libmkv ebml writer files.

Another project in ChromeOS is using these files. To make libvpx
rolls simpler, add these files back unitl the other project removes
the dependency.

crbug.com/387246 tracking bug to remove dependency.

Squashed-Change-Id: If9c197081c845c4a4e5c5488d4e0190380bcb1e4

Added Test vector that tests more show existing frames.

Squashed-Change-Id: I0ddd7dd55313ee62d231ed4b9040e08c3761b3fe

fix peek_si to enable 1 byte show existing frames.

The test for this is in test vector code ( show existing frames will
fail ).  I can't check it in disabled as I'm changing the generic
test code to do this:

https://gerrit.chromium.org/gerrit/#/c/70569/

Squashed-Change-Id: I5ab324f0cb7df06316a949af0f7fc089f4a3d466

Fix bug in error handling that causes segfault

See: https://code.google.com/p/chromium/issues/detail?id=362697

The code properly catches an invalid stream but seg faults instead of
returning an error due to a buffer not having been initialized. This
code fixes that.

Squashed-Change-Id: I695595e742cb08807e1dfb2f00bc097b3eae3a9b

Revert 3 patches from Hangyu to get Chrome to build:

Avoids failures:
MSE_ClearKey/EncryptedMediaTest.Playback_VP9Video_WebM/0
MSE_ClearKey_Prefixed/EncryptedMediaTest.Playback_VP9Video_WebM/0
MSE_ExternalClearKey_Prefixed/EncryptedMediaTest.Playback_VP9Video_WebM/0
MSE_ExternalClearKey/EncryptedMediaTest.Playback_VP9Video_WebM/0
MSE_ExternalClearKeyDecryptOnly/EncryptedMediaTest.Playback_VP9Video_WebM/0
MSE_ExternalClearKeyDecryptOnly_Prefixed/EncryptedMediaTest.Playback_VP9Video_WebM/0
SRC_ExternalClearKey/EncryptedMediaTest.Playback_VP9Video_WebM/0
SRC_ExternalClearKey_Prefixed/EncryptedMediaTest.Playback_VP9Video_WebM/0
SRC_ClearKey_Prefixed/EncryptedMediaTest.Playback_VP9Video_WebM/0

Patches are
This reverts commit 9bc040859b
This reverts commit 6f5aba069a
This reverts commit 9bc040859b

I1f250441	Revert "Refactor the vp9_get_frame code for frame parallel."
Ibfdddce5	Revert "Delay decreasing reference count in frame-parallel decoding."
I00ce6771	Revert "Introduce FrameWorker for decoding."

Need better testing in libvpx for these commits

Squashed-Change-Id: Ifa1f279b0cabf4b47c051ec26018f9301c1e130e

error check vp9 superframe parsing

This patch insures that the last byte of a chunk that contains a
valid superframe marker byte,  actually has a proper superframe index.
If not it returns an error.

As part of doing that the file : vp90-2-15-fuzz-flicker.webm now fails
to decode properly and moves to the invalid file test from the test
vector suite.

Squashed-Change-Id: I5f1da7eb37282ec0c6394df5c73251a2df9c1744

Remove unused vp9_init_quant_tables function

This function is not effectively used, hence removed.

Squashed-Change-Id: I2e8e48fa07c7518931690f3b04bae920cb360e49

Actually skip blocks in skip segments in non-rd encoder.

Copy split from macroblock to pick mode context so it doesn't get lost.

Squashed-Change-Id: Ie37aa12558dbe65c4f8076cf808250fffb7f27a8

Add Check for Peek Stream validity to decoder test.

Squashed-Change-Id: I9b745670a9f842582c47e6001dc77480b31fb6a1

Allocate buffers based on correct chroma format

The encoder currently allocates frame buffers before
it establishes what the chroma sub-sampling factor is,
always allocating based on the 4:4:4 format.

This patch detects the chroma format as early as
possible allowing the encoder to allocate buffers of
the correct size.

Future patches will change the encoder to allocate
frame buffers on demand to further reduce the memory
profile of the encoder and rationalize the buffer
management in the encoder and decoder.

Squashed-Change-Id: Ifd41dd96e67d0011719ba40fada0bae74f3a0d57

Fork vp9_rd_pick_inter_mode_sb_seg_skip

Squashed-Change-Id: I549868725b789f0f4f89828005a65972c20df888

Switch active map implementation to segment based.

Squashed-Change-Id: Ibb841a1fa4d08d164cf5461246ec290f582b1f80

Experiment for mid group second arf.

This patch implements a mechanism for inserting a second
arf at the mid position of arf groups.

It is currently disabled by default using the flag multi_arf_enabled.

Results are currently down somewhat in initial testing if
multi-arf is enabled. Most of the loss is attributable to the
fact that code to preserve the previous golden frame
(in the arf buffer) in cases where we are coding an overlay
frame, is currently disabled in the multi-arf case.

Squashed-Change-Id: I1d777318ca09f147db2e8c86d7315fe86168c865

Clean out old CONFIG_MULTIPLE_ARF code.

Remove the old experimental multi arf code that was under
the flag CONFIG_MULTIPLE_ARF.

Squashed-Change-Id: Ib24865abc11691d6ac8cb0434ada1da674368a61

Fix some bugs in multi-arf

Fix some bugs relating to the use of buffers
in the overlay frames.

Fix bug where a mid sequence overlay was
propagating large partition and transform sizes into
the subsequent frame because of :-
  sf->last_partitioning_redo_frequency  > 1 and
  sf->tx_size_search_method == USE_LARGESTALL

Squashed-Change-Id: Ibf9ef39a5a5150f8cbdd2c9275abb0316c67873a

Further dual arf changes: multi_arf_allowed.

Add multi_arf_allowed flag.
Re-initialize buffer indices every kf.
Add some const indicators.

Squashed-Change-Id: If86c39153517c427182691d2d4d4b7e90594be71

Fixed VP9 denoiser COPY_BLOCK case

Now copies the src to the correct location in the running average buffer.

Squashed-Change-Id: I9c83c96dc7a97f42c8df16ab4a9f18b733181f34

Fix test on maximum downscaling limits

There is a normative scaling range of (x1/2, x16)
for VP9. This patch fixes the maximum downscaling
tests that are applied in the convolve function.

The code used a maximum downscaling limit of x1/5
for historic reasons related to the scalable
coding work. Since the downsampling in this
application is non-normative it will revert to
using a separate non-normative scaler.

Squashed-Change-Id: Ide80ed712cee82fe5cb3c55076ac428295a6019f

Add unit test to test user_priv parameter.

Squashed-Change-Id: I6ba6171e43e0a43331ee0a7b698590b143979c44

vp9: check tile column count

the max is 6. there are assumptions throughout the decode regarding
this; fixes a crash with a fuzzed bitstream

$ zzuf -s 5861 -r 0.01:0.05 -b 6- \
  < vp90-2-00-quantizer-00.webm.ivf \
  | dd of=invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.ivf \
    bs=1 count=81883

Squashed-Change-Id: I6af41bb34252e88bc156a4c27c80d505d45f5642

Adjust arf Q limits with multi-arf.

Adjust enforced minimum arf Q deltas for non primary arfs
in the middle of an arf/gf group.

Squashed-Change-Id: Ie8034ffb3ac00f887d74ae1586d4cac91d6cace2

Dual ARF changes: Buffer index selection.

Add indirection to the section of buffer indices.
This is to help simplify things in the future if we
have other codec features that switch indices.

Limit the max GF interval for static sections to fit
the gf_group structures.

Squashed-Change-Id: I38310daaf23fd906004c0e8ee3e99e15570f84cb

Reuse inter prediction result in real-time speed 6

In real-time speed 6, no partition search is done. The inter
prediction results got from picking mode can be reused in the
following encoding process. A speed feature reuse_inter_pred_sby
is added to only enable the resue in speed 6.

This patch doesn't change encoding result. RTC set tests showed
that the encoding speed gain is 2% - 5%.

Squashed-Change-Id: I3884780f64ef95dd8be10562926542528713b92c

Add vp9_ prefix to mv_pred and setup_pred_block functions

Make these two functions accessible by both RD and non-RD coding
modes.

Squashed-Change-Id: Iecb39dbf3d65436286ea3c7ffaa9920d0b3aff85

Replace cpi->common with preset variable cm

This commit replaces a few use cases of cpi->common with preset
variable cm, to avoid unnecessary pointer fetch in the non-RD
coding mode.

Squashed-Change-Id: I4038f1c1a47373b8fd7bc5d69af61346103702f6

[spatial svc]Implement lag in frames for spatial svc

Squashed-Change-Id: I930dced169c9d53f8044d2754a04332138347409

[spatial svc]Don't skip motion search in first pass encoding

Squashed-Change-Id: Ia6bcdaf5a5b80e68176f60d8d00e9b5cf3f9bfe3

decode_test_driver: fix type size warning

like vpx_codec_decode(), vpx_codec_peek_stream_info() takes an unsigned
int, not size_t, parameter for buffer size

Squashed-Change-Id: I4ce0e1fbbde461c2e1b8fcbaac3cd203ed707460

decode_test_driver: check HasFailure() in RunLoop

avoids unnecessary errors due to e.g., read (Next()) failures

Squashed-Change-Id: I70b1d09766456f1c55367d98299b5abd7afff842

Allow lossless breakout in non-rd mode decision.

This is very helpful for large moving windows in screencasts.

Squashed-Change-Id: I91b5f9acb133281ee85ccd8f843e6bae5cadefca

Revert "Revert 3 patches from Hangyu to get Chrome to build:"

This patch reverts the previous revert from Jim and also add a
variable user_priv in the FrameWorker to save the user_priv
passed from the application. In the decoder_get_frame function,
the user_priv will be binded with the img. This change is needed
or it will fail the unit test added here:
https://gerrit.chromium.org/gerrit/#/c/70610/

This reverts commit 9be46e4565.

Squashed-Change-Id: I376d9a12ee196faffdf3c792b59e6137c56132c1

test.mk: remove renamed file

vp90-2-15-fuzz-flicker.webm was renamed in:
c3db2d8 error check vp9 superframe parsing

Squashed-Change-Id: I229dd6ca4c662802c457beea0f7b4128153a65dc

vp9cx.mk: move avx c files outside of x86inc block

same reasoning as:
9f3a0db vp9_rtcd: correct avx2 references

these are all intrinsics, so don't depend on x86inc.asm

Squashed-Change-Id: I915beaef318a28f64bfa5469e5efe90e4af5b827

Dual arf: Name changes.

Cosmetic patch only in response to comments on
previous patches suggesting a couple of name changes
for consistency and clarity.

Squashed-Change-Id: Ida3a359b0d5755345660d304a7697a3a3686b2a3

Make non-RD intra mode search txfm size dependent

This commit fixes the potential issue in the non-RD mode decision
flow that only checks part of the block to estimate the cost. It
was due to the use of fixed transform size, in replacing the
largest transform block size. This commit enables per transform
block cost estimation of the intra prediction mode in the non-RD
mode decision.

Squashed-Change-Id: I14ff92065e193e3e731c2bbf7ec89db676f1e132

Fix quality regression for multi arf off case.

Bug introduced during multiple iterations on: I3831*

gf_group->arf_update_idx[] cannot currently be used
to select the arf buffer index if buffer flipping on overlays
is enabled (still currently the case when multi arf OFF).

Squashed-Change-Id: I4ce9ea08f1dd03ac3ad8b3e27375a91ee1d964dc

Enable real-time version reference motion vector search

This commit enables a fast reference motion vector search scheme.
It checks the nearest top and left neighboring blocks to decide the
most probable predicted motion vector. If it finds the two have
the same motion vectors, it then skip finding exterior range for
the second most probable motion vector, and correspondingly skips
the check for NEARMV.

The runtime of speed -5 goes down
pedestrian at 1080p 29377 ms -> 27783 ms
vidyo at 720p       11830 ms -> 10990 ms
i.e., 6%-8% speed-up.

For rtc set, the compression performance
goes down by about -1.3% for both speed -5 and -6.

Squashed-Change-Id: I2a7794fa99734f739f8b30519ad4dfd511ab91a5

Add const mark to const values in non-RD coding mode

Squashed-Change-Id: I65209fd1e06fc06833f6647cb028b414391a7017

Change-Id: Ic0be67ac9ef48f64a8878a0b8f1b336f136bceac
2014-06-26 14:22:05 -07:00
Debargha Mukherjee
77a29953c5 Revert "Migrating old experiments into new playground branch"
This reverts commit 1a4b017fad

Change-Id: I7f54cf0489e592887b61eb3f7bda90f757b0aad7
2014-06-26 12:46:51 -07:00
Yue Chen
1a4b017fad Migrating old experiments into new playground branch
Change-Id: I28dc4acdf5415a1ea3d88213022d9e3d4fd5db46
2014-06-23 16:35:38 -07:00
Pengchong Jin
bed7cf2eeb Merge "skip the un-necessary motion search in the first pass" 2014-06-17 12:08:42 -07:00
Tom Finegan
c19046a795 Merge "iosbuild.sh: Add missing function comments." 2014-06-17 10:34:36 -07:00
Marco Paniconi
73e4e8b2bf Merge "vp8 denoising: add bias factor to zero_mv sse." 2014-06-17 08:34:30 -07:00
Jingning Han
6cfb854eef Merge "Fix C versions of DC calculation functions" 2014-06-16 18:33:21 -07:00
James Zern
88df435d6b Merge "vp9_rtcd: correct avx2 references" 2014-06-16 17:39:13 -07:00
Tom Finegan
66bacc025a iosbuild.sh: Add missing function comments.
Change-Id: Ib23a59475d566a7b7f44071614d730ceecfcfa60
2014-06-16 17:04:38 -07:00
Tom Finegan
54547f6827 Merge "example tests: Make failures due to incorrect bin path easier to diagnose." 2014-06-16 16:16:49 -07:00
Marco Paniconi
d924640663 vp8 denoising: add bias factor to zero_mv sse.
Change-Id: I95818754424e89f0d56c6d9c0c5709e6f84fa46a
2014-06-16 15:22:15 -07:00
Dmitry Kovalev
3f3199e73a Merge "vp9_pickmode.c: fix vs12 compiler warnings" 2014-06-16 12:07:48 -07:00
Tom Finegan
12672c24d3 example tests: Make failures due to incorrect bin path easier to diagnose.
Add elog() to tools_common, and checks for the executable in each test.

Change-Id: I3c6334eca62c0b56040d91145abbe1bf5f9c763c
2014-06-16 10:57:00 -07:00
Alex Converse
f7869c8116 Merge "Add non420 support to vp9_extend_frame_borders." 2014-06-16 10:33:31 -07:00
Jingning Han
d203203cc5 Merge "Fix out of boundary memory read in fuzz test on vpxdec" 2014-06-16 10:27:30 -07:00
Pengchong Jin
cdc954fdc8 skip the un-necessary motion search in the first pass
This patch allows the VP9 encoder to skip the un-necessary
motion search in the first pass. It computes the motion error
of 0,0 motion using the last source frame as the reference,
and skips the further motion search if this error is small.

Borg test shows overall the patch gives PSNR gain (derf -0.001%,
yt 0.341%, hd 0.282%). Individual clips may have PSNR gain or
loss. The best PSNR performance is 7.347% and the worst is -0.662%.
The first pass encoding speedup for slideshow clips is over 30%.

Change-Id: I4cac4dbd911f277ee858e161f3ca652c771344fe
2014-06-16 10:16:27 -07:00
unknown
45648532bc vp9_pickmode.c: fix vs12 compiler warnings
Change-Id: I5042b76a7050c121bf960ecb20c79d35adcc4cd5
2014-06-15 12:47:48 -07:00
Tom Finegan
95fb9008f8 Merge "iosbuild.sh: Move to build/make and tidy up a bit." 2014-06-13 16:31:56 -07:00
Tom Finegan
1e6b80f34b Merge "test/tools_common.sh: Log all shared variables in verbose mode." 2014-06-13 16:31:49 -07:00
Jingning Han
6b0bc34b62 Fix C versions of DC calculation functions
This commit fixes the scaling factors used in the C versions of the
DC calculation functions.

Change-Id: Iab41108c2bb93c2f2e78667214f3a772a2b707b5
2014-06-13 16:09:40 -07:00
hkuang
40070a7d00 Merge "Delay decreasing reference count in frame-parallel decoding." 2014-06-13 15:28:24 -07:00
Yunqing Wang
feaae409c8 Merge "Revert "skip un-neccessary motion search in the first pass"" 2014-06-13 15:21:26 -07:00
Marco Paniconi
c153903660 Merge "Allow for deblocking temporal-denoised signal." 2014-06-13 14:51:59 -07:00
Marco Paniconi
d08b2ba172 Allow for deblocking temporal-denoised signal.
Allow for an option to selectively apply the deblocking loop filter to the denoised
raw block, based on the denoised state (no-filter, filter with zero motion, or filter with non-zero motion)
of the current block and its upper and left denoised block.
This helps to reduce some blocking artifacts from the motion-compensated denoising.

Change-Id: I0ac4e70076df69a98c5391979e739a2681e24ae6
2014-06-13 14:34:05 -07:00
Dmitry Kovalev
bcfbd2f948 Replacing RC_MODE with vpx_rc_mode.
Both enums are identical.
Change-Id: I06653f9c90a2d3a2dd5c741e75b17ee7d066a56f
2014-06-13 12:22:35 -07:00
Tom Finegan
1557d4b0a2 test/tools_common.sh: Log all shared variables in verbose mode.
Several variables were not being logged.

Change-Id: I2f2ded19470a73c4551bbb1abbd6e4d27bd59fac
2014-06-13 11:18:43 -07:00
Jingning Han
1ba1871786 Fix out of boundary memory read in fuzz test on vpxdec
This commit fixes frame header decoding for superframe index, to
prevent out of boundary memory read triggered by fuzz test
vector. It resolves a chromium security violation issue
crbug.com/376802.

The issue was introduced in the change:

Add VPXD_SET_DECRYPTOR support to the VP9 decoder.
cl-id I88f86c8ff9af34e0b6531028b691921b54c2fc48

where the buffer was read before validation check on index offset
applied.

A test vector is added accordingly.

Change-Id: I41c988e776bbdd1033312a668e03a3dbcf44ca99
2014-06-13 11:10:36 -07:00
Tom Finegan
10db0f9f31 iosbuild.sh: Move to build/make and tidy up a bit.
Change-Id: I625beea9db4b5f6db8f177c580a3adeac760a662
2014-06-13 11:03:56 -07:00
Paul Wilkins
af8d4054d6 Revert "skip un-neccessary motion search in the first pass"
This patch appears to have introduced non-determinism and/or
mismatch from debug vs release.

This reverts commit 5daef90efc.

Change-Id: I80081e55cfeaaa821b510b58a4e6e6328003c7da
2014-06-13 18:53:36 +01:00
hkuang
e4c5f7e2b6 Delay decreasing reference count in frame-parallel decoding.
The current decoding scheme will decrease the reference count
of the output frame when finish decoding. Then the application
could copy the frame from the decoder buffer to application buffer.
In frame-parallel decoding, a decoded frame will not be outputted
until several frames later which depends on thread numbers. So
the decoded frame's reference count should be decreased only
after application finish copying the frame out. But due to the
limitation of vpx_codec_get_frame, decoder could not know when
application finish decoding. So use a index last_show_frame to
release the last output frame's reference count.

Change-Id: I403ee0d01148ac1182e5a2d87cf7dcc302b51e63
2014-06-13 10:53:33 -07:00
Johann
39e28f9f1a Merge "Use lrand48 on Android" 2014-06-13 10:51:49 -07:00
Tom Finegan
4416b448de Merge "Add VPX.framework built script." 2014-06-13 10:36:49 -07:00
Tim Kopp
123cd3a52c Merge "Added skeleton for VP9 denoiser" 2014-06-13 09:44:39 -07:00
Paul Wilkins
3082565b8d Merge "Cleaning up accumulate_frame_motion_stats()." 2014-06-13 02:27:03 -07:00
Tom Finegan
c41d3584fd Add VPX.framework built script.
Builds a framework for use on iOS targets.

Change-Id: I2e42d77d1d83e15dc7e84232255da26809ee31bb
2014-06-12 20:48:58 -07:00
Johann
79afb5eb41 Use lrand48 on Android
When building x86 assembly use lrand48 instead of the
undocumented inlined _rand function.

Android now supports rand()
https://android-review.googlesource.com/97731
but only for new versions. Original workaround:
https://gerrit.chromium.org/gerrit/15744

Change-Id: I130566837d5bfc9e54187ebe9807350d1a7dab2a
2014-06-12 19:57:25 -07:00
Dmitry Kovalev
7336903545 Merge "Adding MV_SPEED_FEATURES struct." 2014-06-12 17:15:33 -07:00
Tim Kopp
ab8bfb077b Added skeleton for VP9 denoiser
Change-Id: Iccf6ede4c4f85646b0f8daec47050ce93e267c90
2014-06-12 15:12:22 -07:00
Tim Kopp
c49fda2615 Merge "Added OUTPUT_YUV_DENOISED CFLAG to VP8 encoder" 2014-06-12 15:10:53 -07:00
hkuang
c32a3b8e25 Merge "Initially add frame_parallel_decode flag." 2014-06-12 15:01:38 -07:00
Dmitry Kovalev
48f0935b81 Merge "Removing unused ssim_weighted_pred_err field from FIRSTPASS_STATS." 2014-06-12 14:16:18 -07:00
Dmitry Kovalev
4ff1a614f1 Adding MV_SPEED_FEATURES struct.
Moving all motion vector related speed parameters from SPEED_FEATURES to
MV_SPEED_FEATURES.

Change-Id: I3e9af0039c7162f8671878c5920bce3cb256a84e
2014-06-12 14:15:27 -07:00
Dmitry Kovalev
c90cd4d572 Merge "Moving full_pixel_search() to vp9_mcomp.c." 2014-06-12 14:12:45 -07:00
Dmitry Kovalev
ab449cd9ba Merge "Adding is_altref_enabled() function." 2014-06-12 13:24:42 -07:00
Dmitry Kovalev
f80a346e0e Merge "Replacing txfm_size with tx_size." 2014-06-12 13:07:11 -07:00
Dmitry Kovalev
442cbf565d Moving full_pixel_search() to vp9_mcomp.c.
Change-Id: I12389f801ebd3bd2ae3bf31e125433bfb429ee65
2014-06-12 13:06:37 -07:00
Dmitry Kovalev
86583b2bec Adding is_altref_enabled() function.
Change-Id: I54cdb4ce11590511e6f86bc2fd55771f1c18a20a
2014-06-12 12:13:20 -07:00
Jingning Han
d5ae43318e Merge "Fast computation path for forward transform and quantization" 2014-06-12 11:59:52 -07:00
Dmitry Kovalev
4345d12d28 Replacing txfm_size with tx_size.
Change-Id: Ifa6374e9db5919322733b656e0865f5f19ee6f2c
2014-06-12 11:57:26 -07:00
Dmitry Kovalev
eaeda536a4 Removing unused ssim_weighted_pred_err field from FIRSTPASS_STATS.
Change-Id: Ia8c7e3905ac21732cb6b8099eaf8df72c7e36b73
2014-06-12 11:28:54 -07:00
Jingning Han
ccba289f8d Fast computation path for forward transform and quantization
This commit enables a fast path computational flow for forward
transformation. It checks the sse and variance of prediction
residuals and decides if the quantized coefficients are all
zero, dc only, or more. It then selects the corresponding coding
path in the forward transformation and quantization stage.

It is currently enabled in rtc coding mode. Will do it for rd
coding mode next.

In speed -6, the runtime for pedestrian_area 1080p at 1000 kbps
goes down from 14234 ms to 13704 ms, i.e., about 4% speed-up.
Overall coding performance for rtc set is changed by -0.18%.

Change-Id: I0452da1786d59bc8bcbe0a35fdae9f623d1d44e1
2014-06-12 11:10:54 -07:00
Alex Converse
893433be31 Merge "Fix SEG_LVL_SKIP in non-RD inter mode selection." 2014-06-12 10:38:06 -07:00
Alex Converse
130d9ade25 Merge "Fix SEG_LVL_SKIP in RD inter mode selection." 2014-06-12 10:37:20 -07:00
Yunqing Wang
f9d1e66f6a Merge "skip un-neccessary motion search in the first pass" 2014-06-12 09:43:47 -07:00
Pengchong Jin
5daef90efc skip un-neccessary motion search in the first pass
This patch allows the encoder to skip the
un-neccessary motion search in the first pass. It
calculates the error of the zero motion vector using
the last source frame as reference and skips the
further motion search in the first pass if the error
is small.

The encoding speedup of the first pass for slideshow
videos is over 30%. Borg test shows the overall PSNR
performance remain approximately the same (derf -0.009,
hd 0.387, yt 0.021, stdhd 0.065). Individual clips may
have either PSNR gain or loss. The worst PSNR perfomance
is from yt set, with a PSNR loss of -1.1.

Change-Id: I08b2ab110b695e4689573b2567fa531b6457616e
2014-06-12 08:55:52 -07:00
Minghai Shang
686b54adcb Merge "[spatial svc]Combine first and second pass test to keep stats data in memory." 2014-06-11 18:12:38 -07:00
Alex Converse
6c3f311ba2 Fix SEG_LVL_SKIP in non-RD inter mode selection.
Add a set_mode_info_seg_skip function that fills the requisite mode info.

Change-Id: I460b1b6845d720d9b09ed5b64df0ea0aac443f62
2014-06-11 17:53:26 -07:00
Alex Converse
b0a8057f67 Fix SEG_LVL_SKIP in RD inter mode selection.
* Only use ZEROMV, disalowing the intra modes that were previously
  tested.
* Score rate and distortion as zero.

Change-Id: Ifcf99e272095725f11da1dcd26bd0f850683e680
2014-06-11 17:52:15 -07:00
hkuang
537cb06036 Initially add frame_parallel_decode flag.
Stub flag temporarily set to 0 until frame parallel
decoding implementations are finished.

Change-Id: I8ab768138e8f8f8eb809875703b2502ea0fe7cea
2014-06-11 17:29:29 -07:00
Tom Finegan
5d35bc686b Merge "Add target armv7s-darwin-gcc." 2014-06-11 12:13:11 -07:00
Alex Converse
e26adb8ab9 Add non420 support to vp9_extend_frame_borders.
Fixes an encoder/decoder mismatch problem.

Change-Id: I573b3a2b7ba2171a1a380ff201b082b084e7ade1
2014-06-11 12:02:59 -07:00
Minghai Shang
6b74776635 [spatial svc]Combine first and second pass test to keep stats data in memory.
Change-Id: Idccbfe35bebe6f05655bd54da7d8b616b1bffe03
2014-06-11 10:44:58 -07:00
Tom Finegan
cd2088b44f Add target armv7s-darwin-gcc.
Really just armv7. This is a convenience target intended to make iOS
development with libvpx easier. Xcode projects with default settings
will fail to build when a framework lacks armv7s support when targetting
iOS7.

Change-Id: I7eb80d52eec25501febc0d2c3c0b4ed964b8ed5b
2014-06-10 18:52:58 -07:00
Dmitry Kovalev
e6fadb5ba8 Merge "Cleaning up vp9_variance_mmx.c." 2014-06-10 17:27:12 -07:00
Dmitry Kovalev
4a8103d6c2 Merge "Removing two unused TX_SIZE_SEARCH_METHOD members." 2014-06-10 17:26:41 -07:00
James Zern
9f3a0dbb5e vp9_rtcd: correct avx2 references
s/"\$avx2_x86inc"/"avx2"/

avx2 code is all intrinsics and as a result doesn't rely on x86inc.asm

Change-Id: I76ad39474d8a00658f3e43131830ef0f4f34772a
2014-06-10 16:26:36 -07:00
James Zern
cbce09ce62 Merge changes I6abc0657,I8224fba2,I04f64a45,I5d49d119,I76b4d171,I88c11ac3
* changes:
  vp9_sub_pixel_*variance*: disable avx2 variants
  vp9_sad*x4d: disable avx2 variants
  vp9_f(dct|ht): disable avx2 variants
  convolve: disable avx2 variants
  fdct8x8_test: add missing avx2 functions
  dct4x4_test: add missing avx2 functions
2014-06-10 16:14:45 -07:00
James Zern
520cb3f39f vp9_sub_pixel_*variance*: disable avx2 variants
tests failing under Win32/Win64

+ variance_test: add missing avx2 functions (partially disabled)

Change-Id: I6abc0657ea076379ab9ca65c12678b9ea199849d
2014-06-10 16:11:15 -07:00
James Zern
d3ff009d84 vp9_sad*x4d: disable avx2 variants
tests failing under Win32/Win64

+ sad_test: add missing avx2 functions (disabled)

Change-Id: I8224fba2b270f6039ab1877d71e1e512f0081856
2014-06-10 16:10:12 -07:00
James Zern
3659fbd38c Merge "Makefile: skip .d inclusion for 'testdata' target" 2014-06-10 15:58:59 -07:00
Dmitry Kovalev
bc93f425d0 Removing two unused TX_SIZE_SEARCH_METHOD members.
Change-Id: I33a38bb9f46e7ef509bbbf0cfd7bc3ea5072d022
2014-06-10 11:08:30 -07:00
James Zern
dd9f502933 vp9_f(dct|ht): disable avx2 variants
tests failing under Win32/Win64

+ dct16x16_test: add missing avx2 functions (partially disabled)

exercises the forward transforms
no idct/iht implementations, so the c-code is used

Change-Id: I04f64a457fa0828a00f32b5c9fe4f55294f21f61
2014-06-09 18:48:11 -07:00
James Zern
5704578f5f convolve: disable avx2 variants
tests failing under Win32/Win64

Change-Id: I5d49d11911bcda3a832b14efe5500d22597bedcf
2014-06-09 18:42:03 -07:00
James Zern
0d6267ca39 fdct8x8_test: add missing avx2 functions
exercises the forward transforms
no idct/iht implementations, so the c-code is used

Change-Id: I76b4d1712f10225c1ffa5ffb0ed9a551e68b93b4
2014-06-09 18:42:03 -07:00
James Zern
b8395a87c2 dct4x4_test: add missing avx2 functions
exercises the forward transforms
no idct/iht implementations, so the c-code is used

Change-Id: I88c11ac37ac6456de9b4b3ec5da059faf4ad6066
2014-06-09 18:42:03 -07:00
James Zern
4f83315d18 Makefile: skip .d inclusion for 'testdata' target
avoids some unnecessary work when pulling testdata in a freshly
configured tree

Change-Id: Ib43379b0e1549107f3f1b227afca49a899bcc3ab
2014-06-07 20:24:19 -07:00
Tim Kopp
05e8c61903 Added OUTPUT_YUV_DENOISED CFLAG to VP8 encoder
When this compiler flag is enabled, the encoder will write a denoised,
uncompressed, version of the input to denoised.yuv.

Change-Id: Ie0247f76b23219d95fe97dd70f23e097d742c249
2014-06-05 11:18:32 -07:00
Dmitry Kovalev
6cf3d68fe5 Cleaning up accumulate_frame_motion_stats().
Change-Id: I9986f3fd23c5e0677068af768eae0def3db9782f
2014-06-03 10:36:29 -07:00
Dmitry Kovalev
ac3d97f124 Cleaning up vp9_variance_mmx.c.
Change-Id: I42d83f91e272c92daed604c233f74439fe6307c5
2014-05-28 12:03:55 -07:00
138 changed files with 12466 additions and 2915 deletions

3
README
View File

@@ -62,6 +62,7 @@ COMPILING THE APPLICATIONS/LIBRARIES:
armv7-none-rvct
armv7-win32-vs11
armv7-win32-vs12
armv7s-darwin-gcc
mips32-linux-gcc
ppc32-darwin8-gcc
ppc32-darwin9-gcc
@@ -79,6 +80,7 @@ COMPILING THE APPLICATIONS/LIBRARIES:
x86-darwin11-gcc
x86-darwin12-gcc
x86-darwin13-gcc
x86-iphonesimulator-gcc
x86-linux-gcc
x86-linux-icc
x86-os2-gcc
@@ -95,6 +97,7 @@ COMPILING THE APPLICATIONS/LIBRARIES:
x86_64-darwin11-gcc
x86_64-darwin12-gcc
x86_64-darwin13-gcc
x86_64-iphonesimulator-gcc
x86_64-linux-gcc
x86_64-linux-icc
x86_64-solaris-gcc

View File

@@ -330,7 +330,10 @@ endef
ifneq ($(target),)
include $(SRC_PATH_BARE)/$(target:-$(TOOLCHAIN)=).mk
endif
ifeq ($(filter %clean,$(MAKECMDGOALS)),)
skip_deps := $(filter %clean,$(MAKECMDGOALS))
skip_deps += $(findstring testdata,$(MAKECMDGOALS))
ifeq ($(strip $(skip_deps)),)
# Older versions of make don't like -include directives with no arguments
ifneq ($(filter %.d,$(OBJS-yes:.o=.d)),)
-include $(filter %.d,$(OBJS-yes:.o=.d))

View File

@@ -802,7 +802,7 @@ process_common_toolchain() {
armv8)
soft_enable neon
;;
armv7)
armv7|armv7s)
soft_enable neon
soft_enable neon_asm
soft_enable media
@@ -831,7 +831,7 @@ process_common_toolchain() {
arch_int=${arch_int%%te}
check_add_asflags --defsym ARCHITECTURE=${arch_int}
tune_cflags="-mtune="
if [ ${tgt_isa} = "armv7" ]; then
if [ ${tgt_isa} = "armv7" ] || [ ${tgt_isa} = "armv7s" ]; then
if [ -z "${float_abi}" ]; then
check_cpp <<EOF && float_abi=hard || float_abi=softfp
#ifndef __ARM_PCS_VFP

View File

@@ -137,7 +137,9 @@ for opt in "$@"; do
;;
--lib) proj_kind="lib"
;;
--src-path-bare=*) src_path_bare=$(fix_path "$optval")
--src-path-bare=*)
src_path_bare=$(fix_path "$optval")
src_path_bare=${src_path_bare%/}
;;
--static-crt) use_static_runtime=true
;;
@@ -151,9 +153,9 @@ for opt in "$@"; do
esac
;;
-I*)
opt="${opt%/}"
opt=${opt##-I}
opt=$(fix_path "$opt")
opt="${opt%/}"
incs="${incs}${incs:+;}&quot;${opt}&quot;"
yasmincs="${yasmincs} -I&quot;${opt}&quot;"
;;
@@ -414,7 +416,7 @@ generate_vcproj() {
vpx)
tag Tool \
Name="VCPreBuildEventTool" \
CommandLine="call obj_int_extract.bat $src_path_bare $plat_no_ws\\\$(ConfigurationName)" \
CommandLine="call obj_int_extract.bat &quot;$src_path_bare&quot; $plat_no_ws\\\$(ConfigurationName)" \
tag Tool \
Name="VCCLCompilerTool" \

View File

@@ -157,7 +157,9 @@ for opt in "$@"; do
;;
--lib) proj_kind="lib"
;;
--src-path-bare=*) src_path_bare=$(fix_path "$optval")
--src-path-bare=*)
src_path_bare=$(fix_path "$optval")
src_path_bare=${src_path_bare%/}
;;
--static-crt) use_static_runtime=true
;;
@@ -173,9 +175,9 @@ for opt in "$@"; do
esac
;;
-I*)
opt="${opt%/}"
opt=${opt##-I}
opt=$(fix_path "$opt")
opt="${opt%/}"
incs="${incs}${incs:+;}&quot;${opt}&quot;"
yasmincs="${yasmincs} -I&quot;${opt}&quot;"
;;

244
build/make/iosbuild.sh Executable file
View File

@@ -0,0 +1,244 @@
#!/bin/sh
##
## Copyright (c) 2014 The WebM project authors. All Rights Reserved.
##
## Use of this source code is governed by a BSD-style license
## that can be found in the LICENSE file in the root of the source
## tree. An additional intellectual property rights grant can be found
## in the file PATENTS. All contributing project authors may
## be found in the AUTHORS file in the root of the source tree.
##
##
## This script generates 'VPX.framework'. An iOS app can encode and decode VPx
## video by including 'VPX.framework'.
##
## Run iosbuild.sh to create 'VPX.framework' in the current directory.
##
set -e
devnull='> /dev/null 2>&1'
BUILD_ROOT="_iosbuild"
DIST_DIR="_dist"
FRAMEWORK_DIR="VPX.framework"
HEADER_DIR="${FRAMEWORK_DIR}/Headers/vpx"
MAKE_JOBS=1
LIBVPX_SOURCE_DIR=$(dirname "$0" | sed -e s,/build/make,,)
LIPO=$(xcrun -sdk iphoneos${SDK} -find lipo)
ORIG_PWD="$(pwd)"
TARGETS="armv6-darwin-gcc
armv7-darwin-gcc
armv7s-darwin-gcc
x86-iphonesimulator-gcc
x86_64-iphonesimulator-gcc"
# Configures for the target specified by $1, and invokes make with the dist
# target using $DIST_DIR as the distribution output directory.
build_target() {
local target="$1"
local old_pwd="$(pwd)"
vlog "***Building target: ${target}***"
mkdir "${target}"
cd "${target}"
eval "../../${LIBVPX_SOURCE_DIR}/configure" --target="${target}" \
--disable-docs ${devnull}
export DIST_DIR
eval make -j ${MAKE_JOBS} dist ${devnull}
cd "${old_pwd}"
vlog "***Done building target: ${target}***"
}
# Returns the preprocessor symbol for the target specified by $1.
target_to_preproc_symbol() {
target="$1"
case "${target}" in
armv6-*)
echo "__ARM_ARCH_6__"
;;
armv7-*)
echo "__ARM_ARCH_7__"
;;
armv7s-*)
echo "__ARM_ARCH_7S__"
;;
x86-*)
echo "__i386__"
;;
x86_64-*)
echo "__x86_64__"
;;
*)
echo "#error ${target} unknown/unsupported"
return 1
;;
esac
}
# Create a vpx_config.h shim that, based on preprocessor settings for the
# current target CPU, includes the real vpx_config.h for the current target.
# $1 is the list of targets.
create_vpx_framework_config_shim() {
local targets="$1"
local config_file="${HEADER_DIR}/vpx_config.h"
local preproc_symbol=""
local target=""
local include_guard="VPX_FRAMEWORK_HEADERS_VPX_VPX_CONFIG_H_"
local file_header="/*
* Copyright (c) $(date +%Y) The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/* GENERATED FILE: DO NOT EDIT! */
#ifndef ${include_guard}
#define ${include_guard}
#if defined"
printf "%s" "${file_header}" > "${config_file}"
for target in ${targets}; do
preproc_symbol=$(target_to_preproc_symbol "${target}")
printf " ${preproc_symbol}\n" >> "${config_file}"
printf "#include \"VPX/vpx/${target}/vpx_config.h\"\n" >> "${config_file}"
printf "#elif defined" >> "${config_file}"
mkdir "${HEADER_DIR}/${target}"
cp -p "${BUILD_ROOT}/${target}/vpx_config.h" "${HEADER_DIR}/${target}"
done
# Consume the last line of output from the loop: We don't want it.
sed -i '' -e '$d' "${config_file}"
printf "#endif\n\n" >> "${config_file}"
printf "#endif // ${include_guard}" >> "${config_file}"
}
# Configures and builds each target specified by $1, and then builds
# VPX.framework.
build_framework() {
local lib_list=""
local targets="$1"
local target=""
local target_dist_dir=""
# Clean up from previous build(s).
rm -rf "${BUILD_ROOT}" "${FRAMEWORK_DIR}"
# Create output dirs.
mkdir -p "${BUILD_ROOT}"
mkdir -p "${HEADER_DIR}"
cd "${BUILD_ROOT}"
for target in ${targets}; do
build_target "${target}"
target_dist_dir="${BUILD_ROOT}/${target}/${DIST_DIR}"
lib_list="${lib_list} ${target_dist_dir}/lib/libvpx.a"
done
cd "${ORIG_PWD}"
# The basic libvpx API includes are all the same; just grab the most recent
# set.
cp -p "${target_dist_dir}"/include/vpx/* "${HEADER_DIR}"
# Build the fat library.
${LIPO} -create ${lib_list} -output ${FRAMEWORK_DIR}/VPX
# Create the vpx_config.h shim that allows usage of vpx_config.h from
# within VPX.framework.
create_vpx_framework_config_shim "${targets}"
# Copy in vpx_version.h.
cp -p "${BUILD_ROOT}/${target}/vpx_version.h" "${HEADER_DIR}"
vlog "Created fat library ${FRAMEWORK_DIR}/VPX containing:"
for lib in ${lib_list}; do
vlog " $(echo ${lib} | awk -F / '{print $2, $NF}')"
done
# TODO(tomfinegan): Verify that expected targets are included within
# VPX.framework/VPX via lipo -info.
}
# Trap function. Cleans up the subtree used to build all targets contained in
# $TARGETS.
cleanup() {
cd "${ORIG_PWD}"
if [ "${PRESERVE_BUILD_OUTPUT}" != "yes" ]; then
rm -rf "${BUILD_ROOT}"
fi
}
iosbuild_usage() {
cat << EOF
Usage: ${0##*/} [arguments]
--help: Display this message and exit.
--jobs: Number of make jobs.
--preserve-build-output: Do not delete the build directory.
--show-build-output: Show output from each library build.
--verbose: Output information about the environment and each stage of the
build.
EOF
}
vlog() {
if [ "${VERBOSE}" = "yes" ]; then
echo "$@"
fi
}
trap cleanup EXIT
# Parse the command line.
while [ -n "$1" ]; do
case "$1" in
--help)
iosbuild_usage
exit
;;
--jobs)
MAKE_JOBS="$2"
shift
;;
--preserve-build-output)
PRESERVE_BUILD_OUTPUT=yes
;;
--show-build-output)
devnull=
;;
--verbose)
VERBOSE=yes
;;
*)
iosbuild_usage
exit 1
;;
esac
shift
done
if [ "${VERBOSE}" = "yes" ]; then
cat << EOF
BUILD_ROOT=${BUILD_ROOT}
DIST_DIR=${DIST_DIR}
FRAMEWORK_DIR=${FRAMEWORK_DIR}
HEADER_DIR=${HEADER_DIR}
MAKE_JOBS=${MAKE_JOBS}
PRESERVE_BUILD_OUTPUT=${PRESERVE_BUILD_OUTPUT}
LIBVPX_SOURCE_DIR=${LIBVPX_SOURCE_DIR}
LIPO=${LIPO}
ORIG_PWD=${ORIG_PWD}
TARGETS="${TARGETS}"
EOF
fi
build_framework "${TARGETS}"

10
configure vendored
View File

@@ -103,6 +103,7 @@ all_platforms="${all_platforms} armv7-linux-gcc" #neon Cortex-A8
all_platforms="${all_platforms} armv7-none-rvct" #neon Cortex-A8
all_platforms="${all_platforms} armv7-win32-vs11"
all_platforms="${all_platforms} armv7-win32-vs12"
all_platforms="${all_platforms} armv7s-darwin-gcc"
all_platforms="${all_platforms} mips32-linux-gcc"
all_platforms="${all_platforms} ppc32-darwin8-gcc"
all_platforms="${all_platforms} ppc32-darwin9-gcc"
@@ -271,7 +272,14 @@ EXPERIMENT_LIST="
alpha
multiple_arf
spatial_svc
transcode
denoising
masked_interinter
interintra
masked_interintra
filterintra
ext_tx
supertx
copy_coding
"
CONFIG_LIST="
external_build

View File

@@ -296,6 +296,7 @@ int main(int argc, const char **argv) {
int frame_duration = 1; /* 1 timebase tick per frame */
FILE *infile = NULL;
int end_of_stream = 0;
int frame_size;
memset(&svc_ctx, 0, sizeof(svc_ctx));
svc_ctx.log_print = 1;
@@ -351,11 +352,10 @@ int main(int argc, const char **argv) {
die_codec(&codec, "Failed to encode frame");
}
if (!(app_input.passes == 2 && app_input.pass == 1)) {
if (vpx_svc_get_frame_size(&svc_ctx) > 0) {
while ((frame_size = vpx_svc_get_frame_size(&svc_ctx)) > 0) {
vpx_video_writer_write_frame(writer,
vpx_svc_get_buffer(&svc_ctx),
vpx_svc_get_frame_size(&svc_ctx),
pts);
frame_size, pts);
}
}
if (vpx_svc_get_rc_stats_buffer_size(&svc_ctx) > 0) {

View File

@@ -645,6 +645,26 @@ INSTANTIATE_TEST_CASE_P(SSSE3, ConvolveTest, ::testing::Values(
#endif
#if HAVE_AVX2
// TODO(jzern): these prototypes can be removed after the avx2 versions are
// reenabled in vp9_rtcd_defs.pl.
extern "C" {
void vp9_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h);
void vp9_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h);
void vp9_convolve8_avx2(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h);
}
const ConvolveFunctions convolve8_avx2(
vp9_convolve8_horiz_avx2, vp9_convolve8_avg_horiz_ssse3,
vp9_convolve8_vert_avx2, vp9_convolve8_avg_vert_ssse3,
@@ -655,8 +675,10 @@ INSTANTIATE_TEST_CASE_P(AVX2, ConvolveTest, ::testing::Values(
make_tuple(8, 4, &convolve8_avx2),
make_tuple(4, 8, &convolve8_avx2),
make_tuple(8, 8, &convolve8_avx2),
make_tuple(8, 16, &convolve8_avx2)));
INSTANTIATE_TEST_CASE_P(DISABLED_AVX2, ConvolveTest, ::testing::Values(
make_tuple(16, 8, &convolve8_avx2),
make_tuple(8, 16, &convolve8_avx2),
make_tuple(16, 16, &convolve8_avx2),
make_tuple(32, 16, &convolve8_avx2),
make_tuple(16, 32, &convolve8_avx2),

View File

@@ -606,4 +606,29 @@ INSTANTIATE_TEST_CASE_P(
::testing::Values(
make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_ssse3, 0)));
#endif
#if HAVE_AVX2
// TODO(jzern): these prototypes can be removed after the avx2 versions are
// reenabled in vp9_rtcd_defs.pl.
extern "C" {
void vp9_fdct16x16_avx2(const int16_t *input, int16_t *output, int stride);
void vp9_fht16x16_avx2(const int16_t *input, int16_t *output, int stride,
int tx_type);
}
INSTANTIATE_TEST_CASE_P(
DISABLED_AVX2, Trans16x16DCT,
::testing::Values(
make_tuple(&vp9_fdct16x16_avx2,
&vp9_idct16x16_256_add_c, 0)));
INSTANTIATE_TEST_CASE_P(
AVX2, Trans16x16HT,
::testing::Values(
make_tuple(&vp9_fht16x16_avx2, &vp9_iht16x16_256_add_c, 3)));
INSTANTIATE_TEST_CASE_P(
DISABLED_AVX2, Trans16x16HT,
::testing::Values(
make_tuple(&vp9_fht16x16_avx2, &vp9_iht16x16_256_add_c, 0),
make_tuple(&vp9_fht16x16_avx2, &vp9_iht16x16_256_add_c, 1),
make_tuple(&vp9_fht16x16_avx2, &vp9_iht16x16_256_add_c, 2)));
#endif
} // namespace

View File

@@ -15,13 +15,27 @@
namespace libvpx_test {
const char kVP8Name[] = "WebM Project VP8";
vpx_codec_err_t Decoder::PeekStream(const uint8_t *cxdata, size_t size,
vpx_codec_stream_info_t *stream_info) {
return vpx_codec_peek_stream_info(CodecInterface(),
cxdata, static_cast<unsigned int>(size),
stream_info);
}
vpx_codec_err_t Decoder::DecodeFrame(const uint8_t *cxdata, size_t size) {
return DecodeFrame(cxdata, size, NULL);
}
vpx_codec_err_t Decoder::DecodeFrame(const uint8_t *cxdata, size_t size,
void *user_priv) {
vpx_codec_err_t res_dec;
InitOnce();
REGISTER_STATE_CHECK(
res_dec = vpx_codec_decode(&decoder_,
cxdata, static_cast<unsigned int>(size),
NULL, 0));
user_priv, 0));
return res_dec;
}
@@ -29,13 +43,37 @@ void DecoderTest::RunLoop(CompressedVideoSource *video) {
vpx_codec_dec_cfg_t dec_cfg = {0};
Decoder* const decoder = codec_->CreateDecoder(dec_cfg, 0);
ASSERT_TRUE(decoder != NULL);
const char *codec_name = decoder->GetDecoderName();
const bool is_vp8 = strncmp(kVP8Name, codec_name, sizeof(kVP8Name) - 1) == 0;
// Decode frames.
for (video->Begin(); video->cxdata(); video->Next()) {
for (video->Begin(); !::testing::Test::HasFailure() && video->cxdata();
video->Next()) {
PreDecodeFrameHook(*video, decoder);
vpx_codec_stream_info_t stream_info;
stream_info.sz = sizeof(stream_info);
const vpx_codec_err_t res_peek = decoder->PeekStream(video->cxdata(),
video->frame_size(),
&stream_info);
if (is_vp8) {
/* Vp8's implementation of PeekStream returns an error if the frame you
* pass it is not a keyframe, so we only expect VPX_CODEC_OK on the first
* frame, which must be a keyframe. */
if (video->frame_number() == 0)
ASSERT_EQ(VPX_CODEC_OK, res_peek) << "Peek return failed: "
<< vpx_codec_err_to_string(res_peek);
} else {
/* The Vp9 implementation of PeekStream returns an error only if the
* data passed to it isn't a valid Vp9 chunk. */
ASSERT_EQ(VPX_CODEC_OK, res_peek) << "Peek return failed: "
<< vpx_codec_err_to_string(res_peek);
}
vpx_codec_err_t res_dec = decoder->DecodeFrame(video->cxdata(),
video->frame_size());
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder->DecodeError();
if (!HandleDecodeResult(res_dec, *video, decoder))
break;
DxDataIterator dec_iter = decoder->GetDxData();
const vpx_image_t *img = NULL;

View File

@@ -49,8 +49,14 @@ class Decoder {
vpx_codec_destroy(&decoder_);
}
vpx_codec_err_t PeekStream(const uint8_t *cxdata, size_t size,
vpx_codec_stream_info_t *stream_info);
vpx_codec_err_t DecodeFrame(const uint8_t *cxdata, size_t size);
vpx_codec_err_t DecodeFrame(const uint8_t *cxdata, size_t size,
void *user_priv);
DxDataIterator GetDxData() {
return DxDataIterator(&decoder_);
}
@@ -85,6 +91,10 @@ class Decoder {
&decoder_, cb_get, cb_release, user_priv);
}
const char* GetDecoderName() {
return vpx_codec_iface_name(CodecInterface());
}
protected:
virtual vpx_codec_iface_t* CodecInterface() const = 0;
@@ -114,6 +124,14 @@ class DecoderTest {
virtual void PreDecodeFrameHook(const CompressedVideoSource& video,
Decoder *decoder) {}
// Hook to be called to handle decode result. Return true to continue.
virtual bool HandleDecodeResult(const vpx_codec_err_t res_dec,
const CompressedVideoSource& /* video */,
Decoder *decoder) {
EXPECT_EQ(VPX_CODEC_OK, res_dec) << decoder->DecodeError();
return VPX_CODEC_OK == res_dec;
}
// Hook to be called on every decompressed frame.
virtual void DecompressedFrameHook(const vpx_image_t& img,
const unsigned int frame_number) {}

View File

@@ -34,7 +34,10 @@ decode_to_md5() {
local expected_md5="$3"
local output_file="${VPX_TEST_OUTPUT_DIR}/decode_to_md5_${codec}"
[ -x "${decoder}" ] || return 1
if [ ! -x "${decoder}" ]; then
elog "${decoder} does not exist or is not executable."
return 1
fi
eval "${decoder}" "${input_file}" "${output_file}" ${devnull}

View File

@@ -34,7 +34,10 @@ decode_with_drops() {
local output_file="${VPX_TEST_OUTPUT_DIR}/decode_with_drops_${codec}"
local drop_mode="$3"
[ -x "${decoder}" ] || return 1
if [ ! -x "${decoder}" ]; then
elog "${decoder} does not exist or is not executable."
return 1
fi
eval "${decoder}" "${input_file}" "${output_file}" "${drop_mode}" ${devnull}

View File

@@ -376,4 +376,19 @@ INSTANTIATE_TEST_CASE_P(
make_tuple(&vp9_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 3)));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_CASE_P(
AVX2, Trans4x4DCT,
::testing::Values(
make_tuple(&vp9_fdct4x4_avx2,
&vp9_idct4x4_16_add_c, 0)));
INSTANTIATE_TEST_CASE_P(
AVX2, Trans4x4HT,
::testing::Values(
make_tuple(&vp9_fht4x4_avx2, &vp9_iht4x4_16_add_c, 0),
make_tuple(&vp9_fht4x4_avx2, &vp9_iht4x4_16_add_c, 1),
make_tuple(&vp9_fht4x4_avx2, &vp9_iht4x4_16_add_c, 2),
make_tuple(&vp9_fht4x4_avx2, &vp9_iht4x4_16_add_c, 3)));
#endif
} // namespace

View File

@@ -367,4 +367,18 @@ INSTANTIATE_TEST_CASE_P(
::testing::Values(
make_tuple(&vp9_fdct8x8_ssse3, &vp9_idct8x8_64_add_ssse3, 0)));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_CASE_P(
AVX2, FwdTrans8x8DCT,
::testing::Values(
make_tuple(&vp9_fdct8x8_avx2, &vp9_idct8x8_64_add_c, 0)));
INSTANTIATE_TEST_CASE_P(
AVX2, FwdTrans8x8HT,
::testing::Values(
make_tuple(&vp9_fht8x8_avx2, &vp9_iht8x8_64_add_c, 0),
make_tuple(&vp9_fht8x8_avx2, &vp9_iht8x8_64_add_c, 1),
make_tuple(&vp9_fht8x8_avx2, &vp9_iht8x8_64_add_c, 2),
make_tuple(&vp9_fht8x8_avx2, &vp9_iht8x8_64_add_c, 3)));
#endif
} // namespace

109
test/invalid_file_test.cc Normal file
View File

@@ -0,0 +1,109 @@
/*
* Copyright (c) 2014 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cstdio>
#include <cstdlib>
#include <string>
#include <vector>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vpx_config.h"
#include "test/codec_factory.h"
#include "test/decode_test_driver.h"
#include "test/ivf_video_source.h"
#include "test/util.h"
#if CONFIG_WEBM_IO
#include "test/webm_video_source.h"
#endif
#include "vpx_mem/vpx_mem.h"
namespace {
class InvalidFileTest
: public ::libvpx_test::DecoderTest,
public ::libvpx_test::CodecTestWithParam<const char*> {
protected:
InvalidFileTest() : DecoderTest(GET_PARAM(0)), res_file_(NULL) {}
virtual ~InvalidFileTest() {
if (res_file_ != NULL)
fclose(res_file_);
}
void OpenResFile(const std::string &res_file_name_) {
res_file_ = libvpx_test::OpenTestDataFile(res_file_name_);
ASSERT_TRUE(res_file_ != NULL) << "Result file open failed. Filename: "
<< res_file_name_;
}
virtual bool HandleDecodeResult(
const vpx_codec_err_t res_dec,
const libvpx_test::CompressedVideoSource &video,
libvpx_test::Decoder *decoder) {
EXPECT_TRUE(res_file_ != NULL);
int expected_res_dec;
// Read integer result.
const int res = fscanf(res_file_, "%d", &expected_res_dec);
EXPECT_NE(res, EOF) << "Read result data failed";
// Check results match.
EXPECT_EQ(expected_res_dec, res_dec)
<< "Results don't match: frame number = " << video.frame_number();
return !HasFailure();
}
private:
FILE *res_file_;
};
TEST_P(InvalidFileTest, ReturnCode) {
const std::string filename = GET_PARAM(1);
libvpx_test::CompressedVideoSource *video = NULL;
// Open compressed video file.
if (filename.substr(filename.length() - 3, 3) == "ivf") {
video = new libvpx_test::IVFVideoSource(filename);
} else if (filename.substr(filename.length() - 4, 4) == "webm") {
#if CONFIG_WEBM_IO
video = new libvpx_test::WebMVideoSource(filename);
#else
fprintf(stderr, "WebM IO is disabled, skipping test vector %s\n",
filename.c_str());
return;
#endif
}
video->Init();
// Construct result file name. The file holds a list of expected integer
// results, one for each decoded frame. Any result that doesn't match
// the files list will cause a test failure.
const std::string res_filename = filename + ".res";
OpenResFile(res_filename);
// Decode frame, and check the md5 matching.
ASSERT_NO_FATAL_FAILURE(RunLoop(video));
delete video;
}
const char *const kVP9InvalidFileTests[] = {
"invalid-vp90-01.webm",
"invalid-vp90-02.webm",
"invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.ivf",
};
#define NELEMENTS(x) static_cast<int>(sizeof(x) / sizeof(x[0]))
VP9_INSTANTIATE_TEST_CASE(InvalidFileTest,
::testing::ValuesIn(kVP9InvalidFileTests,
kVP9InvalidFileTests +
NELEMENTS(kVP9InvalidFileTests)));
} // namespace

View File

@@ -32,7 +32,10 @@ postproc() {
local codec="$2"
local output_file="${VPX_TEST_OUTPUT_DIR}/postproc_${codec}.raw"
[ -x "${decoder}" ] || return 1
if [ ! -x "${decoder}" ]; then
elog "${decoder} does not exist or is not executable."
return 1
fi
eval "${decoder}" "${input_file}" "${output_file}" ${devnull}

View File

@@ -33,7 +33,10 @@ resize_util() {
# resize_util is available only when CONFIG_SHARED is disabled.
if [ -z "$(vpx_config_option_enabled CONFIG_SHARED)" ]; then
[ -x "${resizer}" ] || return 1
if [ ! -x "${resizer}" ]; then
elog "${resizer} does not exist or is not executable."
return 1
fi
eval "${resizer}" "${YUV_RAW_INPUT}" \
"${YUV_RAW_INPUT_WIDTH}x${YUV_RAW_INPUT_HEIGHT}" \

View File

@@ -627,4 +627,24 @@ INSTANTIATE_TEST_CASE_P(SSE3, SADTest, ::testing::Values(
#endif // CONFIG_USE_X86INC
#endif // HAVE_SSSE3
#if HAVE_AVX2
#if CONFIG_VP9_ENCODER
// TODO(jzern): these prototypes can be removed after the avx2 versions are
// reenabled in vp9_rtcd_defs.pl.
extern "C" {
void vp9_sad32x32x4d_avx2(const uint8_t *src_ptr, int src_stride,
const uint8_t *const ref_ptr[], int ref_stride,
unsigned int *sad_array);
void vp9_sad64x64x4d_avx2(const uint8_t *src_ptr, int src_stride,
const uint8_t *const ref_ptr[], int ref_stride,
unsigned int *sad_array);
}
const sad_n_by_n_by_4_fn_t sad_64x64x4d_avx2 = vp9_sad64x64x4d_avx2;
const sad_n_by_n_by_4_fn_t sad_32x32x4d_avx2 = vp9_sad32x32x4d_avx2;
INSTANTIATE_TEST_CASE_P(DISABLED_AVX2, SADx4Test, ::testing::Values(
make_tuple(32, 32, sad_32x32x4d_avx2),
make_tuple(64, 64, sad_64x64x4d_avx2)));
#endif // CONFIG_VP9_ENCODER
#endif // HAVE_AVX2
} // namespace

View File

@@ -32,7 +32,10 @@ simple_decoder() {
local codec="$2"
local output_file="${VPX_TEST_OUTPUT_DIR}/simple_decoder_${codec}.raw"
[ -x "${decoder}" ] || return 1
if [ ! -x "${decoder}" ]; then
elog "${decoder} does not exist or is not executable."
return 1
fi
eval "${decoder}" "${input_file}" "${output_file}" ${devnull}

View File

@@ -29,7 +29,10 @@ simple_encoder() {
local codec="$1"
local output_file="${VPX_TEST_OUTPUT_DIR}/simple_encoder_${codec}.ivf"
[ -x "${encoder}" ] || return 1
if [ ! -x "${encoder}" ]; then
elog "${encoder} does not exist or is not executable."
return 1
fi
eval "${encoder}" "${codec}" "${YUV_RAW_INPUT_WIDTH}" \
"${YUV_RAW_INPUT_HEIGHT}" "${YUV_RAW_INPUT}" "${output_file}" 9999 \

View File

@@ -31,7 +31,6 @@ class SvcTest : public ::testing::Test {
SvcTest()
: codec_iface_(0),
test_file_name_("hantro_collage_w352h288.yuv"),
stats_file_name_("hantro_collage_w352h288.stat"),
codec_initialized_(false),
decoder_(0) {
memset(&svc_, 0, sizeof(svc_));
@@ -74,7 +73,6 @@ class SvcTest : public ::testing::Test {
struct vpx_codec_enc_cfg codec_enc_;
vpx_codec_iface_t *codec_iface_;
std::string test_file_name_;
std::string stats_file_name_;
bool codec_initialized_;
Decoder *decoder_;
};
@@ -267,9 +265,17 @@ TEST_F(SvcTest, FirstFrameHasLayers) {
video.duration(), VPX_DL_GOOD_QUALITY);
EXPECT_EQ(VPX_CODEC_OK, res);
if (vpx_svc_get_frame_size(&svc_) == 0) {
// Flush encoder
res = vpx_svc_encode(&svc_, &codec_, NULL, 0,
video.duration(), VPX_DL_GOOD_QUALITY);
EXPECT_EQ(VPX_CODEC_OK, res);
}
int frame_size = vpx_svc_get_frame_size(&svc_);
EXPECT_GT(frame_size, 0);
const vpx_codec_err_t res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)),
vpx_svc_get_frame_size(&svc_));
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
// this test fails with a decoder error
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
@@ -279,6 +285,9 @@ TEST_F(SvcTest, EncodeThreeFrames) {
svc_.spatial_layers = 2;
vpx_svc_set_scale_factors(&svc_, "4/16,16/16");
vpx_svc_set_quantizers(&svc_, "40,30", 0);
int decoded_frames = 0;
vpx_codec_err_t res_dec;
int frame_size;
vpx_codec_err_t res =
vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_);
@@ -293,13 +302,14 @@ TEST_F(SvcTest, EncodeThreeFrames) {
// This frame is a keyframe.
res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_EQ(1, vpx_svc_is_keyframe(&svc_));
vpx_codec_err_t res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)),
vpx_svc_get_frame_size(&svc_));
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
if ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
// FRAME 1
video.Next();
@@ -307,12 +317,14 @@ TEST_F(SvcTest, EncodeThreeFrames) {
res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_EQ(0, vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)),
vpx_svc_get_frame_size(&svc_));
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
if ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
// FRAME 2
video.Next();
@@ -320,12 +332,29 @@ TEST_F(SvcTest, EncodeThreeFrames) {
res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_EQ(0, vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)),
vpx_svc_get_frame_size(&svc_));
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
if ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
// Flush encoder
res = vpx_svc_encode(&svc_, &codec_, NULL, 0,
video.duration(), VPX_DL_GOOD_QUALITY);
EXPECT_EQ(VPX_CODEC_OK, res);
while ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
EXPECT_EQ(decoded_frames, 3);
}
TEST_F(SvcTest, GetLayerResolution) {
@@ -364,7 +393,9 @@ TEST_F(SvcTest, GetLayerResolution) {
EXPECT_EQ(kHeight * 8 / 16, layer_height);
}
TEST_F(SvcTest, FirstPassEncode) {
TEST_F(SvcTest, TwoPassEncode) {
// First pass encode
std::string stats_buf;
svc_.spatial_layers = 2;
codec_enc_.g_pass = VPX_RC_FIRST_PASS;
vpx_svc_set_scale_factors(&svc_, "4/16,16/16");
@@ -383,62 +414,61 @@ TEST_F(SvcTest, FirstPassEncode) {
res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_GT(vpx_svc_get_rc_stats_buffer_size(&svc_), 0U);
size_t stats_size = vpx_svc_get_rc_stats_buffer_size(&svc_);
EXPECT_GT(stats_size, 0U);
const char *stats_data = vpx_svc_get_rc_stats_buffer(&svc_);
ASSERT_TRUE(stats_data != NULL);
stats_buf.append(stats_data, stats_size);
// FRAME 1
video.Next();
res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_GT(vpx_svc_get_rc_stats_buffer_size(&svc_), 0U);
stats_size = vpx_svc_get_rc_stats_buffer_size(&svc_);
EXPECT_GT(stats_size, 0U);
stats_data = vpx_svc_get_rc_stats_buffer(&svc_);
ASSERT_TRUE(stats_data != NULL);
stats_buf.append(stats_data, stats_size);
// Flush encoder and test EOS packet
res = vpx_svc_encode(&svc_, &codec_, NULL, video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_GT(vpx_svc_get_rc_stats_buffer_size(&svc_), 0U);
}
stats_size = vpx_svc_get_rc_stats_buffer_size(&svc_);
EXPECT_GT(stats_size, 0U);
stats_data = vpx_svc_get_rc_stats_buffer(&svc_);
ASSERT_TRUE(stats_data != NULL);
stats_buf.append(stats_data, stats_size);
TEST_F(SvcTest, SecondPassEncode) {
svc_.spatial_layers = 2;
// Tear down encoder
vpx_svc_release(&svc_);
vpx_codec_destroy(&codec_);
// Second pass encode
int decoded_frames = 0;
vpx_codec_err_t res_dec;
int frame_size;
codec_enc_.g_pass = VPX_RC_LAST_PASS;
codec_enc_.rc_twopass_stats_in.buf = &stats_buf[0];
codec_enc_.rc_twopass_stats_in.sz = stats_buf.size();
FILE *const stats_file = libvpx_test::OpenTestDataFile(stats_file_name_);
ASSERT_TRUE(stats_file != NULL) << "Stats file open failed. Filename: "
<< stats_file;
struct vpx_fixed_buf stats_buf;
fseek(stats_file, 0, SEEK_END);
stats_buf.sz = static_cast<size_t>(ftell(stats_file));
fseek(stats_file, 0, SEEK_SET);
stats_buf.buf = malloc(stats_buf.sz);
ASSERT_TRUE(stats_buf.buf != NULL);
const size_t bytes_read = fread(stats_buf.buf, 1, stats_buf.sz, stats_file);
ASSERT_EQ(bytes_read, stats_buf.sz);
fclose(stats_file);
codec_enc_.rc_twopass_stats_in = stats_buf;
vpx_codec_err_t res =
vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_);
res = vpx_svc_init(&svc_, &codec_, vpx_codec_vp9_cx(), &codec_enc_);
ASSERT_EQ(VPX_CODEC_OK, res);
codec_initialized_ = true;
libvpx_test::I420VideoSource video(test_file_name_, kWidth, kHeight,
codec_enc_.g_timebase.den,
codec_enc_.g_timebase.num, 0, 30);
// FRAME 0
video.Begin();
// This frame is a keyframe.
res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_EQ(1, vpx_svc_is_keyframe(&svc_));
vpx_codec_err_t res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)),
vpx_svc_get_frame_size(&svc_));
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
if ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
// FRAME 1
video.Next();
@@ -446,12 +476,14 @@ TEST_F(SvcTest, SecondPassEncode) {
res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_EQ(0, vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)),
vpx_svc_get_frame_size(&svc_));
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
if ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
// FRAME 2
video.Next();
@@ -459,14 +491,29 @@ TEST_F(SvcTest, SecondPassEncode) {
res = vpx_svc_encode(&svc_, &codec_, video.img(), video.pts(),
video.duration(), VPX_DL_GOOD_QUALITY);
ASSERT_EQ(VPX_CODEC_OK, res);
EXPECT_EQ(0, vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)),
vpx_svc_get_frame_size(&svc_));
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
if ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
free(stats_buf.buf);
// Flush encoder
res = vpx_svc_encode(&svc_, &codec_, NULL, 0,
video.duration(), VPX_DL_GOOD_QUALITY);
EXPECT_EQ(VPX_CODEC_OK, res);
while ((frame_size = vpx_svc_get_frame_size(&svc_)) > 0) {
EXPECT_EQ((decoded_frames == 0), vpx_svc_is_keyframe(&svc_));
res_dec = decoder_->DecodeFrame(
static_cast<const uint8_t *>(vpx_svc_get_buffer(&svc_)), frame_size);
ASSERT_EQ(VPX_CODEC_OK, res_dec) << decoder_->DecodeError();
++decoded_frames;
}
EXPECT_EQ(decoded_frames, 3);
}
} // namespace

View File

@@ -1,6 +1,9 @@
d5dfb0151c9051f8c85999255645d7a23916d3c0 hantro_collage_w352h288.yuv
998cec53307c94aa5835aaf8d5731f6a3c7c2e5a hantro_collage_w352h288.stat
b87815bf86020c592ccc7a846ba2e28ec8043902 hantro_odd.yuv
fe346136b9b8c1e6f6084cc106485706915795e4 invalid-vp90-01.webm
25751f5d3b05ff03f0719ad42cd625348eb8961e invalid-vp90-01.webm.res
d78e2fceba5ac942246503ec8366f879c4775ca5 invalid-vp90-02.webm
2dadee5306245fa5eeb0f99652d0e17afbcba96d invalid-vp90-02.webm.res
b1f1c3ec79114b9a0651af24ce634afb44a9a419 rush_hour_444.y4m
5184c46ddca8b1fadd16742e8500115bc8f749da vp80-00-comprehensive-001.ivf
65bf1bbbced81b97bd030f376d1b7f61a224793f vp80-00-comprehensive-002.ivf
@@ -577,6 +580,8 @@ d48c5db1b0f8e60521a7c749696b8067886033a3 vp90-2-09-aq2.webm
54638c38009198c38c8f3b25c182b709b6c1fd2e vp90-2-09-lf_deltas.webm.md5
510d95f3beb3b51c572611fdaeeece12277dac30 vp90-2-10-show-existing-frame.webm
14d631096f4bfa2d71f7f739aec1448fb3c33bad vp90-2-10-show-existing-frame.webm.md5
d2feea7728e8d2c615981d0f47427a4a5a45d881 vp90-2-10-show-existing-frame2.webm
5f7c7811baa3e4f03be1dd78c33971b727846821 vp90-2-10-show-existing-frame2.webm.md5
b4318e75f73a6a08992c7326de2fb589c2a794c7 vp90-2-11-size-351x287.webm
b3c48382cf7d0454e83a02497c229d27720f9e20 vp90-2-11-size-351x287.webm.md5
8e0096475ea2535bac71d3e2fc09e0c451c444df vp90-2-11-size-351x288.webm
@@ -639,4 +644,5 @@ e615575ded499ea1d992f3b38e3baa434509cdcd vp90-2-15-segkey.webm
e3ab35d4316c5e81325c50f5236ceca4bc0d35df vp90-2-15-segkey.webm.md5
9b7ca2cac09d34c4a5d296c1900f93b1e2f69d0d vp90-2-15-segkey_adpq.webm
8f46ba5f785d0c2170591a153e0d0d146a7c8090 vp90-2-15-segkey_adpq.webm.md5
76024eb753cdac6a5e5703aaea189d35c3c30ac7 invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.ivf
d3964f9dad9f60363c81b688324d95b4ec7c8038 invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.ivf.res

View File

@@ -30,6 +30,7 @@ LIBVPX_TEST_SRCS-$(CONFIG_VP8_ENCODER) += cq_test.cc
LIBVPX_TEST_SRCS-$(CONFIG_VP8_ENCODER) += keyframe_test.cc
LIBVPX_TEST_SRCS-$(CONFIG_VP9_DECODER) += external_frame_buffer_test.cc
LIBVPX_TEST_SRCS-$(CONFIG_VP9_DECODER) += user_priv_test.cc
LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += active_map_test.cc
LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += borders_test.cc
LIBVPX_TEST_SRCS-$(CONFIG_VP9_ENCODER) += cpu_speed_test.cc
@@ -54,6 +55,7 @@ LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += ../webmdec.h
LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += webm_video_source.h
endif
LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += invalid_file_test.cc
LIBVPX_TEST_SRCS-$(CONFIG_DECODERS) += test_vector_test.cc
# Currently we only support decoder perf tests for vp9. Also they read from WebM
@@ -131,7 +133,6 @@ endif # CONFIG_SHARED
## TEST DATA
##
LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += hantro_collage_w352h288.yuv
LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += hantro_collage_w352h288.stat
LIBVPX_TEST_DATA-$(CONFIG_ENCODERS) += hantro_odd.yuv
LIBVPX_TEST_DATA-$(CONFIG_VP9_ENCODER) += rush_hour_444.y4m
@@ -691,6 +692,8 @@ LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-09-subpixel-00.ivf
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-09-subpixel-00.ivf.md5
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-10-show-existing-frame.webm
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-10-show-existing-frame.webm.md5
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-10-show-existing-frame2.webm
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-10-show-existing-frame2.webm.md5
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-11-size-351x287.webm
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-11-size-351x287.webm.md5
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-11-size-351x288.webm
@@ -756,6 +759,14 @@ LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-15-segkey.webm.md5
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-15-segkey_adpq.webm
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += vp90-2-15-segkey_adpq.webm.md5
# Invalid files for testing libvpx error checking.
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-01.webm
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-01.webm.res
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-02.webm
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-02.webm.res
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.ivf
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += invalid-vp90-2-00-quantizer-00.webm.ivf.s5861_r01-05_b6-.ivf.res
ifeq ($(CONFIG_DECODE_PERF_TESTS),yes)
# BBB VP9 streams
LIBVPX_TEST_DATA-$(CONFIG_VP9_DECODER) += \

View File

@@ -161,6 +161,7 @@ const char *const kVP9TestVectors[] = {
"vp90-2-08-tile-4x1.webm", "vp90-2-09-subpixel-00.ivf",
"vp90-2-02-size-lf-1920x1080.webm", "vp90-2-09-aq2.webm",
"vp90-2-09-lf_deltas.webm", "vp90-2-10-show-existing-frame.webm",
"vp90-2-10-show-existing-frame2.webm",
"vp90-2-11-size-351x287.webm", "vp90-2-11-size-351x288.webm",
"vp90-2-11-size-352x287.webm", "vp90-2-12-droppable_1.ivf",
"vp90-2-12-droppable_2.ivf", "vp90-2-12-droppable_3.ivf",
@@ -178,7 +179,7 @@ const char *const kVP9TestVectors[] = {
"vp90-2-14-resize-fp-tiles-4-2.webm", "vp90-2-14-resize-fp-tiles-4-8.webm",
"vp90-2-14-resize-fp-tiles-8-16.webm", "vp90-2-14-resize-fp-tiles-8-1.webm",
"vp90-2-14-resize-fp-tiles-8-2.webm", "vp90-2-14-resize-fp-tiles-8-4.webm",
"vp90-2-15-segkey.webm", "vp90-2-15-segkey_adpq.webm"
"vp90-2-15-segkey.webm", "vp90-2-15-segkey_adpq.webm",
};
const int kNumVP9TestVectors = NELEMENTS(kVP9TestVectors);
#endif // CONFIG_VP9_DECODER

View File

@@ -17,6 +17,10 @@ VPX_TEST_TOOLS_COMMON_SH=included
set -e
devnull='> /dev/null 2>&1'
elog() {
echo "$@" 1>&2
}
vlog() {
if [ "${VPX_TEST_VERBOSE_OUTPUT}" = "yes" ]; then
echo "$@"
@@ -456,10 +460,19 @@ vlog "$(basename "${0%.*}") test configuration:
LIBVPX_BIN_PATH=${LIBVPX_BIN_PATH}
LIBVPX_CONFIG_PATH=${LIBVPX_CONFIG_PATH}
LIBVPX_TEST_DATA_PATH=${LIBVPX_TEST_DATA_PATH}
VPX_TEST_OUTPUT_DIR=${VPX_TEST_OUTPUT_DIR}
VPX_TEST_VERBOSE_OUTPUT=${VPX_TEST_VERBOSE_OUTPUT}
VP8_IVF_FILE=${VP8_IVF_FILE}
VP9_IVF_FILE=${VP9_IVF_FILE}
VP9_WEBM_FILE=${VP9_WEBM_FILE}
VPX_TEST_EXE_SUFFIX=${VPX_TEST_EXE_SUFFIX}
VPX_TEST_FILTER=${VPX_TEST_FILTER}
VPX_TEST_OUTPUT_DIR=${VPX_TEST_OUTPUT_DIR}
VPX_TEST_RAND=${VPX_TEST_RAND}
VPX_TEST_RUN_DISABLED_TESTS=${VPX_TEST_RUN_DISABLED_TESTS}
VPX_TEST_SHOW_PROGRAM_OUTPUT=${VPX_TEST_SHOW_PROGRAM_OUTPUT}"
VPX_TEST_SHOW_PROGRAM_OUTPUT=${VPX_TEST_SHOW_PROGRAM_OUTPUT}
VPX_TEST_TEMP_ROOT=${VPX_TEST_TEMP_ROOT}
VPX_TEST_VERBOSE_OUTPUT=${VPX_TEST_VERBOSE_OUTPUT}
YUV_RAW_INPUT=${YUV_RAW_INPUT}
YUV_RAW_INPUT_WIDTH=${YUV_RAW_INPUT_WIDTH}
YUV_RAW_INPUT_HEIGHT=${YUV_RAW_INPUT_HEIGHT}"
fi # End $VPX_TEST_TOOLS_COMMON_SH pseudo include guard.

View File

@@ -29,7 +29,10 @@ twopass_encoder() {
local codec="$1"
local output_file="${VPX_TEST_OUTPUT_DIR}/twopass_encoder_${codec}.ivf"
[ -x "${encoder}" ] || return 1
if [ ! -x "${encoder}" ]; then
elog "${encoder} does not exist or is not executable."
return 1
fi
eval "${encoder}" "${codec}" "${YUV_RAW_INPUT_WIDTH}" \
"${YUV_RAW_INPUT_HEIGHT}" "${YUV_RAW_INPUT}" "${output_file}" \

100
test/user_priv_test.cc Normal file
View File

@@ -0,0 +1,100 @@
/*
* Copyright (c) 2013 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <cstdio>
#include <cstdlib>
#include <string>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "./vpx_config.h"
#include "test/acm_random.h"
#include "test/codec_factory.h"
#include "test/decode_test_driver.h"
#include "test/ivf_video_source.h"
#include "test/md5_helper.h"
#include "test/util.h"
#if CONFIG_WEBM_IO
#include "test/webm_video_source.h"
#endif
#include "vpx_mem/vpx_mem.h"
#include "vpx/vp8.h"
namespace {
using std::string;
using libvpx_test::ACMRandom;
#if CONFIG_WEBM_IO
void CheckUserPrivateData(void *user_priv, int *target) {
// actual pointer value should be the same as expected.
EXPECT_EQ(reinterpret_cast<void *>(target), user_priv) <<
"user_priv pointer value does not match.";
}
// Decodes |filename|. Passes in user_priv data when calling DecodeFrame and
// compares the user_priv from return img with the original user_priv to see if
// they match. Both the pointer values and the values inside the addresses
// should match.
string DecodeFile(const string &filename) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
libvpx_test::WebMVideoSource video(filename);
video.Init();
vpx_codec_dec_cfg_t cfg = {0};
libvpx_test::VP9Decoder decoder(cfg, 0);
libvpx_test::MD5 md5;
int frame_num = 0;
for (video.Begin(); !::testing::Test::HasFailure() && video.cxdata();
video.Next()) {
void *user_priv = reinterpret_cast<void *>(&frame_num);
const vpx_codec_err_t res =
decoder.DecodeFrame(video.cxdata(), video.frame_size(),
(frame_num == 0) ? NULL : user_priv);
if (res != VPX_CODEC_OK) {
EXPECT_EQ(VPX_CODEC_OK, res) << decoder.DecodeError();
break;
}
libvpx_test::DxDataIterator dec_iter = decoder.GetDxData();
const vpx_image_t *img = NULL;
// Get decompressed data.
while ((img = dec_iter.Next())) {
if (frame_num == 0) {
CheckUserPrivateData(img->user_priv, NULL);
} else {
CheckUserPrivateData(img->user_priv, &frame_num);
// Also test ctrl_get_reference api.
struct vp9_ref_frame ref;
// Randomly fetch a reference frame.
ref.idx = rnd.Rand8() % 3;
decoder.Control(VP9_GET_REFERENCE, &ref);
CheckUserPrivateData(ref.img.user_priv, &frame_num);
}
md5.Add(img);
}
frame_num++;
}
return string(md5.Get());
}
TEST(UserPrivTest, VideoDecode) {
// no tiles or frame parallel; this exercises the decoding to test the
// user_priv.
EXPECT_STREQ("b35a1b707b28e82be025d960aba039bc",
DecodeFile("vp90-2-03-size-226x226.webm").c_str());
}
#endif // CONFIG_WEBM_IO
} // namespace

View File

@@ -702,6 +702,57 @@ INSTANTIATE_TEST_CASE_P(
make_tuple(6, 6, subpel_avg_variance64x64_ssse3)));
#endif
#endif
#if HAVE_AVX2
// TODO(jzern): these prototypes can be removed after the avx2 versions are
// reenabled in vp9_rtcd_defs.pl.
extern "C" {
unsigned int vp9_sub_pixel_variance32x32_avx2(
const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset,
const uint8_t *ref_ptr, int ref_stride, unsigned int *sse);
unsigned int vp9_sub_pixel_variance64x64_avx2(
const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset,
const uint8_t *ref_ptr, int ref_stride, unsigned int *sse);
unsigned int vp9_sub_pixel_avg_variance32x32_avx2(
const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset,
const uint8_t *ref_ptr, int ref_stride, unsigned int *sse,
const uint8_t *second_pred);
unsigned int vp9_sub_pixel_avg_variance64x64_avx2(
const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset,
const uint8_t *ref_ptr, int ref_stride, unsigned int *sse,
const uint8_t *second_pred);
}
const vp9_variance_fn_t variance16x16_avx2 = vp9_variance16x16_avx2;
const vp9_variance_fn_t variance32x16_avx2 = vp9_variance32x16_avx2;
const vp9_variance_fn_t variance32x32_avx2 = vp9_variance32x32_avx2;
const vp9_variance_fn_t variance64x32_avx2 = vp9_variance64x32_avx2;
const vp9_variance_fn_t variance64x64_avx2 = vp9_variance64x64_avx2;
INSTANTIATE_TEST_CASE_P(
AVX2, VP9VarianceTest,
::testing::Values(make_tuple(4, 4, variance16x16_avx2),
make_tuple(5, 4, variance32x16_avx2),
make_tuple(5, 5, variance32x32_avx2),
make_tuple(6, 5, variance64x32_avx2),
make_tuple(6, 6, variance64x64_avx2)));
const vp9_subpixvariance_fn_t subpel_variance32x32_avx2 =
vp9_sub_pixel_variance32x32_avx2;
const vp9_subpixvariance_fn_t subpel_variance64x64_avx2 =
vp9_sub_pixel_variance64x64_avx2;
INSTANTIATE_TEST_CASE_P(
DISABLED_AVX2, VP9SubpelVarianceTest,
::testing::Values(make_tuple(5, 5, subpel_variance32x32_avx2),
make_tuple(6, 6, subpel_variance64x64_avx2)));
const vp9_subp_avg_variance_fn_t subpel_avg_variance32x32_avx2 =
vp9_sub_pixel_avg_variance32x32_avx2;
const vp9_subp_avg_variance_fn_t subpel_avg_variance64x64_avx2 =
vp9_sub_pixel_avg_variance64x64_avx2;
INSTANTIATE_TEST_CASE_P(
DISABLED_AVX2, VP9SubpelAvgVarianceTest,
::testing::Values(make_tuple(5, 5, subpel_avg_variance32x32_avx2),
make_tuple(6, 6, subpel_avg_variance64x64_avx2)));
#endif // HAVE_AVX2
#endif // CONFIG_VP9_ENCODER
} // namespace vp9

View File

@@ -34,7 +34,10 @@ vpx_set_ref() {
local output_file="${VPX_TEST_OUTPUT_DIR}/vp8cx_set_ref_${codec}.ivf"
local ref_frame_num=90
[ -x "${encoder}" ] || return 1
if [ ! -x "${encoder}" ]; then
elog "${encoder} does not exist or is not executable."
return 1
fi
eval "${encoder}" "${YUV_RAW_INPUT_WIDTH}" "${YUV_RAW_INPUT_HEIGHT}" \
"${YUV_RAW_INPUT}" "${output_file}" "${ref_frame_num}" \

View File

@@ -34,7 +34,10 @@ vp9_spatial_svc_encoder() {
shift
[ -x "${encoder}" ] || return 1
if [ ! -x "${encoder}" ]; then
elog "${encoder} does not exist or is not executable."
return 1
fi
eval "${encoder}" -w "${YUV_RAW_INPUT_WIDTH}" -h "${YUV_RAW_INPUT_HEIGHT}" \
-k "${max_kf}" -f "${frames_to_encode}" "$@" "${YUV_RAW_INPUT}" \

View File

@@ -39,7 +39,10 @@ vpx_tsvc_encoder() {
shift 2
[ -x "${encoder}" ] || return 1
if [ ! -x "${encoder}" ]; then
elog "${encoder} does not exist or is not executable."
return 1
fi
eval "${encoder}" "${YUV_RAW_INPUT}" "${output_file}" "${codec}" \
"${YUV_RAW_INPUT_WIDTH}" "${YUV_RAW_INPUT_HEIGHT}" \

231
third_party/libmkv/EbmlIDs.h vendored Normal file
View File

@@ -0,0 +1,231 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MKV_DEFS_HPP
#define MKV_DEFS_HPP 1
/* Commenting out values not available in webm, but available in matroska */
enum mkv {
EBML = 0x1A45DFA3,
EBMLVersion = 0x4286,
EBMLReadVersion = 0x42F7,
EBMLMaxIDLength = 0x42F2,
EBMLMaxSizeLength = 0x42F3,
DocType = 0x4282,
DocTypeVersion = 0x4287,
DocTypeReadVersion = 0x4285,
/* CRC_32 = 0xBF, */
Void = 0xEC,
SignatureSlot = 0x1B538667,
SignatureAlgo = 0x7E8A,
SignatureHash = 0x7E9A,
SignaturePublicKey = 0x7EA5,
Signature = 0x7EB5,
SignatureElements = 0x7E5B,
SignatureElementList = 0x7E7B,
SignedElement = 0x6532,
/* segment */
Segment = 0x18538067,
/* Meta Seek Information */
SeekHead = 0x114D9B74,
Seek = 0x4DBB,
SeekID = 0x53AB,
SeekPosition = 0x53AC,
/* Segment Information */
Info = 0x1549A966,
/* SegmentUID = 0x73A4, */
/* SegmentFilename = 0x7384, */
/* PrevUID = 0x3CB923, */
/* PrevFilename = 0x3C83AB, */
/* NextUID = 0x3EB923, */
/* NextFilename = 0x3E83BB, */
/* SegmentFamily = 0x4444, */
/* ChapterTranslate = 0x6924, */
/* ChapterTranslateEditionUID = 0x69FC, */
/* ChapterTranslateCodec = 0x69BF, */
/* ChapterTranslateID = 0x69A5, */
TimecodeScale = 0x2AD7B1,
Segment_Duration = 0x4489,
DateUTC = 0x4461,
/* Title = 0x7BA9, */
MuxingApp = 0x4D80,
WritingApp = 0x5741,
/* Cluster */
Cluster = 0x1F43B675,
Timecode = 0xE7,
/* SilentTracks = 0x5854, */
/* SilentTrackNumber = 0x58D7, */
/* Position = 0xA7, */
PrevSize = 0xAB,
BlockGroup = 0xA0,
Block = 0xA1,
/* BlockVirtual = 0xA2, */
BlockAdditions = 0x75A1,
BlockMore = 0xA6,
BlockAddID = 0xEE,
BlockAdditional = 0xA5,
BlockDuration = 0x9B,
/* ReferencePriority = 0xFA, */
ReferenceBlock = 0xFB,
/* ReferenceVirtual = 0xFD, */
/* CodecState = 0xA4, */
/* Slices = 0x8E, */
/* TimeSlice = 0xE8, */
LaceNumber = 0xCC,
/* FrameNumber = 0xCD, */
/* BlockAdditionID = 0xCB, */
/* MkvDelay = 0xCE, */
/* Cluster_Duration = 0xCF, */
SimpleBlock = 0xA3,
/* EncryptedBlock = 0xAF, */
/* Track */
Tracks = 0x1654AE6B,
TrackEntry = 0xAE,
TrackNumber = 0xD7,
TrackUID = 0x73C5,
TrackType = 0x83,
FlagEnabled = 0xB9,
FlagDefault = 0x88,
FlagForced = 0x55AA,
FlagLacing = 0x9C,
/* MinCache = 0x6DE7, */
/* MaxCache = 0x6DF8, */
DefaultDuration = 0x23E383,
/* TrackTimecodeScale = 0x23314F, */
/* TrackOffset = 0x537F, */
MaxBlockAdditionID = 0x55EE,
Name = 0x536E,
Language = 0x22B59C,
CodecID = 0x86,
CodecPrivate = 0x63A2,
CodecName = 0x258688,
/* AttachmentLink = 0x7446, */
/* CodecSettings = 0x3A9697, */
/* CodecInfoURL = 0x3B4040, */
/* CodecDownloadURL = 0x26B240, */
/* CodecDecodeAll = 0xAA, */
/* TrackOverlay = 0x6FAB, */
/* TrackTranslate = 0x6624, */
/* TrackTranslateEditionUID = 0x66FC, */
/* TrackTranslateCodec = 0x66BF, */
/* TrackTranslateTrackID = 0x66A5, */
/* video */
Video = 0xE0,
FlagInterlaced = 0x9A,
StereoMode = 0x53B8,
AlphaMode = 0x53C0,
PixelWidth = 0xB0,
PixelHeight = 0xBA,
PixelCropBottom = 0x54AA,
PixelCropTop = 0x54BB,
PixelCropLeft = 0x54CC,
PixelCropRight = 0x54DD,
DisplayWidth = 0x54B0,
DisplayHeight = 0x54BA,
DisplayUnit = 0x54B2,
AspectRatioType = 0x54B3,
/* ColourSpace = 0x2EB524, */
/* GammaValue = 0x2FB523, */
FrameRate = 0x2383E3,
/* end video */
/* audio */
Audio = 0xE1,
SamplingFrequency = 0xB5,
OutputSamplingFrequency = 0x78B5,
Channels = 0x9F,
/* ChannelPositions = 0x7D7B, */
BitDepth = 0x6264,
/* end audio */
/* content encoding */
/* ContentEncodings = 0x6d80, */
/* ContentEncoding = 0x6240, */
/* ContentEncodingOrder = 0x5031, */
/* ContentEncodingScope = 0x5032, */
/* ContentEncodingType = 0x5033, */
/* ContentCompression = 0x5034, */
/* ContentCompAlgo = 0x4254, */
/* ContentCompSettings = 0x4255, */
/* ContentEncryption = 0x5035, */
/* ContentEncAlgo = 0x47e1, */
/* ContentEncKeyID = 0x47e2, */
/* ContentSignature = 0x47e3, */
/* ContentSigKeyID = 0x47e4, */
/* ContentSigAlgo = 0x47e5, */
/* ContentSigHashAlgo = 0x47e6, */
/* end content encoding */
/* Cueing Data */
Cues = 0x1C53BB6B,
CuePoint = 0xBB,
CueTime = 0xB3,
CueTrackPositions = 0xB7,
CueTrack = 0xF7,
CueClusterPosition = 0xF1,
CueBlockNumber = 0x5378
/* CueCodecState = 0xEA, */
/* CueReference = 0xDB, */
/* CueRefTime = 0x96, */
/* CueRefCluster = 0x97, */
/* CueRefNumber = 0x535F, */
/* CueRefCodecState = 0xEB, */
/* Attachment */
/* Attachments = 0x1941A469, */
/* AttachedFile = 0x61A7, */
/* FileDescription = 0x467E, */
/* FileName = 0x466E, */
/* FileMimeType = 0x4660, */
/* FileData = 0x465C, */
/* FileUID = 0x46AE, */
/* FileReferral = 0x4675, */
/* Chapters */
/* Chapters = 0x1043A770, */
/* EditionEntry = 0x45B9, */
/* EditionUID = 0x45BC, */
/* EditionFlagHidden = 0x45BD, */
/* EditionFlagDefault = 0x45DB, */
/* EditionFlagOrdered = 0x45DD, */
/* ChapterAtom = 0xB6, */
/* ChapterUID = 0x73C4, */
/* ChapterTimeStart = 0x91, */
/* ChapterTimeEnd = 0x92, */
/* ChapterFlagHidden = 0x98, */
/* ChapterFlagEnabled = 0x4598, */
/* ChapterSegmentUID = 0x6E67, */
/* ChapterSegmentEditionUID = 0x6EBC, */
/* ChapterPhysicalEquiv = 0x63C3, */
/* ChapterTrack = 0x8F, */
/* ChapterTrackNumber = 0x89, */
/* ChapterDisplay = 0x80, */
/* ChapString = 0x85, */
/* ChapLanguage = 0x437C, */
/* ChapCountry = 0x437E, */
/* ChapProcess = 0x6944, */
/* ChapProcessCodecID = 0x6955, */
/* ChapProcessPrivate = 0x450D, */
/* ChapProcessCommand = 0x6911, */
/* ChapProcessTime = 0x6922, */
/* ChapProcessData = 0x6933, */
/* Tagging */
/* Tags = 0x1254C367, */
/* Tag = 0x7373, */
/* Targets = 0x63C0, */
/* TargetTypeValue = 0x68CA, */
/* TargetType = 0x63CA, */
/* Tagging_TrackUID = 0x63C5, */
/* Tagging_EditionUID = 0x63C9, */
/* Tagging_ChapterUID = 0x63C4, */
/* AttachmentUID = 0x63C6, */
/* SimpleTag = 0x67C8, */
/* TagName = 0x45A3, */
/* TagLanguage = 0x447A, */
/* TagDefault = 0x4484, */
/* TagString = 0x4487, */
/* TagBinary = 0x4485, */
};
#endif

157
third_party/libmkv/EbmlWriter.c vendored Normal file
View File

@@ -0,0 +1,157 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "EbmlWriter.h"
#include <stdlib.h>
#include <wchar.h>
#include <string.h>
#include <limits.h>
#if defined(_MSC_VER)
#define LITERALU64(n) n
#else
#define LITERALU64(n) n##LLU
#endif
void Ebml_WriteLen(EbmlGlobal *glob, int64_t val) {
/* TODO check and make sure we are not > than 0x0100000000000000LLU */
unsigned char size = 8; /* size in bytes to output */
/* mask to compare for byte size */
int64_t minVal = 0xff;
for (size = 1; size < 8; size ++) {
if (val < minVal)
break;
minVal = (minVal << 7);
}
val |= (((uint64_t)0x80) << ((size - 1) * 7));
Ebml_Serialize(glob, (void *) &val, sizeof(val), size);
}
void Ebml_WriteString(EbmlGlobal *glob, const char *str) {
const size_t size_ = strlen(str);
const uint64_t size = size_;
Ebml_WriteLen(glob, size);
/* TODO: it's not clear from the spec whether the nul terminator
* should be serialized too. For now we omit the null terminator.
*/
Ebml_Write(glob, str, (unsigned long)size);
}
void Ebml_WriteUTF8(EbmlGlobal *glob, const wchar_t *wstr) {
const size_t strlen = wcslen(wstr);
/* TODO: it's not clear from the spec whether the nul terminator
* should be serialized too. For now we include it.
*/
const uint64_t size = strlen;
Ebml_WriteLen(glob, size);
Ebml_Write(glob, wstr, (unsigned long)size);
}
void Ebml_WriteID(EbmlGlobal *glob, unsigned long class_id) {
int len;
if (class_id >= 0x01000000)
len = 4;
else if (class_id >= 0x00010000)
len = 3;
else if (class_id >= 0x00000100)
len = 2;
else
len = 1;
Ebml_Serialize(glob, (void *)&class_id, sizeof(class_id), len);
}
void Ebml_SerializeUnsigned64(EbmlGlobal *glob, unsigned long class_id, uint64_t ui) {
unsigned char sizeSerialized = 8 | 0x80;
Ebml_WriteID(glob, class_id);
Ebml_Serialize(glob, &sizeSerialized, sizeof(sizeSerialized), 1);
Ebml_Serialize(glob, &ui, sizeof(ui), 8);
}
void Ebml_SerializeUnsigned(EbmlGlobal *glob, unsigned long class_id, unsigned long ui) {
unsigned char size = 8; /* size in bytes to output */
unsigned char sizeSerialized = 0;
unsigned long minVal;
Ebml_WriteID(glob, class_id);
minVal = 0x7fLU; /* mask to compare for byte size */
for (size = 1; size < 4; size ++) {
if (ui < minVal) {
break;
}
minVal <<= 7;
}
sizeSerialized = 0x80 | size;
Ebml_Serialize(glob, &sizeSerialized, sizeof(sizeSerialized), 1);
Ebml_Serialize(glob, &ui, sizeof(ui), size);
}
/* TODO: perhaps this is a poor name for this id serializer helper function */
void Ebml_SerializeBinary(EbmlGlobal *glob, unsigned long class_id, unsigned long bin) {
int size;
for (size = 4; size > 1; size--) {
if (bin & (unsigned int)0x000000ff << ((size - 1) * 8))
break;
}
Ebml_WriteID(glob, class_id);
Ebml_WriteLen(glob, size);
Ebml_WriteID(glob, bin);
}
void Ebml_SerializeFloat(EbmlGlobal *glob, unsigned long class_id, double d) {
unsigned char len = 0x88;
Ebml_WriteID(glob, class_id);
Ebml_Serialize(glob, &len, sizeof(len), 1);
Ebml_Serialize(glob, &d, sizeof(d), 8);
}
void Ebml_WriteSigned16(EbmlGlobal *glob, short val) {
signed long out = ((val & 0x003FFFFF) | 0x00200000) << 8;
Ebml_Serialize(glob, &out, sizeof(out), 3);
}
void Ebml_SerializeString(EbmlGlobal *glob, unsigned long class_id, const char *s) {
Ebml_WriteID(glob, class_id);
Ebml_WriteString(glob, s);
}
void Ebml_SerializeUTF8(EbmlGlobal *glob, unsigned long class_id, wchar_t *s) {
Ebml_WriteID(glob, class_id);
Ebml_WriteUTF8(glob, s);
}
void Ebml_SerializeData(EbmlGlobal *glob, unsigned long class_id, unsigned char *data, unsigned long data_length) {
Ebml_WriteID(glob, class_id);
Ebml_WriteLen(glob, data_length);
Ebml_Write(glob, data, data_length);
}
void Ebml_WriteVoid(EbmlGlobal *glob, unsigned long vSize) {
unsigned char tmp = 0;
unsigned long i = 0;
Ebml_WriteID(glob, 0xEC);
Ebml_WriteLen(glob, vSize);
for (i = 0; i < vSize; i++) {
Ebml_Write(glob, &tmp, 1);
}
}
/* TODO Serialize Date */

42
third_party/libmkv/EbmlWriter.h vendored Normal file
View File

@@ -0,0 +1,42 @@
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef EBMLWRITER_HPP
#define EBMLWRITER_HPP
#include <stddef.h>
#include "vpx/vpx_integer.h"
/* note: you must define write and serialize functions as well as your own
* EBML_GLOBAL
*
* These functions MUST be implemented
*/
typedef struct EbmlGlobal EbmlGlobal;
void Ebml_Serialize(EbmlGlobal *glob, const void *, int, unsigned long);
void Ebml_Write(EbmlGlobal *glob, const void *, unsigned long);
/*****/
void Ebml_WriteLen(EbmlGlobal *glob, int64_t val);
void Ebml_WriteString(EbmlGlobal *glob, const char *str);
void Ebml_WriteUTF8(EbmlGlobal *glob, const wchar_t *wstr);
void Ebml_WriteID(EbmlGlobal *glob, unsigned long class_id);
void Ebml_SerializeUnsigned64(EbmlGlobal *glob, unsigned long class_id, uint64_t ui);
void Ebml_SerializeUnsigned(EbmlGlobal *glob, unsigned long class_id, unsigned long ui);
void Ebml_SerializeBinary(EbmlGlobal *glob, unsigned long class_id, unsigned long ui);
void Ebml_SerializeFloat(EbmlGlobal *glob, unsigned long class_id, double d);
/* TODO make this more generic to signed */
void Ebml_WriteSigned16(EbmlGlobal *glob, short val);
void Ebml_SerializeString(EbmlGlobal *glob, unsigned long class_id, const char *s);
void Ebml_SerializeUTF8(EbmlGlobal *glob, unsigned long class_id, wchar_t *s);
void Ebml_SerializeData(EbmlGlobal *glob, unsigned long class_id, unsigned char *data, unsigned long data_length);
void Ebml_WriteVoid(EbmlGlobal *glob, unsigned long vSize);
/* TODO need date function */
#endif

View File

@@ -463,9 +463,7 @@ $vp8_short_walsh4x4_neon_asm=vp8_short_walsh4x4_neon;
# Quantizer
#
add_proto qw/void vp8_regular_quantize_b/, "struct block *, struct blockd *";
specialize qw/vp8_regular_quantize_b sse2/;
# TODO(johann) Update sse4 implementation and re-enable
#$vp8_regular_quantize_b_sse4_1=vp8_regular_quantize_b_sse4;
specialize qw/vp8_regular_quantize_b sse2 sse4_1/;
add_proto qw/void vp8_fast_quantize_b/, "struct block *, struct blockd *";
specialize qw/vp8_fast_quantize_b sse2 ssse3 media neon_asm/;

View File

@@ -246,7 +246,6 @@ sym(vp8_mbpost_proc_down_mmx):
; unsigned char whiteclamp[16],
; unsigned char bothclamp[16],
; unsigned int Width, unsigned int Height, int Pitch)
extern sym(rand)
global sym(vp8_plane_add_noise_mmx) PRIVATE
sym(vp8_plane_add_noise_mmx):
push rbp
@@ -258,7 +257,7 @@ sym(vp8_plane_add_noise_mmx):
; end prolog
.addnoise_loop:
call sym(rand) WRT_PLT
call sym(LIBVPX_RAND) WRT_PLT
mov rcx, arg(1) ;noise
and rax, 0xff
add rcx, rax

View File

@@ -660,7 +660,6 @@ sym(vp8_mbpost_proc_across_ip_xmm):
; unsigned char whiteclamp[16],
; unsigned char bothclamp[16],
; unsigned int Width, unsigned int Height, int Pitch)
extern sym(rand)
global sym(vp8_plane_add_noise_wmt) PRIVATE
sym(vp8_plane_add_noise_wmt):
push rbp
@@ -672,7 +671,7 @@ sym(vp8_plane_add_noise_wmt):
; end prolog
.addnoise_loop:
call sym(rand) WRT_PLT
call sym(LIBVPX_RAND) WRT_PLT
mov rcx, arg(1) ;noise
and rax, 0xff
add rcx, rax

View File

@@ -1,24 +0,0 @@
/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/* On Android NDK, rand is inlined function, but postproc needs rand symbol */
#if defined(__ANDROID__)
#define rand __rand
#include <stdlib.h>
#undef rand
extern int rand(void)
{
return __rand();
}
#else
/* ISO C forbids an empty translation unit. */
int vp8_unused;
#endif

View File

@@ -191,10 +191,12 @@ int vp8_denoiser_filter_c(unsigned char *mc_running_avg_y, int mc_avg_y_stride,
return FILTER_BLOCK;
}
int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height)
int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height,
int num_mb_rows, int num_mb_cols)
{
int i;
assert(denoiser);
denoiser->num_mb_cols = num_mb_cols;
for (i = 0; i < MAX_REF_FRAMES; i++)
{
@@ -222,6 +224,10 @@ int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height)
vpx_memset(denoiser->yv12_mc_running_avg.buffer_alloc, 0,
denoiser->yv12_mc_running_avg.frame_size);
denoiser->denoise_state = vpx_calloc((num_mb_rows * num_mb_cols), 1);
vpx_memset(denoiser->denoise_state, 0, (num_mb_rows * num_mb_cols));
return 0;
}
@@ -243,13 +249,20 @@ void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser,
unsigned int best_sse,
unsigned int zero_mv_sse,
int recon_yoffset,
int recon_uvoffset)
int recon_uvoffset,
loop_filter_info_n *lfi_n,
int mb_row,
int mb_col,
int block_index)
{
int mv_row;
int mv_col;
unsigned int motion_magnitude2;
unsigned int sse_thresh;
int sse_diff_thresh = 0;
// Spatial loop filter: only applied selectively based on
// temporal filter state of block relative to top/left neighbors.
int apply_spatial_loop_filter = 1;
MV_REFERENCE_FRAME frame = x->best_reference_frame;
MV_REFERENCE_FRAME zero_frame = x->best_zeromv_reference_frame;
@@ -263,7 +276,11 @@ void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser,
MB_MODE_INFO saved_mbmi;
MACROBLOCKD *filter_xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &filter_xd->mode_info_context->mbmi;
int sse_diff = zero_mv_sse - best_sse;
int sse_diff = 0;
// Bias on zero motion vector sse.
int zero_bias = 95;
zero_mv_sse = (unsigned int)((int64_t)zero_mv_sse * zero_bias / 100);
sse_diff = zero_mv_sse - best_sse;
saved_mbmi = *mbmi;
@@ -362,6 +379,8 @@ void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser,
running_avg_y, avg_y_stride,
x->thismb, 16, motion_magnitude2,
x->increase_denoising);
denoiser->denoise_state[block_index] = motion_magnitude2 > 0 ?
kFilterNonZeroMV : kFilterZeroMV;
}
if (decision == COPY_BLOCK)
{
@@ -372,5 +391,59 @@ void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser,
x->thismb, 16,
denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
denoiser->yv12_running_avg[INTRA_FRAME].y_stride);
denoiser->denoise_state[block_index] = kNoFilter;
}
// Option to selectively deblock the denoised signal.
if (apply_spatial_loop_filter) {
loop_filter_info lfi;
int apply_filter_col = 0;
int apply_filter_row = 0;
int apply_filter = 0;
int y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride;
int uv_stride =denoiser->yv12_running_avg[INTRA_FRAME].uv_stride;
// Fix filter level to some nominal value for now.
int filter_level = 32;
int hev_index = lfi_n->hev_thr_lut[INTER_FRAME][filter_level];
lfi.mblim = lfi_n->mblim[filter_level];
lfi.blim = lfi_n->blim[filter_level];
lfi.lim = lfi_n->lim[filter_level];
lfi.hev_thr = lfi_n->hev_thr[hev_index];
// Apply filter if there is a difference in the denoiser filter state
// between the current and left/top block, or if non-zero motion vector
// is used for the motion-compensated filtering.
if (mb_col > 0) {
apply_filter_col = !((denoiser->denoise_state[block_index] ==
denoiser->denoise_state[block_index - 1]) &&
denoiser->denoise_state[block_index] != kFilterNonZeroMV);
if (apply_filter_col) {
// Filter left vertical edge.
apply_filter = 1;
vp8_loop_filter_mbv(
denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
NULL, NULL, y_stride, uv_stride, &lfi);
}
}
if (mb_row > 0) {
apply_filter_row = !((denoiser->denoise_state[block_index] ==
denoiser->denoise_state[block_index - denoiser->num_mb_cols]) &&
denoiser->denoise_state[block_index] != kFilterNonZeroMV);
if (apply_filter_row) {
// Filter top horizontal edge.
apply_filter = 1;
vp8_loop_filter_mbh(
denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
NULL, NULL, y_stride, uv_stride, &lfi);
}
}
if (apply_filter) {
// Update the signal block |x|. Pixel changes are only to top and/or
// left boundary pixels: can we avoid full block copy here.
vp8_copy_mem16x16(
denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset,
y_stride, x->thismb, 16);
}
}
}

View File

@@ -12,6 +12,7 @@
#define VP8_ENCODER_DENOISING_H_
#include "block.h"
#include "vp8/common/loopfilter.h"
#ifdef __cplusplus
extern "C" {
@@ -27,13 +28,22 @@ enum vp8_denoiser_decision
FILTER_BLOCK
};
enum vp8_denoiser_filter_state {
kNoFilter,
kFilterZeroMV,
kFilterNonZeroMV
};
typedef struct vp8_denoiser
{
YV12_BUFFER_CONFIG yv12_running_avg[MAX_REF_FRAMES];
YV12_BUFFER_CONFIG yv12_mc_running_avg;
unsigned char* denoise_state;
int num_mb_cols;
} VP8_DENOISER;
int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height);
int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height,
int num_mb_rows, int num_mb_cols);
void vp8_denoiser_free(VP8_DENOISER *denoiser);
@@ -42,7 +52,11 @@ void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser,
unsigned int best_sse,
unsigned int zero_mv_sse,
int recon_yoffset,
int recon_uvoffset);
int recon_uvoffset,
loop_filter_info_n *lfi_n,
int mb_row,
int mb_col,
int block_index);
#ifdef __cplusplus
} // extern "C"

View File

@@ -1246,7 +1246,7 @@ int vp8cx_encode_inter_macroblock
x->zbin_mode_boost_enabled = 0;
}
vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
&distortion, &intra_error);
&distortion, &intra_error, mb_row, mb_col);
/* switch back to the regular quantizer for the encode */
if (cpi->sf.improved_quant)

View File

@@ -98,6 +98,9 @@ extern double vp8_calc_ssimg
#ifdef OUTPUT_YUV_SRC
FILE *yuv_file;
#endif
#ifdef OUTPUT_YUV_DENOISED
FILE *yuv_denoised_file;
#endif
#if 0
FILE *framepsnr;
@@ -1748,7 +1751,8 @@ void vp8_change_config(VP8_COMP *cpi, VP8_CONFIG *oxcf)
{
int width = (cpi->oxcf.Width + 15) & ~15;
int height = (cpi->oxcf.Height + 15) & ~15;
vp8_denoiser_allocate(&cpi->denoiser, width, height);
vp8_denoiser_allocate(&cpi->denoiser, width, height,
cpi->common.mb_rows, cpi->common.mb_cols);
}
}
#endif
@@ -1961,6 +1965,9 @@ struct VP8_COMP* vp8_create_compressor(VP8_CONFIG *oxcf)
#ifdef OUTPUT_YUV_SRC
yuv_file = fopen("bd.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_DENOISED
yuv_denoised_file = fopen("denoised.yuv", "ab");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
@@ -2410,6 +2417,9 @@ void vp8_remove_compressor(VP8_COMP **ptr)
#ifdef OUTPUT_YUV_SRC
fclose(yuv_file);
#endif
#ifdef OUTPUT_YUV_DENOISED
fclose(yuv_denoised_file);
#endif
#if 0
@@ -2610,7 +2620,7 @@ int vp8_update_entropy(VP8_COMP *cpi, int update)
}
#if OUTPUT_YUV_SRC
#if defined(OUTPUT_YUV_SRC) || defined(OUTPUT_YUV_DENOISED)
void vp8_write_yuv_frame(FILE *yuv_file, YV12_BUFFER_CONFIG *s)
{
unsigned char *src = s->y_buffer;
@@ -4430,6 +4440,11 @@ static void encode_frame_to_data_rate
update_reference_frames(cpi);
#ifdef OUTPUT_YUV_DENOISED
vp8_write_yuv_frame(yuv_denoised_file,
&cpi->denoiser.yv12_running_avg[INTRA_FRAME]);
#endif
#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
if (cpi->oxcf.error_resilient_mode)
{

View File

@@ -1168,6 +1168,7 @@ void vp8_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset,
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity)
{
int block_index = mb_row * cpi->common.mb_cols + mb_col;
if (x->best_sse_inter_mode == DC_PRED)
{
/* No best MV found. */
@@ -1179,7 +1180,9 @@ void vp8_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset,
}
x->increase_denoising = 0;
vp8_denoiser_denoise_mb(&cpi->denoiser, x, best_sse, zero_mv_sse,
recon_yoffset, recon_uvoffset);
recon_yoffset, recon_uvoffset,
&cpi->common.lf_info, mb_row, mb_col,
block_index);
/* Reevaluate ZEROMV after denoising. */

View File

@@ -1935,7 +1935,8 @@ static void update_best_mode(BEST_MODE* best_mode, int this_rd,
void vp8_rd_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset,
int recon_uvoffset, int *returnrate,
int *returndistortion, int *returnintra)
int *returndistortion, int *returnintra,
int mb_row, int mb_col)
{
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
@@ -2510,6 +2511,7 @@ void vp8_rd_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset,
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity)
{
int block_index = mb_row * cpi->common.mb_cols + mb_col;
if (x->best_sse_inter_mode == DC_PRED)
{
/* No best MV found. */
@@ -2520,7 +2522,9 @@ void vp8_rd_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset,
best_sse = best_rd_sse;
}
vp8_denoiser_denoise_mb(&cpi->denoiser, x, best_sse, zero_mv_sse,
recon_yoffset, recon_uvoffset);
recon_yoffset, recon_uvoffset,
&cpi->common.lf_info, mb_row, mb_col,
block_index);
/* Reevaluate ZEROMV after denoising. */

View File

@@ -70,7 +70,10 @@ static void insertsortsad(int arr[],int idx[], int len)
}
extern void vp8_initialize_rd_consts(VP8_COMP *cpi, MACROBLOCK *x, int Qvalue);
extern void vp8_rd_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset, int recon_uvoffset, int *returnrate, int *returndistortion, int *returnintra);
extern void vp8_rd_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x,
int recon_yoffset, int recon_uvoffset,
int *returnrate, int *returndistortion,
int *returnintra, int mb_row, int mb_col);
extern void vp8_rd_pick_intra_mode(MACROBLOCK *x, int *rate);

View File

@@ -26,11 +26,10 @@
int cmp = (x[z] < boost) | (y[z] == 0); \
zbin_boost_ptr++; \
if (cmp) \
goto select_eob_end_##i; \
break; \
qcoeff_ptr[z] = y[z]; \
eob = i; \
zbin_boost_ptr = b->zrun_zbin_boost; \
select_eob_end_##i:; \
} while (0)
void vp8_regular_quantize_b_sse2(BLOCK *b, BLOCKD *d)

View File

@@ -1,256 +0,0 @@
;
; Copyright (c) 2010 The WebM project authors. All Rights Reserved.
;
; Use of this source code is governed by a BSD-style license and patent
; grant that can be found in the LICENSE file in the root of the source
; tree. All contributing project authors may be found in the AUTHORS
; file in the root of the source tree.
;
%include "vpx_ports/x86_abi_support.asm"
%include "vp8_asm_enc_offsets.asm"
; void vp8_regular_quantize_b_sse4 | arg
; (BLOCK *b, | 0
; BLOCKD *d) | 1
global sym(vp8_regular_quantize_b_sse4) PRIVATE
sym(vp8_regular_quantize_b_sse4):
%if ABI_IS_32BIT
push rbp
mov rbp, rsp
GET_GOT rbx
push rdi
push rsi
ALIGN_STACK 16, rax
%define qcoeff 0 ; 32
%define stack_size 32
sub rsp, stack_size
%else
%if LIBVPX_YASM_WIN64
SAVE_XMM 8, u
push rdi
push rsi
%endif
%endif
; end prolog
%if ABI_IS_32BIT
mov rdi, arg(0) ; BLOCK *b
mov rsi, arg(1) ; BLOCKD *d
%else
%if LIBVPX_YASM_WIN64
mov rdi, rcx ; BLOCK *b
mov rsi, rdx ; BLOCKD *d
%else
;mov rdi, rdi ; BLOCK *b
;mov rsi, rsi ; BLOCKD *d
%endif
%endif
mov rax, [rdi + vp8_block_coeff]
mov rcx, [rdi + vp8_block_zbin]
mov rdx, [rdi + vp8_block_round]
movd xmm7, [rdi + vp8_block_zbin_extra]
; z
movdqa xmm0, [rax]
movdqa xmm1, [rax + 16]
; duplicate zbin_oq_value
pshuflw xmm7, xmm7, 0
punpcklwd xmm7, xmm7
movdqa xmm2, xmm0
movdqa xmm3, xmm1
; sz
psraw xmm0, 15
psraw xmm1, 15
; (z ^ sz)
pxor xmm2, xmm0
pxor xmm3, xmm1
; x = abs(z)
psubw xmm2, xmm0
psubw xmm3, xmm1
; zbin
movdqa xmm4, [rcx]
movdqa xmm5, [rcx + 16]
; *zbin_ptr + zbin_oq_value
paddw xmm4, xmm7
paddw xmm5, xmm7
movdqa xmm6, xmm2
movdqa xmm7, xmm3
; x - (*zbin_ptr + zbin_oq_value)
psubw xmm6, xmm4
psubw xmm7, xmm5
; round
movdqa xmm4, [rdx]
movdqa xmm5, [rdx + 16]
mov rax, [rdi + vp8_block_quant_shift]
mov rcx, [rdi + vp8_block_quant]
mov rdx, [rdi + vp8_block_zrun_zbin_boost]
; x + round
paddw xmm2, xmm4
paddw xmm3, xmm5
; quant
movdqa xmm4, [rcx]
movdqa xmm5, [rcx + 16]
; y = x * quant_ptr >> 16
pmulhw xmm4, xmm2
pmulhw xmm5, xmm3
; y += x
paddw xmm2, xmm4
paddw xmm3, xmm5
pxor xmm4, xmm4
%if ABI_IS_32BIT
movdqa [rsp + qcoeff], xmm4
movdqa [rsp + qcoeff + 16], xmm4
%else
pxor xmm8, xmm8
%endif
; quant_shift
movdqa xmm5, [rax]
; zrun_zbin_boost
mov rax, rdx
%macro ZIGZAG_LOOP 5
; x
pextrw ecx, %4, %2
; if (x >= zbin)
sub cx, WORD PTR[rdx] ; x - zbin
lea rdx, [rdx + 2] ; zbin_boost_ptr++
jl .rq_zigzag_loop_%1 ; x < zbin
pextrw edi, %3, %2 ; y
; downshift by quant_shift[rc]
pextrb ecx, xmm5, %1 ; quant_shift[rc]
sar edi, cl ; also sets Z bit
je .rq_zigzag_loop_%1 ; !y
%if ABI_IS_32BIT
mov WORD PTR[rsp + qcoeff + %1 *2], di
%else
pinsrw %5, edi, %2 ; qcoeff[rc]
%endif
mov rdx, rax ; reset to b->zrun_zbin_boost
.rq_zigzag_loop_%1:
%endmacro
; in vp8_default_zig_zag1d order: see vp8/common/entropy.c
ZIGZAG_LOOP 0, 0, xmm2, xmm6, xmm4
ZIGZAG_LOOP 1, 1, xmm2, xmm6, xmm4
ZIGZAG_LOOP 4, 4, xmm2, xmm6, xmm4
ZIGZAG_LOOP 8, 0, xmm3, xmm7, xmm8
ZIGZAG_LOOP 5, 5, xmm2, xmm6, xmm4
ZIGZAG_LOOP 2, 2, xmm2, xmm6, xmm4
ZIGZAG_LOOP 3, 3, xmm2, xmm6, xmm4
ZIGZAG_LOOP 6, 6, xmm2, xmm6, xmm4
ZIGZAG_LOOP 9, 1, xmm3, xmm7, xmm8
ZIGZAG_LOOP 12, 4, xmm3, xmm7, xmm8
ZIGZAG_LOOP 13, 5, xmm3, xmm7, xmm8
ZIGZAG_LOOP 10, 2, xmm3, xmm7, xmm8
ZIGZAG_LOOP 7, 7, xmm2, xmm6, xmm4
ZIGZAG_LOOP 11, 3, xmm3, xmm7, xmm8
ZIGZAG_LOOP 14, 6, xmm3, xmm7, xmm8
ZIGZAG_LOOP 15, 7, xmm3, xmm7, xmm8
mov rcx, [rsi + vp8_blockd_dequant]
mov rdi, [rsi + vp8_blockd_dqcoeff]
%if ABI_IS_32BIT
movdqa xmm4, [rsp + qcoeff]
movdqa xmm5, [rsp + qcoeff + 16]
%else
%define xmm5 xmm8
%endif
; y ^ sz
pxor xmm4, xmm0
pxor xmm5, xmm1
; x = (y ^ sz) - sz
psubw xmm4, xmm0
psubw xmm5, xmm1
; dequant
movdqa xmm0, [rcx]
movdqa xmm1, [rcx + 16]
mov rcx, [rsi + vp8_blockd_qcoeff]
pmullw xmm0, xmm4
pmullw xmm1, xmm5
; store qcoeff
movdqa [rcx], xmm4
movdqa [rcx + 16], xmm5
; store dqcoeff
movdqa [rdi], xmm0
movdqa [rdi + 16], xmm1
mov rcx, [rsi + vp8_blockd_eob]
; select the last value (in zig_zag order) for EOB
pxor xmm6, xmm6
pcmpeqw xmm4, xmm6
pcmpeqw xmm5, xmm6
packsswb xmm4, xmm5
pshufb xmm4, [GLOBAL(zig_zag1d)]
pmovmskb edx, xmm4
xor rdi, rdi
mov eax, -1
xor dx, ax
bsr eax, edx
sub edi, edx
sar edi, 31
add eax, 1
and eax, edi
mov BYTE PTR [rcx], al ; store eob
; begin epilog
%if ABI_IS_32BIT
add rsp, stack_size
pop rsp
pop rsi
pop rdi
RESTORE_GOT
pop rbp
%else
%undef xmm5
%if LIBVPX_YASM_WIN64
pop rsi
pop rdi
RESTORE_XMM
%endif
%endif
ret
SECTION_RODATA
align 16
; vp8/common/entropy.c: vp8_default_zig_zag1d
zig_zag1d:
db 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15

View File

@@ -0,0 +1,128 @@
/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <smmintrin.h> /* SSE4.1 */
#include "./vp8_rtcd.h"
#include "vp8/encoder/block.h"
#include "vp8/common/entropy.h" /* vp8_default_inv_zig_zag */
#define SELECT_EOB(i, z, x, y, q) \
do { \
short boost = *zbin_boost_ptr; \
short x_z = _mm_extract_epi16(x, z); \
short y_z = _mm_extract_epi16(y, z); \
int cmp = (x_z < boost) | (y_z == 0); \
zbin_boost_ptr++; \
if (cmp) \
break; \
q = _mm_insert_epi16(q, y_z, z); \
eob = i; \
zbin_boost_ptr = b->zrun_zbin_boost; \
} while (0)
void vp8_regular_quantize_b_sse4_1(BLOCK *b, BLOCKD *d) {
char eob = 0;
short *zbin_boost_ptr = b->zrun_zbin_boost;
__m128i sz0, x0, sz1, x1, y0, y1, x_minus_zbin0, x_minus_zbin1,
dqcoeff0, dqcoeff1;
__m128i quant_shift0 = _mm_load_si128((__m128i *)(b->quant_shift));
__m128i quant_shift1 = _mm_load_si128((__m128i *)(b->quant_shift + 8));
__m128i z0 = _mm_load_si128((__m128i *)(b->coeff));
__m128i z1 = _mm_load_si128((__m128i *)(b->coeff+8));
__m128i zbin_extra = _mm_cvtsi32_si128(b->zbin_extra);
__m128i zbin0 = _mm_load_si128((__m128i *)(b->zbin));
__m128i zbin1 = _mm_load_si128((__m128i *)(b->zbin + 8));
__m128i round0 = _mm_load_si128((__m128i *)(b->round));
__m128i round1 = _mm_load_si128((__m128i *)(b->round + 8));
__m128i quant0 = _mm_load_si128((__m128i *)(b->quant));
__m128i quant1 = _mm_load_si128((__m128i *)(b->quant + 8));
__m128i dequant0 = _mm_load_si128((__m128i *)(d->dequant));
__m128i dequant1 = _mm_load_si128((__m128i *)(d->dequant + 8));
__m128i qcoeff0 = _mm_setzero_si128();
__m128i qcoeff1 = _mm_setzero_si128();
/* Duplicate to all lanes. */
zbin_extra = _mm_shufflelo_epi16(zbin_extra, 0);
zbin_extra = _mm_unpacklo_epi16(zbin_extra, zbin_extra);
/* Sign of z: z >> 15 */
sz0 = _mm_srai_epi16(z0, 15);
sz1 = _mm_srai_epi16(z1, 15);
/* x = abs(z): (z ^ sz) - sz */
x0 = _mm_xor_si128(z0, sz0);
x1 = _mm_xor_si128(z1, sz1);
x0 = _mm_sub_epi16(x0, sz0);
x1 = _mm_sub_epi16(x1, sz1);
/* zbin[] + zbin_extra */
zbin0 = _mm_add_epi16(zbin0, zbin_extra);
zbin1 = _mm_add_epi16(zbin1, zbin_extra);
/* In C x is compared to zbin where zbin = zbin[] + boost + extra. Rebalance
* the equation because boost is the only value which can change:
* x - (zbin[] + extra) >= boost */
x_minus_zbin0 = _mm_sub_epi16(x0, zbin0);
x_minus_zbin1 = _mm_sub_epi16(x1, zbin1);
/* All the remaining calculations are valid whether they are done now with
* simd or later inside the loop one at a time. */
x0 = _mm_add_epi16(x0, round0);
x1 = _mm_add_epi16(x1, round1);
y0 = _mm_mulhi_epi16(x0, quant0);
y1 = _mm_mulhi_epi16(x1, quant1);
y0 = _mm_add_epi16(y0, x0);
y1 = _mm_add_epi16(y1, x1);
/* Instead of shifting each value independently we convert the scaling
* factor with 1 << (16 - shift) so we can use multiply/return high half. */
y0 = _mm_mulhi_epi16(y0, quant_shift0);
y1 = _mm_mulhi_epi16(y1, quant_shift1);
/* Return the sign: (y ^ sz) - sz */
y0 = _mm_xor_si128(y0, sz0);
y1 = _mm_xor_si128(y1, sz1);
y0 = _mm_sub_epi16(y0, sz0);
y1 = _mm_sub_epi16(y1, sz1);
/* The loop gets unrolled anyway. Avoid the vp8_default_zig_zag1d lookup. */
SELECT_EOB(1, 0, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(2, 1, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(3, 4, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(4, 0, x_minus_zbin1, y1, qcoeff1);
SELECT_EOB(5, 5, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(6, 2, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(7, 3, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(8, 6, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(9, 1, x_minus_zbin1, y1, qcoeff1);
SELECT_EOB(10, 4, x_minus_zbin1, y1, qcoeff1);
SELECT_EOB(11, 5, x_minus_zbin1, y1, qcoeff1);
SELECT_EOB(12, 2, x_minus_zbin1, y1, qcoeff1);
SELECT_EOB(13, 7, x_minus_zbin0, y0, qcoeff0);
SELECT_EOB(14, 3, x_minus_zbin1, y1, qcoeff1);
SELECT_EOB(15, 6, x_minus_zbin1, y1, qcoeff1);
SELECT_EOB(16, 7, x_minus_zbin1, y1, qcoeff1);
_mm_store_si128((__m128i *)(d->qcoeff), qcoeff0);
_mm_store_si128((__m128i *)(d->qcoeff + 8), qcoeff1);
dqcoeff0 = _mm_mullo_epi16(qcoeff0, dequant0);
dqcoeff1 = _mm_mullo_epi16(qcoeff1, dequant1);
_mm_store_si128((__m128i *)(d->dqcoeff), dqcoeff0);
_mm_store_si128((__m128i *)(d->dqcoeff + 8), dqcoeff1);
*d->eob = eob;
}

View File

@@ -107,7 +107,6 @@ VP8_COMMON_SRCS-$(HAVE_SSSE3) += common/x86/variance_impl_ssse3.asm
VP8_COMMON_SRCS-$(HAVE_SSE4_1) += common/x86/sad_sse4.asm
ifeq ($(CONFIG_POSTPROC),yes)
VP8_COMMON_SRCS-$(ARCH_X86)$(ARCH_X86_64) += common/x86/postproc_x86.c
VP8_COMMON_SRCS-$(HAVE_MMX) += common/x86/postproc_mmx.asm
VP8_COMMON_SRCS-$(HAVE_SSE2) += common/x86/mfqe_sse2.asm
VP8_COMMON_SRCS-$(HAVE_SSE2) += common/x86/postproc_sse2.asm

View File

@@ -89,6 +89,7 @@ VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/dct_sse2.asm
VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/fwalsh_sse2.asm
VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/quantize_sse2.c
VP8_CX_SRCS-$(HAVE_SSSE3) += encoder/x86/quantize_ssse3.c
VP8_CX_SRCS-$(HAVE_SSE4_1) += encoder/x86/quantize_sse4.c
ifeq ($(CONFIG_TEMPORAL_DENOISING),yes)
VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/denoising_sse2.c
@@ -97,7 +98,6 @@ endif
VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/subtract_sse2.asm
VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/temporal_filter_apply_sse2.asm
VP8_CX_SRCS-$(HAVE_SSE2) += encoder/x86/vp8_enc_stubs_sse2.c
VP8_CX_SRCS-$(HAVE_SSE4_1) += encoder/x86/quantize_sse4.asm
VP8_CX_SRCS-$(ARCH_X86)$(ARCH_X86_64) += encoder/x86/quantize_mmx.asm
VP8_CX_SRCS-$(ARCH_X86)$(ARCH_X86_64) += encoder/x86/encodeopt.asm
VP8_CX_SRCS-$(ARCH_X86_64) += encoder/x86/ssim_opt_x86_64.asm

View File

@@ -25,12 +25,14 @@ void vp9_convolve8_neon(const uint8_t *src, ptrdiff_t src_stride,
// Account for the vertical phase needing 3 lines prior and 4 lines post
int intermediate_height = h + 7;
if (x_step_q4 != 16 || y_step_q4 != 16)
return vp9_convolve8_c(src, src_stride,
dst, dst_stride,
filter_x, x_step_q4,
filter_y, y_step_q4,
w, h);
if (x_step_q4 != 16 || y_step_q4 != 16) {
vp9_convolve8_c(src, src_stride,
dst, dst_stride,
filter_x, x_step_q4,
filter_y, y_step_q4,
w, h);
return;
}
/* Filter starting 3 lines back. The neon implementation will ignore the
* given height and filter a multiple of 4 lines. Since this goes in to
@@ -57,12 +59,14 @@ void vp9_convolve8_avg_neon(const uint8_t *src, ptrdiff_t src_stride,
DECLARE_ALIGNED_ARRAY(8, uint8_t, temp, 64 * 72);
int intermediate_height = h + 7;
if (x_step_q4 != 16 || y_step_q4 != 16)
return vp9_convolve8_avg_c(src, src_stride,
dst, dst_stride,
filter_x, x_step_q4,
filter_y, y_step_q4,
w, h);
if (x_step_q4 != 16 || y_step_q4 != 16) {
vp9_convolve8_avg_c(src, src_stride,
dst, dst_stride,
filter_x, x_step_q4,
filter_y, y_step_q4,
w, h);
return;
}
/* This implementation has the same issues as above. In addition, we only want
* to average the values after both passes.

View File

@@ -9,6 +9,7 @@
*/
#include "./vp9_rtcd.h"
#include "vpx/vpx_integer.h"
void vp9_lpf_horizontal_8_dual_neon(uint8_t *s, int p /* pitch */,
const uint8_t *blimit0,

View File

@@ -109,7 +109,9 @@ void vp9_free_frame_buffers(VP9_COMMON *cm) {
}
vp9_free_frame_buffer(&cm->post_proc_buffer);
}
void vp9_free_context_buffers(VP9_COMMON *cm) {
free_mi(cm);
vpx_free(cm->last_frame_seg_map);
@@ -165,37 +167,55 @@ int vp9_resize_frame_buffers(VP9_COMMON *cm, int width, int height) {
fail:
vp9_free_frame_buffers(cm);
vp9_free_context_buffers(cm);
return 1;
}
static void init_frame_bufs(VP9_COMMON *cm) {
int i;
cm->new_fb_idx = FRAME_BUFFERS - 1;
cm->frame_bufs[cm->new_fb_idx].ref_count = 1;
for (i = 0; i < REF_FRAMES; ++i) {
cm->ref_frame_map[i] = i;
cm->frame_bufs[i].ref_count = 1;
}
}
int vp9_alloc_frame_buffers(VP9_COMMON *cm, int width, int height) {
const int aligned_width = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2);
const int aligned_height = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2);
int i;
const int ss_x = cm->subsampling_x;
const int ss_y = cm->subsampling_y;
int i;
vp9_free_frame_buffers(cm);
for (i = 0; i < FRAME_BUFFERS; i++) {
for (i = 0; i < FRAME_BUFFERS; ++i) {
cm->frame_bufs[i].ref_count = 0;
if (vp9_alloc_frame_buffer(&cm->frame_bufs[i].buf, width, height,
ss_x, ss_y, VP9_ENC_BORDER_IN_PIXELS) < 0)
goto fail;
}
cm->new_fb_idx = FRAME_BUFFERS - 1;
cm->frame_bufs[cm->new_fb_idx].ref_count = 1;
for (i = 0; i < REF_FRAMES; i++) {
cm->ref_frame_map[i] = i;
cm->frame_bufs[i].ref_count = 1;
}
init_frame_bufs(cm);
if (vp9_alloc_frame_buffer(&cm->post_proc_buffer, width, height, ss_x, ss_y,
VP9_ENC_BORDER_IN_PIXELS) < 0)
goto fail;
return 0;
fail:
vp9_free_frame_buffers(cm);
return 1;
}
int vp9_alloc_context_buffers(VP9_COMMON *cm, int width, int height) {
const int aligned_width = ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2);
const int aligned_height = ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2);
vp9_free_context_buffers(cm);
set_mb_mi(cm, aligned_width, aligned_height);
if (alloc_mi(cm, cm->mi_stride * (cm->mi_rows + MI_BLOCK_SIZE)))
@@ -224,12 +244,13 @@ int vp9_alloc_frame_buffers(VP9_COMMON *cm, int width, int height) {
return 0;
fail:
vp9_free_frame_buffers(cm);
vp9_free_context_buffers(cm);
return 1;
}
void vp9_remove_common(VP9_COMMON *cm) {
vp9_free_frame_buffers(cm);
vp9_free_context_buffers(cm);
vp9_free_internal_frame_buffers(&cm->int_frame_buffers);
}

View File

@@ -23,8 +23,12 @@ void vp9_remove_common(struct VP9Common *cm);
int vp9_resize_frame_buffers(struct VP9Common *cm, int width, int height);
int vp9_alloc_frame_buffers(struct VP9Common *cm, int width, int height);
int vp9_alloc_state_buffers(struct VP9Common *cm, int width, int height);
int vp9_alloc_context_buffers(struct VP9Common *cm, int width, int height);
void vp9_free_frame_buffers(struct VP9Common *cm);
void vp9_free_state_buffers(struct VP9Common *cm);
void vp9_free_context_buffers(struct VP9Common *cm);
void vp9_update_frame_size(struct VP9Common *cm);

View File

@@ -32,6 +32,9 @@ extern "C" {
#define BLOCK_SIZE_GROUPS 4
#define SKIP_CONTEXTS 3
#define INTER_MODE_CONTEXTS 7
#if CONFIG_COPY_CODING
#define COPY_MODE_CONTEXTS 5
#endif
/* Segment Feature Masks */
#define MAX_MV_REF_CANDIDATES 2
@@ -79,6 +82,16 @@ typedef enum {
MB_MODE_COUNT
} PREDICTION_MODE;
#if CONFIG_COPY_CODING
typedef enum {
NOREF,
REF0,
REF1,
REF2,
COPY_MODE_COUNT
} COPY_MODE;
#endif
static INLINE int is_inter_mode(PREDICTION_MODE mode) {
return mode >= NEARESTMV && mode <= NEWMV;
}
@@ -118,11 +131,86 @@ static INLINE int mi_width_log2(BLOCK_SIZE sb_type) {
return mi_width_log2_lookup[sb_type];
}
#if CONFIG_SUPERTX
static INLINE TX_SIZE bsize_to_tx_size(BLOCK_SIZE bsize) {
const TX_SIZE tx_size_lookup[BLOCK_SIZES] = {
TX_4X4, TX_4X4, TX_4X4,
TX_8X8, TX_8X8, TX_8X8,
TX_16X16, TX_16X16, TX_16X16,
TX_32X32, TX_32X32, TX_32X32, TX_32X32};
return tx_size_lookup[bsize];
}
#endif
#if CONFIG_MASKED_INTERINTER
#define MASK_BITS_SML 3
#define MASK_BITS_MED 4
#define MASK_BITS_BIG 5
#define MASK_NONE -1
static inline int get_mask_bits(BLOCK_SIZE sb_type) {
if (sb_type < BLOCK_8X8)
return 0;
if (sb_type <= BLOCK_8X8)
return MASK_BITS_SML;
else if (sb_type <= BLOCK_32X32)
return MASK_BITS_MED;
else
return MASK_BITS_BIG;
}
#endif
#if CONFIG_INTERINTRA
static INLINE TX_SIZE intra_size_log2_for_interintra(int bs) {
switch (bs) {
case 4:
return TX_4X4;
break;
case 8:
return TX_8X8;
break;
case 16:
return TX_16X16;
break;
case 32:
return TX_32X32;
break;
default:
return TX_32X32;
break;
}
}
static INLINE int is_interintra_allowed(BLOCK_SIZE sb_type) {
return ((sb_type >= BLOCK_8X8) && (sb_type < BLOCK_64X64));
}
#if CONFIG_MASKED_INTERINTRA
#define MASK_BITS_SML_INTERINTRA 3
#define MASK_BITS_MED_INTERINTRA 4
#define MASK_BITS_BIG_INTERINTRA 5
#define MASK_NONE_INTERINTRA -1
static INLINE int get_mask_bits_interintra(BLOCK_SIZE sb_type) {
if (sb_type == BLOCK_4X4)
return 0;
if (sb_type <= BLOCK_8X8)
return MASK_BITS_SML_INTERINTRA;
else if (sb_type <= BLOCK_32X32)
return MASK_BITS_MED_INTERINTRA;
else
return MASK_BITS_BIG_INTERINTRA;
}
#endif
#endif
// This structure now relates to 8x8 block regions.
typedef struct {
// Common for both INTER and INTRA blocks
BLOCK_SIZE sb_type;
PREDICTION_MODE mode;
#if CONFIG_FILTERINTRA
int filterbit, uv_filterbit;
#endif
TX_SIZE tx_size;
uint8_t skip;
uint8_t segment_id;
@@ -137,10 +225,34 @@ typedef struct {
int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES];
uint8_t mode_context[MAX_REF_FRAMES];
INTERP_FILTER interp_filter;
#if CONFIG_EXT_TX
EXT_TX_TYPE ext_txfrm;
#endif
#if CONFIG_MASKED_INTERINTER
int use_masked_interinter;
int mask_index;
#endif
#if CONFIG_INTERINTRA
PREDICTION_MODE interintra_mode, interintra_uv_mode;
#if CONFIG_MASKED_INTERINTRA
int interintra_mask_index;
int interintra_uv_mask_index;
int use_masked_interintra;
#endif
#endif
#if CONFIG_COPY_CODING
COPY_MODE copy_mode;
int inter_ref_count;
#endif
} MB_MODE_INFO;
typedef struct {
MB_MODE_INFO mbmi;
#if CONFIG_FILTERINTRA
int b_filter_info[4];
#endif
b_mode_info bmi[4];
} MODE_INFO;
@@ -149,6 +261,16 @@ static INLINE PREDICTION_MODE get_y_mode(const MODE_INFO *mi, int block) {
: mi->mbmi.mode;
}
#if CONFIG_FILTERINTRA
static INLINE int is_filter_allowed(PREDICTION_MODE mode) {
return 1;
}
static INLINE int is_filter_enabled(TX_SIZE txsize) {
return (txsize <= TX_32X32);
}
#endif
static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
return mbmi->ref_frame[0] > INTRA_FRAME;
}
@@ -240,6 +362,13 @@ typedef struct macroblockd {
PARTITION_CONTEXT left_seg_context[8];
} MACROBLOCKD;
#if CONFIG_SUPERTX
static INLINE int supertx_enabled(const MB_MODE_INFO *mbmi) {
return mbmi->tx_size >
MIN(b_width_log2(mbmi->sb_type), b_height_log2(mbmi->sb_type));
}
#endif
static INLINE BLOCK_SIZE get_subsize(BLOCK_SIZE bsize,
PARTITION_TYPE partition) {
const BLOCK_SIZE subsize = subsize_lookup[partition][bsize];
@@ -253,8 +382,20 @@ static INLINE TX_TYPE get_tx_type(PLANE_TYPE plane_type,
const MACROBLOCKD *xd) {
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
#if !CONFIG_EXT_TX
if (plane_type != PLANE_TYPE_Y || is_inter_block(mbmi))
return DCT_DCT;
#else
if (plane_type != PLANE_TYPE_Y)
return DCT_DCT;
if (is_inter_block(mbmi)) {
if (mbmi->ext_txfrm == NORM || mbmi->tx_size >= TX_32X32)
return DCT_DCT;
else
return ADST_ADST;
}
#endif
return intra_mode_to_tx_type_lookup[mbmi->mode];
}
@@ -262,8 +403,20 @@ static INLINE TX_TYPE get_tx_type_4x4(PLANE_TYPE plane_type,
const MACROBLOCKD *xd, int ib) {
const MODE_INFO *const mi = xd->mi[0];
#if !CONFIG_EXT_TX
if (plane_type != PLANE_TYPE_Y || xd->lossless || is_inter_block(&mi->mbmi))
return DCT_DCT;
#else
if (plane_type != PLANE_TYPE_Y || xd->lossless)
return DCT_DCT;
if (is_inter_block(&mi->mbmi)) {
if (mi->mbmi.ext_txfrm == NORM)
return DCT_DCT;
else
return ADST_ADST;
}
#endif
return intra_mode_to_tx_type_lookup[get_y_mode(mi, ib)];
}
@@ -281,7 +434,15 @@ static INLINE TX_SIZE get_uv_tx_size_impl(TX_SIZE y_tx_size, BLOCK_SIZE bsize) {
}
static INLINE TX_SIZE get_uv_tx_size(const MB_MODE_INFO *mbmi) {
#if CONFIG_SUPERTX
if (!supertx_enabled(mbmi)) {
#endif
return get_uv_tx_size_impl(mbmi->tx_size, mbmi->sb_type);
#if CONFIG_SUPERTX
} else {
return uvsupertx_size_lookup[mbmi->tx_size];
}
#endif
}
static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,

View File

@@ -133,6 +133,15 @@ const BLOCK_SIZE ss_size_lookup[BLOCK_SIZES][2][2] = {
{{BLOCK_64X64, BLOCK_64X32}, {BLOCK_32X64, BLOCK_32X32}},
};
#if CONFIG_SUPERTX
const TX_SIZE uvsupertx_size_lookup[TX_SIZES] = {
TX_4X4,
TX_4X4,
TX_8X8,
TX_16X16
};
#endif
// Generates 4 bit field in which each bit set to 1 represents
// a blocksize partition 1111 means we split 64x64, 32x32, 16x16
// and 8x8. 1000 means we just split the 64x64 to 32x32

View File

@@ -31,6 +31,9 @@ extern const BLOCK_SIZE subsize_lookup[PARTITION_TYPES][BLOCK_SIZES];
extern const TX_SIZE max_txsize_lookup[BLOCK_SIZES];
extern const TX_SIZE tx_mode_to_biggest_tx_size[TX_MODES];
extern const BLOCK_SIZE ss_size_lookup[BLOCK_SIZES][2][2];
#if CONFIG_SUPERTX
extern const TX_SIZE uvsupertx_size_lookup[TX_SIZES];
#endif
#ifdef __cplusplus
} // extern "C"

View File

@@ -117,17 +117,25 @@ static void convolve(const uint8_t *src, ptrdiff_t src_stride,
const InterpKernel *const y_filters,
int y0_q4, int y_step_q4,
int w, int h) {
// Fixed size intermediate buffer places limits on parameters.
// Maximum intermediate_height is 324, for y_step_q4 == 80,
// h == 64, taps == 8.
// y_step_q4 of 80 allows for 1/10 scale for 5 layer svc
uint8_t temp[64 * 324];
// Note: Fixed size intermediate buffer, temp, places limits on parameters.
// 2d filtering proceeds in 2 steps:
// (1) Interpolate horizontally into an intermediate buffer, temp.
// (2) Interpolate temp vertically to derive the sub-pixel result.
// Deriving the maximum number of rows in the temp buffer (135):
// --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
// --Largest block size is 64x64 pixels.
// --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
// original frame (in 1/16th pixel units).
// --Must round-up because block may be located at sub-pixel position.
// --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
// --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
uint8_t temp[135 * 64];
int intermediate_height = (((h - 1) * y_step_q4 + 15) >> 4) + SUBPEL_TAPS;
assert(w <= 64);
assert(h <= 64);
assert(y_step_q4 <= 80);
assert(x_step_q4 <= 80);
assert(y_step_q4 <= 32);
assert(x_step_q4 <= 32);
if (intermediate_height < h)
intermediate_height = h;

View File

@@ -13,6 +13,84 @@
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_seg_common.h"
#if CONFIG_MASKED_INTERINTER
static const vp9_prob default_masked_interinter_prob[BLOCK_SIZES] = {
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192
};
#endif
#if CONFIG_INTERINTRA
static const vp9_prob default_interintra_prob[BLOCK_SIZES] = {
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192
};
#if CONFIG_MASKED_INTERINTRA
static const vp9_prob default_masked_interintra_prob[BLOCK_SIZES] = {
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192
};
#endif
#endif
#if CONFIG_FILTERINTRA
static const vp9_prob default_filterintra_prob[TX_SIZES][INTRA_MODES] = {
// DC V H D45 D135 D117 D153 D207 D63 TM
{153, 171, 147, 150, 129, 101, 100, 153, 132, 111},
{171, 173, 185, 131, 70, 53, 70, 148, 127, 114},
{175, 203, 213, 86, 45, 71, 41, 150, 125, 154},
{235, 230, 154, 202, 154, 205, 37, 128, 0, 202}
};
#endif
#if CONFIG_EXT_TX
static const vp9_prob default_ext_tx_prob = 178;
#endif
#if CONFIG_SUPERTX
static const vp9_prob default_supertx_prob[TX_SIZES] = {
255, 160, 160, 160
};
static const vp9_prob default_supertxsplit_prob[TX_SIZES] = {
255, 200, 200, 200
};
#endif
#if CONFIG_COPY_CODING
static const vp9_prob default_copy_noref_prob[COPY_MODE_CONTEXTS]
[BLOCK_SIZES] = {
{255, 255, 255, 82, 148, 182, 65, 193, 158, 70, 138, 101, 23},
{255, 255, 255, 118, 153, 161, 123, 169, 157, 82, 101, 123, 88},
{255, 255, 255, 130, 178, 226, 194, 196, 174, 173, 135, 144, 141},
{255, 255, 255, 178, 218, 225, 197, 230, 222, 215, 220, 220, 220},
{255, 255, 255, 243, 248, 241, 233, 249, 249, 249, 249, 249, 249}
};
static const vp9_prob default_copy_mode_probs_l2[COPY_MODE_CONTEXTS][1] = {
{207},
{135},
{141},
{189},
{209}
};
const vp9_tree_index vp9_copy_mode_tree_l2[TREE_SIZE(2)] = {
-(REF0 - REF0), -(REF1 - REF0)
};
static const vp9_prob default_copy_mode_probs[COPY_MODE_CONTEXTS]
[COPY_MODE_COUNT - 2] = {
{130, 159},
{126, 176},
{120, 150},
{158, 183},
{149, 125}
};
const vp9_tree_index vp9_copy_mode_tree[TREE_SIZE(COPY_MODE_COUNT - 1)] = {
-(REF0 - REF0), 2,
-(REF1 - REF0), -(REF2 - REF0)
};
#endif
const vp9_prob vp9_kf_y_mode_prob[INTRA_MODES][INTRA_MODES][INTRA_MODES - 1] = {
{ // above = dc
{ 137, 30, 42, 148, 151, 207, 70, 52, 91 }, // left = dc
@@ -245,7 +323,11 @@ const vp9_tree_index vp9_partition_tree[TREE_SIZE(PARTITION_TYPES)] = {
};
static const vp9_prob default_intra_inter_p[INTRA_INTER_CONTEXTS] = {
#if !CONFIG_COPY_CODING
9, 102, 187, 225
#else
35, 112, 187, 225
#endif
};
static const vp9_prob default_comp_inter_p[COMP_INTER_CONTEXTS] = {
@@ -326,6 +408,30 @@ void vp9_init_mode_probs(FRAME_CONTEXT *fc) {
fc->tx_probs = default_tx_probs;
vp9_copy(fc->skip_probs, default_skip_probs);
vp9_copy(fc->inter_mode_probs, default_inter_mode_probs);
#if CONFIG_MASKED_INTERINTER
vp9_copy(fc->masked_interinter_prob, default_masked_interinter_prob);
#endif
#if CONFIG_INTERINTRA
vp9_copy(fc->interintra_prob, default_interintra_prob);
#if CONFIG_MASKED_INTERINTRA
vp9_copy(fc->masked_interintra_prob, default_masked_interintra_prob);
#endif
#endif
#if CONFIG_FILTERINTRA
vp9_copy(fc->filterintra_prob, default_filterintra_prob);
#endif
#if CONFIG_EXT_TX
fc->ext_tx_prob = default_ext_tx_prob;
#endif
#if CONFIG_SUPERTX
vp9_copy(fc->supertx_prob, default_supertx_prob);
vp9_copy(fc->supertxsplit_prob, default_supertxsplit_prob);
#endif
#if CONFIG_COPY_CODING
vp9_copy(fc->copy_noref_prob, default_copy_noref_prob);
vp9_copy(fc->copy_mode_probs_l2, default_copy_mode_probs_l2);
vp9_copy(fc->copy_mode_probs, default_copy_mode_probs);
#endif
}
const vp9_tree_index vp9_switchable_interp_tree
@@ -416,6 +522,73 @@ void vp9_adapt_mode_probs(VP9_COMMON *cm) {
for (i = 0; i < SKIP_CONTEXTS; ++i)
fc->skip_probs[i] = adapt_prob(pre_fc->skip_probs[i], counts->skip[i]);
#if CONFIG_MASKED_INTERINTER
if (cm->use_masked_interinter) {
for (i = 0; i < BLOCK_SIZES; ++i) {
if (get_mask_bits(i))
fc->masked_interinter_prob[i] = adapt_prob
(pre_fc->masked_interinter_prob[i],
counts->masked_interinter[i]);
}
}
#endif
#if CONFIG_INTERINTRA
if (cm->use_interintra) {
for (i = 0; i < BLOCK_SIZES; ++i) {
if (is_interintra_allowed(i))
fc->interintra_prob[i] = adapt_prob(pre_fc->interintra_prob[i],
counts->interintra[i]);
}
#if CONFIG_MASKED_INTERINTRA
if (cm->use_masked_interintra) {
for (i = 0; i < BLOCK_SIZES; ++i) {
if (is_interintra_allowed(i) && get_mask_bits_interintra(i))
fc->masked_interintra_prob[i] = adapt_prob(
pre_fc->masked_interintra_prob[i],
counts->masked_interintra[i]);
}
}
#endif
}
#endif
#if CONFIG_FILTERINTRA
for (i = 0; i < TX_SIZES; ++i)
for (j = 0; j < INTRA_MODES; ++j)
fc->filterintra_prob[i][j] = adapt_prob(pre_fc->filterintra_prob[i][j],
counts->filterintra[i][j]);
#endif
#if CONFIG_EXT_TX
fc->ext_tx_prob = adapt_prob(pre_fc->ext_tx_prob, counts->ext_tx);
#endif
#if CONFIG_SUPERTX
for (i = 1; i < TX_SIZES; ++i) {
fc->supertx_prob[i] = adapt_prob(pre_fc->supertx_prob[i],
counts->supertx[i]);
}
for (i = 1; i < TX_SIZES; ++i) {
fc->supertxsplit_prob[i] = adapt_prob(pre_fc->supertxsplit_prob[i],
counts->supertxsplit[i]);
}
#endif
#if CONFIG_COPY_CODING
for (i = 0; i < COPY_MODE_CONTEXTS; i++) {
for (j = BLOCK_8X8; j < BLOCK_SIZES; j++) {
fc->copy_noref_prob[i][j] =
adapt_prob(pre_fc->copy_noref_prob[i][j], counts->copy_noref[i][j]);
}
adapt_probs(vp9_copy_mode_tree_l2, pre_fc->copy_mode_probs_l2[i],
counts->copy_mode_l2[i], fc->copy_mode_probs_l2[i]);
adapt_probs(vp9_copy_mode_tree, pre_fc->copy_mode_probs[i],
counts->copy_mode[i], fc->copy_mode_probs[i]);
}
#endif
}
static void set_default_lf_deltas(struct loopfilter *lf) {

View File

@@ -52,6 +52,30 @@ typedef struct frame_contexts {
struct tx_probs tx_probs;
vp9_prob skip_probs[SKIP_CONTEXTS];
nmv_context nmvc;
#if CONFIG_MASKED_INTERINTER
vp9_prob masked_interinter_prob[BLOCK_SIZES];
#endif
#if CONFIG_INTERINTRA
vp9_prob interintra_prob[BLOCK_SIZES];
#if CONFIG_MASKED_INTERINTRA
vp9_prob masked_interintra_prob[BLOCK_SIZES];
#endif
#endif
#if CONFIG_FILTERINTRA
vp9_prob filterintra_prob[TX_SIZES][INTRA_MODES];
#endif
#if CONFIG_EXT_TX
vp9_prob ext_tx_prob;
#endif
#if CONFIG_SUPERTX
vp9_prob supertx_prob[TX_SIZES];
vp9_prob supertxsplit_prob[TX_SIZES];
#endif
#if CONFIG_COPY_CODING
vp9_prob copy_noref_prob[COPY_MODE_CONTEXTS][BLOCK_SIZES];
vp9_prob copy_mode_probs_l2[COPY_MODE_CONTEXTS][1];
vp9_prob copy_mode_probs[COPY_MODE_CONTEXTS][COPY_MODE_COUNT - 2];
#endif
} FRAME_CONTEXT;
typedef struct {
@@ -71,6 +95,31 @@ typedef struct {
struct tx_counts tx;
unsigned int skip[SKIP_CONTEXTS][2];
nmv_context_counts mv;
#if CONFIG_MASKED_INTERINTER
unsigned int masked_interinter[BLOCK_SIZES][2];
#endif
#if CONFIG_INTERINTRA
unsigned int interintra[BLOCK_SIZES][2];
#if CONFIG_MASKED_INTERINTRA
unsigned int masked_interintra[BLOCK_SIZES][2];
#endif
#endif
#if CONFIG_FILTERINTRA
unsigned int filterintra[TX_SIZES][INTRA_MODES][2];
#endif
#if CONFIG_EXT_TX
unsigned int ext_tx[2];
#endif
#if CONFIG_SUPERTX
unsigned int supertx[TX_SIZES][2];
unsigned int supertxsplit[TX_SIZES][2];
unsigned int supertx_size[BLOCK_SIZES];
#endif
#if CONFIG_COPY_CODING
unsigned int copy_noref[COPY_MODE_CONTEXTS][BLOCK_SIZES][2];
unsigned int copy_mode_l2[COPY_MODE_CONTEXTS][2];
unsigned int copy_mode[COPY_MODE_CONTEXTS][COPY_MODE_COUNT - 1];
#endif
} FRAME_COUNTS;
extern const vp9_prob vp9_kf_uv_mode_prob[INTRA_MODES][INTRA_MODES - 1];
@@ -83,6 +132,10 @@ extern const vp9_tree_index vp9_inter_mode_tree[TREE_SIZE(INTER_MODES)];
extern const vp9_tree_index vp9_partition_tree[TREE_SIZE(PARTITION_TYPES)];
extern const vp9_tree_index vp9_switchable_interp_tree
[TREE_SIZE(SWITCHABLE_FILTERS)];
#if CONFIG_COPY_CODING
extern const vp9_tree_index vp9_copy_mode_tree_l2[TREE_SIZE(2)];
extern const vp9_tree_index vp9_copy_mode_tree[TREE_SIZE(COPY_MODE_COUNT - 1)];
#endif
void vp9_setup_past_independence(struct VP9Common *cm);

View File

@@ -100,6 +100,14 @@ typedef enum {
TX_TYPES = 4
} TX_TYPE;
#if CONFIG_EXT_TX
typedef enum {
NORM = 0,
ALT = 1,
EXT_TX_TYPES = 2
} EXT_TX_TYPE;
#endif
typedef enum {
UNKNOWN = 0,
BT_601 = 1, // YUV

View File

@@ -206,6 +206,13 @@ static const int mode_lf_lut[MB_MODE_COUNT] = {
1, 1, 0, 1 // INTER_MODES (ZEROMV == 0)
};
#if CONFIG_SUPERTX
static int supertx_enabled_lpf(const MB_MODE_INFO *mbmi) {
return mbmi->tx_size >
MIN(b_width_log2(mbmi->sb_type), b_height_log2(mbmi->sb_type));
}
#endif
static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
int lvl;
@@ -572,6 +579,85 @@ static void build_masks(const loop_filter_info_n *const lfi_n,
*int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
}
#if CONFIG_SUPERTX
static void build_masks_supertx(const loop_filter_info_n *const lfi_n,
const MODE_INFO *mi, const int shift_y,
const int shift_uv,
LOOP_FILTER_MASK *lfm) {
const MB_MODE_INFO *mbmi = &mi->mbmi;
const TX_SIZE tx_size_y = mbmi->tx_size;
const TX_SIZE tx_size_uv = get_uv_tx_size(mbmi);
const BLOCK_SIZE block_size = 3 * (int)tx_size_y;
const int filter_level = get_filter_level(lfi_n, mbmi);
uint64_t *const left_y = &lfm->left_y[tx_size_y];
uint64_t *const above_y = &lfm->above_y[tx_size_y];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
uint16_t *const left_uv = &lfm->left_uv[tx_size_uv];
uint16_t *const above_uv = &lfm->above_uv[tx_size_uv];
uint16_t *const int_4x4_uv = &lfm->int_4x4_uv;
int i;
// If filter level is 0 we don't loop filter.
if (!filter_level) {
return;
} else {
const int w = num_8x8_blocks_wide_lookup[block_size];
const int h = num_8x8_blocks_high_lookup[block_size];
int index = shift_y;
for (i = 0; i < h; i++) {
vpx_memset(&lfm->lfl_y[index], filter_level, w);
index += 8;
}
}
// These set 1 in the current block size for the block size edges.
// For instance if the block size is 32x16, we'll set :
// above = 1111
// 0000
// and
// left = 1000
// = 1000
// NOTE : In this example the low bit is left most ( 1000 ) is stored as
// 1, not 8...
//
// U and v set things on a 16 bit scale.
//
*above_y |= above_prediction_mask[block_size] << shift_y;
*above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
*left_y |= left_prediction_mask[block_size] << shift_y;
*left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
// If the block has no coefficients and is not intra we skip applying
// the loop filter on block edges.
if (mbmi->skip && is_inter_block(mbmi))
return;
// Here we are adding a mask for the transform size. The transform
// size mask is set to be correct for a 64x64 prediction block size. We
// mask to match the size of the block we are working on and then shift it
// into place..
*above_y |= (size_mask[block_size] &
above_64x64_txform_mask[tx_size_y]) << shift_y;
*above_uv |= (size_mask_uv[block_size] &
above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
*left_y |= (size_mask[block_size] &
left_64x64_txform_mask[tx_size_y]) << shift_y;
*left_uv |= (size_mask_uv[block_size] &
left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
// Here we are trying to determine what to do with the internal 4x4 block
// boundaries. These differ from the 4x4 boundaries on the outside edge of
// an 8x8 in that the internal ones can be skipped and don't depend on
// the prediction block size.
if (tx_size_y == TX_4X4)
*int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
if (tx_size_uv == TX_4X4)
*int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
}
#endif
// This function does the same thing as the one above with the exception that
// it only affects the y masks. It exists because for blocks < 16x16 in size,
// we only update u and v masks on the first block.
@@ -615,6 +701,48 @@ static void build_y_mask(const loop_filter_info_n *const lfi_n,
*int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
}
#if CONFIG_SUPERTX
static void build_y_mask_supertx(const loop_filter_info_n *const lfi_n,
const MODE_INFO *mi, const int shift_y,
LOOP_FILTER_MASK *lfm) {
const MB_MODE_INFO *mbmi = &mi->mbmi;
const TX_SIZE tx_size_y = mbmi->tx_size;
const BLOCK_SIZE block_size = 3 * (int)tx_size_y;
const int filter_level = get_filter_level(lfi_n, mbmi);
uint64_t *const left_y = &lfm->left_y[tx_size_y];
uint64_t *const above_y = &lfm->above_y[tx_size_y];
uint64_t *const int_4x4_y = &lfm->int_4x4_y;
int i;
if (!filter_level) {
return;
} else {
const int w = num_8x8_blocks_wide_lookup[block_size];
const int h = num_8x8_blocks_high_lookup[block_size];
int index = shift_y;
for (i = 0; i < h; i++) {
vpx_memset(&lfm->lfl_y[index], filter_level, w);
index += 8;
}
}
*above_y |= above_prediction_mask[block_size] << shift_y;
*left_y |= left_prediction_mask[block_size] << shift_y;
if (mbmi->skip && is_inter_block(mbmi))
return;
*above_y |= (size_mask[block_size] &
above_64x64_txform_mask[tx_size_y]) << shift_y;
*left_y |= (size_mask[block_size] &
left_64x64_txform_mask[tx_size_y]) << shift_y;
if (tx_size_y == TX_4X4)
*int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
}
#endif
// This function sets up the bit masks for the entire 64x64 region represented
// by mi_row, mi_col.
// TODO(JBB): This function only works for yv12.
@@ -650,6 +778,9 @@ void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
cm->mi_rows - mi_row : MI_BLOCK_SIZE);
const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ?
cm->mi_cols - mi_col : MI_BLOCK_SIZE);
#if CONFIG_SUPERTX
int supertx;
#endif
vp9_zero(*lfm);
@@ -687,20 +818,43 @@ void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
break;
case BLOCK_32X16:
#if CONFIG_SUPERTX
supertx = supertx_enabled_lpf(&mip[0]->mbmi);
if (!supertx) {
#endif
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
if (mi_32_row_offset + 2 >= max_rows)
continue;
mip2 = mip + mode_info_stride * 2;
build_masks(lfi_n, mip2[0], shift_y + 16, shift_uv + 4, lfm);
#if CONFIG_SUPERTX
} else {
build_masks_supertx(lfi_n, mip[0], shift_y, shift_uv, lfm);
}
#endif
break;
case BLOCK_16X32:
#if CONFIG_SUPERTX
supertx = supertx_enabled_lpf(&mip[0]->mbmi);
if (!supertx) {
#endif
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
if (mi_32_col_offset + 2 >= max_cols)
continue;
mip2 = mip + 2;
build_masks(lfi_n, mip2[0], shift_y + 2, shift_uv + 1, lfm);
#if CONFIG_SUPERTX
} else {
build_masks_supertx(lfi_n, mip[0], shift_y, shift_uv, lfm);
}
#endif
break;
default:
#if CONFIG_SUPERTX
if (mip[0]->mbmi.tx_size == TX_32X32) {
build_masks_supertx(lfi_n, mip[0], shift_y, shift_uv, lfm);
} else {
#endif
for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16];
const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16];
@@ -717,24 +871,56 @@ void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
break;
case BLOCK_16X8:
#if CONFIG_SUPERTX
supertx = supertx_enabled_lpf(&mip[0]->mbmi);
if (!supertx) {
#endif
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
if (mi_16_row_offset + 1 >= max_rows)
continue;
mip2 = mip + mode_info_stride;
build_y_mask(lfi_n, mip2[0], shift_y+8, lfm);
#if CONFIG_SUPERTX
} else {
build_masks_supertx(lfi_n, mip[0], shift_y, shift_uv, lfm);
}
#endif
break;
case BLOCK_8X16:
#if CONFIG_SUPERTX
supertx = supertx_enabled_lpf(&mip[0]->mbmi);
if (!supertx) {
#endif
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
if (mi_16_col_offset +1 >= max_cols)
continue;
mip2 = mip + 1;
build_y_mask(lfi_n, mip2[0], shift_y+1, lfm);
#if CONFIG_SUPERTX
} else {
build_masks_supertx(lfi_n, mip[0], shift_y, shift_uv, lfm);
}
#endif
break;
default: {
#if CONFIG_SUPERTX
if (mip[0]->mbmi.tx_size == TX_16X16) {
build_masks_supertx(lfi_n, mip[0], shift_y, shift_uv, lfm);
} else {
#endif
const int shift_y = shift_32_y[idx_32] +
shift_16_y[idx_16] +
shift_8_y[0];
#if CONFIG_SUPERTX
supertx = supertx_enabled_lpf(&mip[0]->mbmi);
if (!supertx) {
#endif
build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
#if CONFIG_SUPERTX
} else {
build_masks_supertx(lfi_n, mip[0], shift_y, shift_uv, lfm);
}
#endif
mip += offset[0];
for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
const int shift_y = shift_32_y[idx_32] +
@@ -748,12 +934,26 @@ void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
if (mi_8_col_offset >= max_cols ||
mi_8_row_offset >= max_rows)
continue;
#if CONFIG_SUPERTX
supertx = supertx_enabled_lpf(&mip[0]->mbmi);
if (!supertx)
#endif
build_y_mask(lfi_n, mip[0], shift_y, lfm);
#if CONFIG_SUPERTX
else
build_y_mask_supertx(lfi_n, mip[0], shift_y, lfm);
#endif
}
#if CONFIG_SUPERTX
}
#endif
break;
}
}
}
#if CONFIG_SUPERTX
}
#endif
break;
}
}

View File

@@ -11,181 +11,6 @@
#include "vp9/common/vp9_mvref_common.h"
#define MVREF_NEIGHBOURS 8
typedef struct position {
int row;
int col;
} POSITION;
typedef enum {
BOTH_ZERO = 0,
ZERO_PLUS_PREDICTED = 1,
BOTH_PREDICTED = 2,
NEW_PLUS_NON_INTRA = 3,
BOTH_NEW = 4,
INTRA_PLUS_NON_INTRA = 5,
BOTH_INTRA = 6,
INVALID_CASE = 9
} motion_vector_context;
// This is used to figure out a context for the ref blocks. The code flattens
// an array that would have 3 possible counts (0, 1 & 2) for 3 choices by
// adding 9 for each intra block, 3 for each zero mv and 1 for each new
// motion vector. This single number is then converted into a context
// with a single lookup ( counter_to_context ).
static const int mode_2_counter[MB_MODE_COUNT] = {
9, // DC_PRED
9, // V_PRED
9, // H_PRED
9, // D45_PRED
9, // D135_PRED
9, // D117_PRED
9, // D153_PRED
9, // D207_PRED
9, // D63_PRED
9, // TM_PRED
0, // NEARESTMV
0, // NEARMV
3, // ZEROMV
1, // NEWMV
};
// There are 3^3 different combinations of 3 counts that can be either 0,1 or
// 2. However the actual count can never be greater than 2 so the highest
// counter we need is 18. 9 is an invalid counter that's never used.
static const int counter_to_context[19] = {
BOTH_PREDICTED, // 0
NEW_PLUS_NON_INTRA, // 1
BOTH_NEW, // 2
ZERO_PLUS_PREDICTED, // 3
NEW_PLUS_NON_INTRA, // 4
INVALID_CASE, // 5
BOTH_ZERO, // 6
INVALID_CASE, // 7
INVALID_CASE, // 8
INTRA_PLUS_NON_INTRA, // 9
INTRA_PLUS_NON_INTRA, // 10
INVALID_CASE, // 11
INTRA_PLUS_NON_INTRA, // 12
INVALID_CASE, // 13
INVALID_CASE, // 14
INVALID_CASE, // 15
INVALID_CASE, // 16
INVALID_CASE, // 17
BOTH_INTRA // 18
};
static const POSITION mv_ref_blocks[BLOCK_SIZES][MVREF_NEIGHBOURS] = {
// 4X4
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 4X8
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 8X4
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 8X8
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 8X16
{{0, -1}, {-1, 0}, {1, -1}, {-1, -1}, {0, -2}, {-2, 0}, {-2, -1}, {-1, -2}},
// 16X8
{{-1, 0}, {0, -1}, {-1, 1}, {-1, -1}, {-2, 0}, {0, -2}, {-1, -2}, {-2, -1}},
// 16X16
{{-1, 0}, {0, -1}, {-1, 1}, {1, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
// 16X32
{{0, -1}, {-1, 0}, {2, -1}, {-1, -1}, {-1, 1}, {0, -3}, {-3, 0}, {-3, -3}},
// 32X16
{{-1, 0}, {0, -1}, {-1, 2}, {-1, -1}, {1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
// 32X32
{{-1, 1}, {1, -1}, {-1, 2}, {2, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
// 32X64
{{0, -1}, {-1, 0}, {4, -1}, {-1, 2}, {-1, -1}, {0, -3}, {-3, 0}, {2, -1}},
// 64X32
{{-1, 0}, {0, -1}, {-1, 4}, {2, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-1, 2}},
// 64X64
{{-1, 3}, {3, -1}, {-1, 4}, {4, -1}, {-1, -1}, {-1, 0}, {0, -1}, {-1, 6}}
};
static const int idx_n_column_to_subblock[4][2] = {
{1, 2},
{1, 3},
{3, 2},
{3, 3}
};
// clamp_mv_ref
#define MV_BORDER (16 << 3) // Allow 16 pels in 1/8th pel units
static void clamp_mv_ref(MV *mv, const MACROBLOCKD *xd) {
clamp_mv(mv, xd->mb_to_left_edge - MV_BORDER,
xd->mb_to_right_edge + MV_BORDER,
xd->mb_to_top_edge - MV_BORDER,
xd->mb_to_bottom_edge + MV_BORDER);
}
// This function returns either the appropriate sub block or block's mv
// on whether the block_size < 8x8 and we have check_sub_blocks set.
static INLINE int_mv get_sub_block_mv(const MODE_INFO *candidate, int which_mv,
int search_col, int block_idx) {
return block_idx >= 0 && candidate->mbmi.sb_type < BLOCK_8X8
? candidate->bmi[idx_n_column_to_subblock[block_idx][search_col == 0]]
.as_mv[which_mv]
: candidate->mbmi.mv[which_mv];
}
// Performs mv sign inversion if indicated by the reference frame combination.
static INLINE int_mv scale_mv(const MB_MODE_INFO *mbmi, int ref,
const MV_REFERENCE_FRAME this_ref_frame,
const int *ref_sign_bias) {
int_mv mv = mbmi->mv[ref];
if (ref_sign_bias[mbmi->ref_frame[ref]] != ref_sign_bias[this_ref_frame]) {
mv.as_mv.row *= -1;
mv.as_mv.col *= -1;
}
return mv;
}
// This macro is used to add a motion vector mv_ref list if it isn't
// already in the list. If it's the second motion vector it will also
// skip all additional processing and jump to done!
#define ADD_MV_REF_LIST(mv) \
do { \
if (refmv_count) { \
if ((mv).as_int != mv_ref_list[0].as_int) { \
mv_ref_list[refmv_count] = (mv); \
goto Done; \
} \
} else { \
mv_ref_list[refmv_count++] = (mv); \
} \
} while (0)
// If either reference frame is different, not INTRA, and they
// are different from each other scale and add the mv to our list.
#define IF_DIFF_REF_FRAME_ADD_MV(mbmi) \
do { \
if (is_inter_block(mbmi)) { \
if ((mbmi)->ref_frame[0] != ref_frame) \
ADD_MV_REF_LIST(scale_mv((mbmi), 0, ref_frame, ref_sign_bias)); \
if (has_second_ref(mbmi) && \
(mbmi)->ref_frame[1] != ref_frame && \
(mbmi)->mv[1].as_int != (mbmi)->mv[0].as_int) \
ADD_MV_REF_LIST(scale_mv((mbmi), 1, ref_frame, ref_sign_bias)); \
} \
} while (0)
// Checks that the given mi_row, mi_col and search point
// are inside the borders of the tile.
static INLINE int is_inside(const TileInfo *const tile,
int mi_col, int mi_row, int mi_rows,
const POSITION *mi_pos) {
return !(mi_row + mi_pos->row < 0 ||
mi_col + mi_pos->col < tile->mi_col_start ||
mi_row + mi_pos->row >= mi_rows ||
mi_col + mi_pos->col >= tile->mi_col_end);
}
// This function searches the neighbourhood of a given MB/SB
// to try and find candidate reference vectors.
static void find_mv_refs_idx(const VP9_COMMON *cm, const MACROBLOCKD *xd,
@@ -363,3 +188,176 @@ void vp9_append_sub8x8_mvs_for_idx(VP9_COMMON *cm, MACROBLOCKD *xd,
assert("Invalid block index.");
}
}
#if CONFIG_COPY_CODING
static int compare_interinfo(MB_MODE_INFO *mbmi, MB_MODE_INFO *ref_mbmi) {
if (mbmi == ref_mbmi) {
return 1;
} else {
int is_same;
#if CONFIG_INTERINTRA
MV_REFERENCE_FRAME mbmi_ref1_backup = mbmi->ref_frame[1];
MV_REFERENCE_FRAME refmbmi_ref1_backup = ref_mbmi->ref_frame[1];
if (mbmi->ref_frame[1] == INTRA_FRAME)
mbmi->ref_frame[1] = NONE;
if (ref_mbmi->ref_frame[1] == INTRA_FRAME)
ref_mbmi->ref_frame[1] = NONE;
#endif
if (mbmi->ref_frame[0] == ref_mbmi->ref_frame[0] &&
mbmi->ref_frame[1] == ref_mbmi->ref_frame[1]) {
if (mbmi->ref_frame[1] > INTRA_FRAME)
is_same = mbmi->mv[0].as_int == ref_mbmi->mv[0].as_int &&
mbmi->mv[1].as_int == ref_mbmi->mv[1].as_int &&
mbmi->interp_filter == ref_mbmi->interp_filter;
else
is_same = mbmi->mv[0].as_int == ref_mbmi->mv[0].as_int &&
mbmi->interp_filter == ref_mbmi->interp_filter;
} else {
is_same = 0;
}
#if CONFIG_INTERINTRA
mbmi->ref_frame[1] = mbmi_ref1_backup;
ref_mbmi->ref_frame[1] = refmbmi_ref1_backup;
#endif
return is_same;
}
}
static int check_inside(VP9_COMMON *cm, int mi_row, int mi_col) {
return mi_row >= 0 && mi_col >= 0 &&
mi_row < cm->mi_rows && mi_col < cm->mi_cols;
}
static int is_right_available(BLOCK_SIZE bsize, int mi_row, int mi_col) {
int depth, max_depth = 4 - MIN(b_width_log2(bsize), b_height_log2(bsize));
int block[4] = {0};
if (bsize == BLOCK_64X64)
return 1;
mi_row = mi_row % 8;
mi_col = mi_col % 8;
for (depth = 1; depth <= max_depth; depth++) {
block[depth] = (mi_row >> (3 - depth)) * 2 + (mi_col >> (3 - depth));
mi_row = mi_row % (8 >> depth);
mi_col = mi_col % (8 >> depth);
}
if (b_width_log2(bsize) < b_height_log2(bsize)) {
if (block[max_depth] == 0)
return 1;
} else if (b_width_log2(bsize) > b_height_log2(bsize)) {
if (block[max_depth] > 0)
return 0;
} else {
if (block[max_depth] == 0 || block[max_depth] == 2)
return 1;
else if (block[max_depth] == 3)
return 0;
}
for (depth = max_depth - 1; depth > 0; depth--) {
if (block[depth] == 0 || block[depth] == 2)
return 1;
else if (block[depth] == 3)
return 0;
}
return 1;
}
static int is_second_rec(int mi_row, int mi_col, BLOCK_SIZE bsize) {
int bw = 4 << b_width_log2(bsize);
int bh = 4 << b_height_log2(bsize);
if (bw < bh)
return (mi_col << 3) % (bw << 1) == 0 ? 0 : 1;
else if (bh < bw)
return (mi_row << 3) % (bh << 1) == 0 ? 0 : 2;
else
return 0;
}
int vp9_construct_ref_inter_list(VP9_COMMON *cm, MACROBLOCKD *xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
MB_MODE_INFO *ref_list[18]) {
int bw = 4 << b_width_log2(bsize);
int bh = 4 << b_height_log2(bsize);
int row_offset, col_offset;
int mi_offset;
MB_MODE_INFO *ref_mbmi;
int ref_index, ref_num = 0;
int row_offset_cand[18], col_offset_cand[18];
int offset_num = 0, i, switchflag;
int is_sec_rec = is_second_rec(mi_row, mi_col, bsize);
if (is_sec_rec != 2) {
row_offset_cand[offset_num] = -1; col_offset_cand[offset_num] = 0;
offset_num++;
}
if (is_sec_rec != 1) {
row_offset_cand[offset_num] = bh / 16; col_offset_cand[offset_num] = -1;
offset_num++;
}
row_offset = bh / 8 - 1;
col_offset = 1;
if (is_sec_rec < 2)
switchflag = 1;
else
switchflag = 0;
while ((is_sec_rec == 0 && ((row_offset >=0) || col_offset < (bw / 8 + 1))) ||
(is_sec_rec == 1 && col_offset < (bw / 8 + 1)) ||
(is_sec_rec == 2 && row_offset >=0)) {
switch (switchflag) {
case 0:
if (row_offset >= 0) {
if (row_offset != bh / 16) {
row_offset_cand[offset_num] = row_offset;
col_offset_cand[offset_num] = -1;
offset_num++;
}
row_offset--;
}
break;
case 1:
if (col_offset < (bw / 8 + 1)) {
row_offset_cand[offset_num] = -1;
col_offset_cand[offset_num] = col_offset;
offset_num++;
col_offset++;
}
break;
default:
assert(0);
}
if (is_sec_rec == 0)
switchflag = 1 - switchflag;
}
row_offset_cand[offset_num] = -1;
col_offset_cand[offset_num] = -1;
offset_num++;
for (i = 0; i < offset_num; i++) {
row_offset = row_offset_cand[i];
col_offset = col_offset_cand[i];
if ((col_offset < (bw / 8) ||
(col_offset == (bw / 8) && is_right_available(bsize, mi_row, mi_col)))
&& check_inside(cm, mi_row + row_offset, mi_col + col_offset)) {
mi_offset = row_offset * cm->mi_stride + col_offset;
ref_mbmi = &xd->mi[mi_offset]->mbmi;
if (is_inter_block(ref_mbmi)) {
for (ref_index = 0; ref_index < ref_num; ref_index++) {
if (compare_interinfo(ref_mbmi, ref_list[ref_index]))
break;
}
if (ref_index == ref_num) {
ref_list[ref_num] = ref_mbmi;
ref_num++;
}
}
}
}
return ref_num;
}
#endif

View File

@@ -21,6 +21,181 @@ extern "C" {
#define RIGHT_BOTTOM_MARGIN ((VP9_ENC_BORDER_IN_PIXELS -\
VP9_INTERP_EXTEND) << 3)
#define MVREF_NEIGHBOURS 8
typedef struct position {
int row;
int col;
} POSITION;
typedef enum {
BOTH_ZERO = 0,
ZERO_PLUS_PREDICTED = 1,
BOTH_PREDICTED = 2,
NEW_PLUS_NON_INTRA = 3,
BOTH_NEW = 4,
INTRA_PLUS_NON_INTRA = 5,
BOTH_INTRA = 6,
INVALID_CASE = 9
} motion_vector_context;
// This is used to figure out a context for the ref blocks. The code flattens
// an array that would have 3 possible counts (0, 1 & 2) for 3 choices by
// adding 9 for each intra block, 3 for each zero mv and 1 for each new
// motion vector. This single number is then converted into a context
// with a single lookup ( counter_to_context ).
static const int mode_2_counter[MB_MODE_COUNT] = {
9, // DC_PRED
9, // V_PRED
9, // H_PRED
9, // D45_PRED
9, // D135_PRED
9, // D117_PRED
9, // D153_PRED
9, // D207_PRED
9, // D63_PRED
9, // TM_PRED
0, // NEARESTMV
0, // NEARMV
3, // ZEROMV
1, // NEWMV
};
// There are 3^3 different combinations of 3 counts that can be either 0,1 or
// 2. However the actual count can never be greater than 2 so the highest
// counter we need is 18. 9 is an invalid counter that's never used.
static const int counter_to_context[19] = {
BOTH_PREDICTED, // 0
NEW_PLUS_NON_INTRA, // 1
BOTH_NEW, // 2
ZERO_PLUS_PREDICTED, // 3
NEW_PLUS_NON_INTRA, // 4
INVALID_CASE, // 5
BOTH_ZERO, // 6
INVALID_CASE, // 7
INVALID_CASE, // 8
INTRA_PLUS_NON_INTRA, // 9
INTRA_PLUS_NON_INTRA, // 10
INVALID_CASE, // 11
INTRA_PLUS_NON_INTRA, // 12
INVALID_CASE, // 13
INVALID_CASE, // 14
INVALID_CASE, // 15
INVALID_CASE, // 16
INVALID_CASE, // 17
BOTH_INTRA // 18
};
static const POSITION mv_ref_blocks[BLOCK_SIZES][MVREF_NEIGHBOURS] = {
// 4X4
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 4X8
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 8X4
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 8X8
{{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
// 8X16
{{0, -1}, {-1, 0}, {1, -1}, {-1, -1}, {0, -2}, {-2, 0}, {-2, -1}, {-1, -2}},
// 16X8
{{-1, 0}, {0, -1}, {-1, 1}, {-1, -1}, {-2, 0}, {0, -2}, {-1, -2}, {-2, -1}},
// 16X16
{{-1, 0}, {0, -1}, {-1, 1}, {1, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
// 16X32
{{0, -1}, {-1, 0}, {2, -1}, {-1, -1}, {-1, 1}, {0, -3}, {-3, 0}, {-3, -3}},
// 32X16
{{-1, 0}, {0, -1}, {-1, 2}, {-1, -1}, {1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
// 32X32
{{-1, 1}, {1, -1}, {-1, 2}, {2, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
// 32X64
{{0, -1}, {-1, 0}, {4, -1}, {-1, 2}, {-1, -1}, {0, -3}, {-3, 0}, {2, -1}},
// 64X32
{{-1, 0}, {0, -1}, {-1, 4}, {2, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-1, 2}},
// 64X64
{{-1, 3}, {3, -1}, {-1, 4}, {4, -1}, {-1, -1}, {-1, 0}, {0, -1}, {-1, 6}}
};
static const int idx_n_column_to_subblock[4][2] = {
{1, 2},
{1, 3},
{3, 2},
{3, 3}
};
// clamp_mv_ref
#define MV_BORDER (16 << 3) // Allow 16 pels in 1/8th pel units
static void clamp_mv_ref(MV *mv, const MACROBLOCKD *xd) {
clamp_mv(mv, xd->mb_to_left_edge - MV_BORDER,
xd->mb_to_right_edge + MV_BORDER,
xd->mb_to_top_edge - MV_BORDER,
xd->mb_to_bottom_edge + MV_BORDER);
}
// This function returns either the appropriate sub block or block's mv
// on whether the block_size < 8x8 and we have check_sub_blocks set.
static INLINE int_mv get_sub_block_mv(const MODE_INFO *candidate, int which_mv,
int search_col, int block_idx) {
return block_idx >= 0 && candidate->mbmi.sb_type < BLOCK_8X8
? candidate->bmi[idx_n_column_to_subblock[block_idx][search_col == 0]]
.as_mv[which_mv]
: candidate->mbmi.mv[which_mv];
}
// Performs mv sign inversion if indicated by the reference frame combination.
static INLINE int_mv scale_mv(const MB_MODE_INFO *mbmi, int ref,
const MV_REFERENCE_FRAME this_ref_frame,
const int *ref_sign_bias) {
int_mv mv = mbmi->mv[ref];
if (ref_sign_bias[mbmi->ref_frame[ref]] != ref_sign_bias[this_ref_frame]) {
mv.as_mv.row *= -1;
mv.as_mv.col *= -1;
}
return mv;
}
// This macro is used to add a motion vector mv_ref list if it isn't
// already in the list. If it's the second motion vector it will also
// skip all additional processing and jump to done!
#define ADD_MV_REF_LIST(mv) \
do { \
if (refmv_count) { \
if ((mv).as_int != mv_ref_list[0].as_int) { \
mv_ref_list[refmv_count] = (mv); \
goto Done; \
} \
} else { \
mv_ref_list[refmv_count++] = (mv); \
} \
} while (0)
// If either reference frame is different, not INTRA, and they
// are different from each other scale and add the mv to our list.
#define IF_DIFF_REF_FRAME_ADD_MV(mbmi) \
do { \
if (is_inter_block(mbmi)) { \
if ((mbmi)->ref_frame[0] != ref_frame) \
ADD_MV_REF_LIST(scale_mv((mbmi), 0, ref_frame, ref_sign_bias)); \
if (has_second_ref(mbmi) && \
(mbmi)->ref_frame[1] != ref_frame && \
(mbmi)->mv[1].as_int != (mbmi)->mv[0].as_int) \
ADD_MV_REF_LIST(scale_mv((mbmi), 1, ref_frame, ref_sign_bias)); \
} \
} while (0)
// Checks that the given mi_row, mi_col and search point
// are inside the borders of the tile.
static INLINE int is_inside(const TileInfo *const tile,
int mi_col, int mi_row, int mi_rows,
const POSITION *mi_pos) {
return !(mi_row + mi_pos->row < 0 ||
mi_col + mi_pos->col < tile->mi_col_start ||
mi_row + mi_pos->row >= mi_rows ||
mi_col + mi_pos->col >= tile->mi_col_end);
}
// TODO(jingning): this mv clamping function should be block size dependent.
static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) {
clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN,
@@ -45,6 +220,12 @@ void vp9_append_sub8x8_mvs_for_idx(VP9_COMMON *cm, MACROBLOCKD *xd,
int block, int ref, int mi_row, int mi_col,
int_mv *nearest, int_mv *near);
#if CONFIG_COPY_CODING
int vp9_construct_ref_inter_list(VP9_COMMON *cm, MACROBLOCKD *xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
MB_MODE_INFO *ref_list[18]);
#endif
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -213,8 +213,14 @@ typedef struct VP9Common {
PARTITION_CONTEXT *above_seg_context;
ENTROPY_CONTEXT *above_context;
#if CONFIG_TRANSCODE
FILE *mi_array_pf;
#if CONFIG_MASKED_INTERINTER
int use_masked_interinter;
#endif
#if CONFIG_INTERINTRA
int use_interintra;
#if CONFIG_MASKED_INTERINTRA
int use_masked_interintra;
#endif
#endif
} VP9_COMMON;

View File

@@ -383,3 +383,47 @@ int vp9_get_segment_id(VP9_COMMON *cm, const uint8_t *segment_ids,
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
return segment_id;
}
#if CONFIG_COPY_CODING
int vp9_get_copy_mode_context(const MACROBLOCKD *xd) {
const MB_MODE_INFO *const above_mbmi = get_mbmi(get_above_mi(xd));
const MB_MODE_INFO *const left_mbmi = get_mbmi(get_left_mi(xd));
const int has_above = above_mbmi != NULL;
const int has_left = left_mbmi != NULL;
if (has_above && has_left) {
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
if (above_intra && left_intra) {
return 4;
} else if (above_intra || left_intra) {
return 3;
} else {
const int above_predict = above_mbmi->copy_mode != NOREF;
const int left_predict = left_mbmi->copy_mode != NOREF;
if (above_predict && left_predict)
return 0;
else if (above_predict || left_predict)
return 1;
else
return 2;
}
} else if (has_above || has_left) {
const MB_MODE_INFO *const ref_mbmi = has_above ? above_mbmi : left_mbmi;
const int ref_intra = !is_inter_block(ref_mbmi);
if (ref_intra) {
return 3;
} else {
const int ref_predict = ref_mbmi != NOREF;
if (ref_predict)
return 0;
else
return 1;
}
} else {
return 0;
}
}
#endif

View File

@@ -134,6 +134,10 @@ static INLINE unsigned int *get_tx_counts(TX_SIZE max_tx_size, int ctx,
}
}
#if CONFIG_COPY_CODING
int vp9_get_copy_mode_context(const MACROBLOCKD *xd);
#endif
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -12,7 +12,6 @@
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_seg_common.h"
#if 1
static const int16_t dc_qlookup[QINDEX_RANGE] = {
4, 8, 8, 9, 10, 11, 12, 12,
13, 14, 15, 16, 17, 18, 19, 19,
@@ -83,44 +82,6 @@ static const int16_t ac_qlookup[QINDEX_RANGE] = {
1597, 1628, 1660, 1692, 1725, 1759, 1793, 1828,
};
void vp9_init_quant_tables(void) { }
#else
static int16_t dc_qlookup[QINDEX_RANGE];
static int16_t ac_qlookup[QINDEX_RANGE];
#define ACDC_MIN 8
// TODO(dkovalev) move to common and reuse
static double poly3(double a, double b, double c, double d, double x) {
return a*x*x*x + b*x*x + c*x + d;
}
void vp9_init_quant_tables() {
int i, val = 4;
// A "real" q of 1.0 forces lossless mode.
// In practice non lossless Q's between 1.0 and 2.0 (represented here by
// integer values from 5-7 give poor rd results (lower psnr and often
// larger size than the lossless encode. To block out those "not very useful"
// values we increment the ac and dc q lookup values by 4 after position 0.
ac_qlookup[0] = val;
dc_qlookup[0] = val;
val += 4;
for (i = 1; i < QINDEX_RANGE; i++) {
const int ac_val = val;
val = (int)(val * 1.01975);
if (val == ac_val)
++val;
ac_qlookup[i] = (int16_t)ac_val;
dc_qlookup[i] = (int16_t)MAX(ACDC_MIN, poly3(0.000000305, -0.00065, 0.9,
0.5, ac_val));
}
}
#endif
int16_t vp9_dc_quant(int qindex, int delta) {
return dc_qlookup[clamp(qindex + delta, 0, MAXQ)];
}

View File

@@ -22,8 +22,6 @@ extern "C" {
#define QINDEX_RANGE (MAXQ - MINQ + 1)
#define QINDEX_BITS 8
void vp9_init_quant_tables();
int16_t vp9_dc_quant(int qindex, int delta);
int16_t vp9_ac_quant(int qindex, int delta);

View File

@@ -139,9 +139,349 @@ MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv,
return clamped_mv;
}
#if CONFIG_MASKED_INTERINTER
#define MASK_WEIGHT_BITS 6
static int get_masked_weight(int m) {
#define SMOOTHER_LEN 32
static const uint8_t smoothfn[2 * SMOOTHER_LEN + 1] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 2, 2, 3, 4, 5, 6,
8, 9, 12, 14, 17, 21, 24, 28,
32,
36, 40, 43, 47, 50, 52, 55, 56,
58, 59, 60, 61, 62, 62, 63, 63,
63, 63, 63, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64,
};
if (m < -SMOOTHER_LEN)
return 0;
else if (m > SMOOTHER_LEN)
return (1 << MASK_WEIGHT_BITS);
else
return smoothfn[m + SMOOTHER_LEN];
}
static int get_hard_mask(int m) {
return 1 << MASK_WEIGHT_BITS * (m > 0);
}
// Equation of line: f(x, y) = a[0]*(x - a[2]*w/4) + a[1]*(y - a[3]*h/4) = 0
// The soft mask is obtained by computing f(x, y) and then calling
// get_masked_weight(f(x, y)).
static const int mask_params_sml[1 << MASK_BITS_SML][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
};
static const int mask_params_med_hgtw[1 << MASK_BITS_MED][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
};
static const int mask_params_med_hltw[1 << MASK_BITS_MED][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
};
static const int mask_params_med_heqw[1 << MASK_BITS_MED][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{ 0, 2, 0, 1},
{ 0, -2, 0, 1},
{ 0, 2, 0, 3},
{ 0, -2, 0, 3},
{ 2, 0, 1, 0},
{-2, 0, 1, 0},
{ 2, 0, 3, 0},
{-2, 0, 3, 0},
};
static const int mask_params_big_hgtw[1 << MASK_BITS_BIG][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
{ 0, 2, 0, 1},
{ 0, -2, 0, 1},
{ 0, 2, 0, 2},
{ 0, -2, 0, 2},
{ 0, 2, 0, 3},
{ 0, -2, 0, 3},
{ 2, 0, 2, 0},
{-2, 0, 2, 0},
};
static const int mask_params_big_hltw[1 << MASK_BITS_BIG][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
{ 0, 2, 0, 2},
{ 0, -2, 0, 2},
{ 2, 0, 1, 0},
{-2, 0, 1, 0},
{ 2, 0, 2, 0},
{-2, 0, 2, 0},
{ 2, 0, 3, 0},
{-2, 0, 3, 0},
};
static const int mask_params_big_heqw[1 << MASK_BITS_BIG][4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
{ 0, 2, 0, 1},
{ 0, -2, 0, 1},
{ 0, 2, 0, 3},
{ 0, -2, 0, 3},
{ 2, 0, 1, 0},
{-2, 0, 1, 0},
{ 2, 0, 3, 0},
{-2, 0, 3, 0},
};
static const int *get_mask_params(int mask_index,
BLOCK_SIZE sb_type,
int h, int w) {
const int *a;
const int mask_bits = get_mask_bits(sb_type);
if (mask_index == MASK_NONE)
return NULL;
if (mask_bits == MASK_BITS_SML) {
a = mask_params_sml[mask_index];
} else if (mask_bits == MASK_BITS_MED) {
if (h > w)
a = mask_params_med_hgtw[mask_index];
else if (h < w)
a = mask_params_med_hltw[mask_index];
else
a = mask_params_med_heqw[mask_index];
} else if (mask_bits == MASK_BITS_BIG) {
if (h > w)
a = mask_params_big_hgtw[mask_index];
else if (h < w)
a = mask_params_big_hltw[mask_index];
else
a = mask_params_big_heqw[mask_index];
} else {
assert(0);
}
return a;
}
void vp9_generate_masked_weight(int mask_index,
BLOCK_SIZE sb_type,
int h, int w,
uint8_t *mask, int stride) {
int i, j;
const int *a = get_mask_params(mask_index, sb_type, h, w);
if (!a) return;
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int x = (j - (a[2] * w) / 4);
int y = (i - (a[3] * h) / 4);
int m = a[0] * x + a[1] * y;
mask[i * stride + j] = get_masked_weight(m);
}
}
void vp9_generate_hard_mask(int mask_index, BLOCK_SIZE sb_type,
int h, int w, uint8_t *mask, int stride) {
int i, j;
const int *a = get_mask_params(mask_index, sb_type, h, w);
if (!a) return;
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int x = (j - (a[2] * w) / 4);
int y = (i - (a[3] * h) / 4);
int m = a[0] * x + a[1] * y;
mask[i * stride + j] = get_hard_mask(m);
}
}
static void build_masked_compound(uint8_t *dst, int dst_stride,
uint8_t *dst2, int dst2_stride,
int mask_index, BLOCK_SIZE sb_type,
int h, int w) {
int i, j;
uint8_t mask[4096];
vp9_generate_masked_weight(mask_index, sb_type, h, w, mask, 64);
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int m = mask[i * 64 + j];
dst[i * dst_stride + j] = (dst[i * dst_stride + j] * m +
dst2[i * dst2_stride + j] *
((1 << MASK_WEIGHT_BITS) - m) +
(1 << (MASK_WEIGHT_BITS - 1))) >>
MASK_WEIGHT_BITS;
}
}
#if CONFIG_SUPERTX
void generate_masked_weight_extend(int mask_index, int plane,
BLOCK_SIZE sb_type, int h, int w,
int mask_offset_x, int mask_offset_y,
uint8_t *mask, int stride) {
int i, j;
int subh = (plane ? 2 : 4) << b_height_log2(sb_type);
int subw = (plane ? 2 : 4) << b_width_log2(sb_type);
const int *a = get_mask_params(mask_index, sb_type, subh, subw);
if (!a) return;
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int x = (j - (a[2] * subw) / 4 - mask_offset_x);
int y = (i - (a[3] * subh) / 4 - mask_offset_y);
int m = a[0] * x + a[1] * y;
mask[i * stride + j] = get_masked_weight(m);
}
}
static void build_masked_compound_extend(uint8_t *dst, int dst_stride,
uint8_t *dst2, int dst2_stride,
int plane,
int mask_index, BLOCK_SIZE sb_type,
int mask_offset_x, int mask_offset_y,
int h, int w) {
int i, j;
uint8_t mask[4096];
generate_masked_weight_extend(mask_index, plane, sb_type, h, w,
mask_offset_x, mask_offset_y, mask, 64);
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int m = mask[i * 64 + j];
dst[i * dst_stride + j] = (dst[i * dst_stride + j] * m +
dst2[i * dst2_stride + j] *
((1 << MASK_WEIGHT_BITS) - m) +
(1 << (MASK_WEIGHT_BITS - 1))) >>
MASK_WEIGHT_BITS;
}
}
#endif
#endif
static void build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
int bw, int bh,
int x, int y, int w, int h,
#if CONFIG_SUPERTX && CONFIG_MASKED_INTERINTER
int mask_offset_x, int mask_offset_y,
#endif
int mi_x, int mi_y) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const MODE_INFO *mi = xd->mi[0];
@@ -193,8 +533,27 @@ static void build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride
+ (scaled_mv.col >> SUBPEL_BITS);
#if CONFIG_MASKED_INTERINTER
if (ref && get_mask_bits(mi->mbmi.sb_type)
&& mi->mbmi.use_masked_interinter) {
uint8_t tmp_dst[4096];
inter_predictor(pre, pre_buf->stride, tmp_dst, 64,
subpel_x, subpel_y, sf, w, h, 0, kernel, xs, ys);
#if CONFIG_SUPERTX
build_masked_compound_extend(dst, dst_buf->stride, tmp_dst, 64, plane,
mi->mbmi.mask_index, mi->mbmi.sb_type,
mask_offset_x, mask_offset_y, h, w);
#else
build_masked_compound(dst, dst_buf->stride, tmp_dst, 64,
mi->mbmi.mask_index, mi->mbmi.sb_type, h, w);
#endif
} else {
#endif
inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride,
subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys);
#if CONFIG_MASKED_INTERINTER
}
#endif
}
}
@@ -218,10 +577,18 @@ static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize,
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_inter_predictors(xd, plane, i++, bw, bh,
4 * x, 4 * y, 4, 4, mi_x, mi_y);
4 * x, 4 * y, 4, 4,
#if CONFIG_SUPERTX && CONFIG_MASKED_INTERINTER
0, 0,
#endif
mi_x, mi_y);
} else {
build_inter_predictors(xd, plane, 0, bw, bh,
0, 0, bw, bh, mi_x, mi_y);
0, 0, bw, bh,
#if CONFIG_SUPERTX && CONFIG_MASKED_INTERINTER
0, 0,
#endif
mi_x, mi_y);
}
}
}
@@ -229,23 +596,323 @@ static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize,
void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0);
#if CONFIG_INTERINTRA
if (xd->mi[0]->mbmi.ref_frame[1] == INTRA_FRAME &&
is_interintra_allowed(xd->mi[0]->mbmi.sb_type))
vp9_build_interintra_predictors_sby(xd, xd->plane[0].dst.buf,
xd->plane[0].dst.stride, bsize);
#endif
}
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1,
MAX_MB_PLANE - 1);
#if CONFIG_INTERINTRA
if (xd->mi[0]->mbmi.ref_frame[1] == INTRA_FRAME &&
is_interintra_allowed(xd->mi[0]->mbmi.sb_type))
vp9_build_interintra_predictors_sbuv(xd, xd->plane[1].dst.buf,
xd->plane[2].dst.buf,
xd->plane[1].dst.stride,
xd->plane[2].dst.stride, bsize);
#endif
}
void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0,
MAX_MB_PLANE - 1);
#if CONFIG_INTERINTRA
if (xd->mi[0]->mbmi.ref_frame[1] == INTRA_FRAME &&
is_interintra_allowed(xd->mi[0]->mbmi.sb_type))
vp9_build_interintra_predictors(xd, xd->plane[0].dst.buf,
xd->plane[1].dst.buf, xd->plane[2].dst.buf,
xd->plane[0].dst.stride,
xd->plane[1].dst.stride,
xd->plane[2].dst.stride, bsize);
#endif
}
#if CONFIG_SUPERTX
static int get_masked_weight_supertx(int m) {
#define SMOOTHER_LEN 32
static const uint8_t smoothfn[2 * SMOOTHER_LEN + 1] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 2, 2, 3, 4, 5, 6,
8, 9, 12, 14, 17, 21, 24, 28,
32,
36, 40, 43, 47, 50, 52, 55, 56,
58, 59, 60, 61, 62, 62, 63, 63,
63, 63, 63, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64,
};
if (m < -SMOOTHER_LEN)
return 0;
else if (m > SMOOTHER_LEN)
return 64;
else
return smoothfn[m + SMOOTHER_LEN];
}
static const uint8_t mask_8[8] = {
64, 64, 62, 52, 12, 2, 0, 0
};
static const uint8_t mask_16[16] = {
63, 62, 60, 58, 55, 50, 43, 36, 28, 21, 14, 9, 6, 4, 2, 1
};
static const uint8_t mask_32[32] = {
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 61, 57, 52, 45, 36,
28, 19, 12, 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
static void generate_1dmask(int length, uint8_t *mask) {
int i;
switch (length) {
case 8:
vpx_memcpy(mask, mask_8, length);
break;
case 16:
vpx_memcpy(mask, mask_16, length);
break;
case 32:
vpx_memcpy(mask, mask_32, length);
break;
default:
assert(0);
}
if (length > 16) {
for (i = 0; i < length; ++i)
mask[i] = get_masked_weight_supertx(-1 * (2 * i - length + 1));
}
}
void vp9_build_masked_inter_predictor_complex(uint8_t *dst, int dst_stride,
uint8_t *dst2, int dst2_stride,
int plane,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize,
BLOCK_SIZE top_bsize,
PARTITION_TYPE partition) {
int i, j;
uint8_t mask[32];
int top_w = 4 << b_width_log2(top_bsize),
top_h = 4 << b_height_log2(top_bsize);
int w = 4 << b_width_log2(bsize), h = 4 << b_height_log2(bsize);
int w_offset = (mi_col - mi_col_ori) << 3,
h_offset = (mi_row - mi_row_ori) << 3;
int m;
if (plane > 0) {
top_w = top_w >> 1; top_h = top_h >> 1;
w = w >> 1; h = h >> 1;
w_offset = w_offset >> 1; h_offset = h_offset >> 1;
}
switch (partition) {
case PARTITION_HORZ:
generate_1dmask(h, mask + h_offset);
vpx_memset(mask, 64, h_offset);
vpx_memset(mask + h_offset + h, 0, top_h - h_offset - h);
break;
case PARTITION_VERT:
generate_1dmask(w, mask + w_offset);
vpx_memset(mask, 64, w_offset);
vpx_memset(mask + w_offset + w, 0, top_w - w_offset - w);
break;
default:
assert(0);
}
for (i = 0; i < top_h; ++i)
for (j = 0; j < top_w; ++j) {
m = partition == PARTITION_HORZ ? mask[i] : mask[j];
if (m == 64)
continue;
if (m == 0)
dst[i * dst_stride + j] = dst2[i * dst2_stride + j];
else
dst[i * dst_stride + j] = (dst[i * dst_stride + j] * m +
dst2[i * dst2_stride + j] *
(64 - m) + 32) >> 6;
}
}
#if CONFIG_MASKED_INTERINTER
void vp9_build_inter_predictors_sb_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize) {
int plane;
const int mi_x = mi_col_ori * MI_SIZE;
const int mi_y = mi_row_ori * MI_SIZE;
const int mask_offset_x = (mi_col - mi_col_ori) * MI_SIZE;
const int mask_offset_y = (mi_row - mi_row_ori) * MI_SIZE;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
&xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
int i = 0, x, y;
assert(bsize == BLOCK_8X8);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_inter_predictors(xd, plane, i++, bw, bh, 4 * x, 4 * y, 4, 4,
mask_offset_x, mask_offset_y, mi_x, mi_y);
} else {
build_inter_predictors(xd, plane, 0, bw, bh, 0, 0, bw, bh,
mask_offset_x, mask_offset_y, mi_x, mi_y);
}
}
}
#endif
void vp9_build_inter_predictors_sby_sub8x8_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize,
PARTITION_TYPE partition) {
const int mi_x = mi_col_ori * MI_SIZE;
const int mi_y = mi_row_ori * MI_SIZE;
#if CONFIG_MASKED_INTERINTER
const int mask_offset_x = (mi_col - mi_col_ori) * MI_SIZE;
const int mask_offset_y = (mi_row - mi_row_ori) * MI_SIZE;
#endif
uint8_t *orig_dst;
int orig_dst_stride;
int bw = 4 << b_width_log2(top_bsize);
int bh = 4 << b_height_log2(top_bsize);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf, 32 * 32);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf1, 32 * 32);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf2, 32 * 32);
orig_dst = xd->plane[0].dst.buf;
orig_dst_stride = xd->plane[0].dst.stride;
build_inter_predictors(xd, 0, 0, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
xd->plane[0].dst.buf = tmp_buf;
xd->plane[0].dst.stride = 32;
switch (partition) {
case PARTITION_HORZ:
build_inter_predictors(xd, 0, 2, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
break;
case PARTITION_VERT:
build_inter_predictors(xd, 0, 1, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
break;
case PARTITION_SPLIT:
build_inter_predictors(xd, 0, 1, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
xd->plane[0].dst.buf = tmp_buf1;
xd->plane[0].dst.stride = 32;
build_inter_predictors(xd, 0, 2, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
xd->plane[0].dst.buf = tmp_buf2;
xd->plane[0].dst.stride = 32;
build_inter_predictors(xd, 0, 3, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
break;
default:
assert(0);
}
if (partition != PARTITION_SPLIT) {
vp9_build_masked_inter_predictor_complex(orig_dst, orig_dst_stride,
tmp_buf, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
partition);
xd->plane[0].dst.buf = orig_dst;
xd->plane[0].dst.stride = orig_dst_stride;
} else {
vp9_build_masked_inter_predictor_complex(orig_dst, orig_dst_stride,
tmp_buf, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
PARTITION_VERT);
vp9_build_masked_inter_predictor_complex(tmp_buf1, 32,
tmp_buf2, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
PARTITION_VERT);
vp9_build_masked_inter_predictor_complex(orig_dst, orig_dst_stride,
tmp_buf1, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
PARTITION_HORZ);
xd->plane[0].dst.buf = orig_dst;
xd->plane[0].dst.stride = orig_dst_stride;
}
}
void vp9_build_inter_predictors_sbuv_sub8x8_extend(MACROBLOCKD *xd,
#if CONFIG_MASKED_INTERINTER
int mi_row, int mi_col,
#endif
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize) {
int plane;
const int mi_x = mi_col_ori * MI_SIZE;
const int mi_y = mi_row_ori * MI_SIZE;
#if CONFIG_MASKED_INTERINTER
const int mask_offset_x = (mi_col - mi_col_ori) * MI_SIZE;
const int mask_offset_y = (mi_row - mi_row_ori) * MI_SIZE;
#endif
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(top_bsize,
&xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
build_inter_predictors(xd, plane, 0, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
}
}
#endif
// TODO(jingning): This function serves as a placeholder for decoder prediction
// using on demand border extension. It should be moved to /decoder/ directory.
static void dec_build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
int bw, int bh,
int x, int y, int w, int h,
#if CONFIG_SUPERTX && CONFIG_MASKED_INTERINTER
int mask_offset_x, int mask_offset_y,
#endif
int mi_x, int mi_y) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const MODE_INFO *mi = xd->mi[0];
@@ -377,8 +1044,27 @@ static void dec_build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
}
}
#if CONFIG_MASKED_INTERINTER
if (ref && get_mask_bits(mi->mbmi.sb_type)
&& mi->mbmi.use_masked_interinter) {
uint8_t tmp_dst[4096];
inter_predictor(buf_ptr, buf_stride, tmp_dst, 64,
subpel_x, subpel_y, sf, w, h, 0, kernel, xs, ys);
#if CONFIG_SUPERTX
build_masked_compound_extend(dst, dst_buf->stride, tmp_dst, 64, plane,
mi->mbmi.mask_index, mi->mbmi.sb_type,
mask_offset_x, mask_offset_y, h, w);
#else
build_masked_compound(dst, dst_buf->stride, tmp_dst, 64,
mi->mbmi.mask_index, mi->mbmi.sb_type, h, w);
#endif
} else {
#endif
inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
subpel_y, sf, w, h, ref, kernel, xs, ys);
#if CONFIG_MASKED_INTERINTER
}
#endif
}
}
@@ -401,13 +1087,198 @@ void vp9_dec_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
dec_build_inter_predictors(xd, plane, i++, bw, bh,
4 * x, 4 * y, 4, 4, mi_x, mi_y);
4 * x, 4 * y, 4, 4,
#if CONFIG_SUPERTX && CONFIG_MASKED_INTERINTER
0, 0,
#endif
mi_x, mi_y);
} else {
dec_build_inter_predictors(xd, plane, 0, bw, bh,
0, 0, bw, bh, mi_x, mi_y);
0, 0, bw, bh,
#if CONFIG_SUPERTX && CONFIG_MASKED_INTERINTER
0, 0,
#endif
mi_x, mi_y);
}
}
#if CONFIG_INTERINTRA
if (xd->mi[0]->mbmi.ref_frame[1] == INTRA_FRAME &&
is_interintra_allowed(xd->mi[0]->mbmi.sb_type))
vp9_build_interintra_predictors(xd, xd->plane[0].dst.buf,
xd->plane[1].dst.buf, xd->plane[2].dst.buf,
xd->plane[0].dst.stride,
xd->plane[1].dst.stride,
xd->plane[2].dst.stride, bsize);
#endif
}
#if CONFIG_SUPERTX
#if CONFIG_MASKED_INTERINTER
void vp9_dec_build_inter_predictors_sb_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize) {
int plane;
const int mi_x = mi_col_ori * MI_SIZE;
const int mi_y = mi_row_ori * MI_SIZE;
const int mask_offset_x = (mi_col - mi_col_ori) * MI_SIZE;
const int mask_offset_y = (mi_row - mi_row_ori) * MI_SIZE;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
&xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
int i = 0, x, y;
assert(bsize == BLOCK_8X8);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
dec_build_inter_predictors(xd, plane, i++, bw, bh, 4 * x, 4 * y, 4, 4,
mask_offset_x, mask_offset_y, mi_x, mi_y);
} else {
dec_build_inter_predictors(xd, plane, 0, bw, bh, 0, 0, bw, bh,
mask_offset_x, mask_offset_y, mi_x, mi_y);
}
}
}
#endif
void vp9_dec_build_inter_predictors_sby_sub8x8_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize,
PARTITION_TYPE partition) {
const int mi_x = mi_col_ori * MI_SIZE;
const int mi_y = mi_row_ori * MI_SIZE;
#if CONFIG_MASKED_INTERINTER
const int mask_offset_x = (mi_col - mi_col_ori) * MI_SIZE;
const int mask_offset_y = (mi_row - mi_row_ori) * MI_SIZE;
#endif
uint8_t *orig_dst;
int orig_dst_stride;
int bw = 4 << b_width_log2(top_bsize);
int bh = 4 << b_height_log2(top_bsize);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf, 32 * 32);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf1, 32 * 32);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf2, 32 * 32);
orig_dst = xd->plane[0].dst.buf;
orig_dst_stride = xd->plane[0].dst.stride;
dec_build_inter_predictors(xd, 0, 0, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
xd->plane[0].dst.buf = tmp_buf;
xd->plane[0].dst.stride = 32;
switch (partition) {
case PARTITION_HORZ:
dec_build_inter_predictors(xd, 0, 2, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
break;
case PARTITION_VERT:
dec_build_inter_predictors(xd, 0, 1, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
break;
case PARTITION_SPLIT:
dec_build_inter_predictors(xd, 0, 1, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
xd->plane[0].dst.buf = tmp_buf1;
xd->plane[0].dst.stride = 32;
dec_build_inter_predictors(xd, 0, 2, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
xd->plane[0].dst.buf = tmp_buf2;
xd->plane[0].dst.stride = 32;
dec_build_inter_predictors(xd, 0, 3, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
break;
default:
assert(0);
}
if (partition != PARTITION_SPLIT) {
vp9_build_masked_inter_predictor_complex(orig_dst, orig_dst_stride,
tmp_buf, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
partition);
xd->plane[0].dst.buf = orig_dst;
xd->plane[0].dst.stride = orig_dst_stride;
} else {
vp9_build_masked_inter_predictor_complex(orig_dst, orig_dst_stride,
tmp_buf, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
PARTITION_VERT);
vp9_build_masked_inter_predictor_complex(tmp_buf1, 32,
tmp_buf2, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
PARTITION_VERT);
vp9_build_masked_inter_predictor_complex(orig_dst, orig_dst_stride,
tmp_buf1, 32,
0, mi_row, mi_col,
mi_row_ori, mi_col_ori,
BLOCK_8X8, top_bsize,
PARTITION_HORZ);
xd->plane[0].dst.buf = orig_dst;
xd->plane[0].dst.stride = orig_dst_stride;
}
}
void vp9_dec_build_inter_predictors_sbuv_sub8x8_extend(MACROBLOCKD *xd,
#if CONFIG_MASKED_INTERINTER
int mi_row, int mi_col,
#endif
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize) {
int plane;
const int mi_x = mi_col_ori * MI_SIZE;
const int mi_y = mi_row_ori * MI_SIZE;
#if CONFIG_MASKED_INTERINTER
const int mask_offset_x = (mi_col - mi_col_ori) * MI_SIZE;
const int mask_offset_y = (mi_row - mi_row_ori) * MI_SIZE;
#endif
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(top_bsize,
&xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
dec_build_inter_predictors(xd, plane, 0, bw, bh, 0, 0, bw, bh,
#if CONFIG_MASKED_INTERINTER
mask_offset_x, mask_offset_y,
#endif
mi_x, mi_y);
}
}
#endif
void vp9_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src,

View File

@@ -65,6 +65,60 @@ void vp9_setup_pre_planes(MACROBLOCKD *xd, int idx,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *sf);
#if CONFIG_MASKED_INTERINTER
void vp9_generate_masked_weight(int mask_index, BLOCK_SIZE sb_type,
int h, int w, uint8_t *mask, int stride);
void vp9_generate_hard_mask(int mask_index, BLOCK_SIZE sb_type,
int h, int w, uint8_t *mask, int stride);
#endif
#if CONFIG_SUPERTX
void vp9_build_inter_predictors_sby_sub8x8_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize,
PARTITION_TYPE partition);
void vp9_build_inter_predictors_sbuv_sub8x8_extend(MACROBLOCKD *xd,
#if CONFIG_MASKED_INTERINTER
int mi_row, int mi_col,
#endif
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize);
void vp9_build_masked_inter_predictor_complex(uint8_t *dst, int dst_stride,
uint8_t *dst2, int dst2_stride,
int plane,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize,
BLOCK_SIZE top_bsize,
PARTITION_TYPE partition);
void vp9_dec_build_inter_predictors_sby_sub8x8_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize,
PARTITION_TYPE p);
void vp9_dec_build_inter_predictors_sbuv_sub8x8_extend(MACROBLOCKD *xd,
#if CONFIG_MASKED_INTERINTER
int mi_row, int mi_col,
#endif
int mi_row_ori,
int mi_col_ori,
BLOCK_SIZE top_bsize);
#if CONFIG_MASKED_INTERINTER
void vp9_build_inter_predictors_sb_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize);
void vp9_dec_build_inter_predictors_sb_extend(MACROBLOCKD *xd,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize);
#endif
#endif
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -444,8 +444,227 @@ static void build_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref,
}
}
#if CONFIG_FILTERINTRA
static void filter_intra_predictors_4tap(uint8_t *ypred_ptr, int y_stride,
int bs,
const uint8_t *yabove_row,
const uint8_t *yleft_col,
int mode) {
static const int prec_bits = 10;
static const int round_val = 511;
int k, r, c;
int pred[33][33];
int mean, ipred;
int taps4_4[10][4] = {
{735, 881, -537, -54},
{1005, 519, -488, -11},
{383, 990, -343, -6},
{442, 805, -542, 319},
{658, 616, -133, -116},
{875, 442, -141, -151},
{386, 741, -23, -80},
{390, 1027, -446, 51},
{679, 606, -523, 262},
{903, 922, -778, -23}
};
int taps4_8[10][4] = {
{648, 803, -444, 16},
{972, 620, -576, 7},
{561, 967, -499, -5},
{585, 762, -468, 144},
{596, 619, -182, -9},
{895, 459, -176, -153},
{557, 722, -126, -129},
{601, 839, -523, 105},
{562, 709, -499, 251},
{803, 872, -695, 43}
};
int taps4_16[10][4] = {
{423, 728, -347, 111},
{963, 685, -665, 23},
{281, 1024, -480, 216},
{640, 596, -437, 78},
{429, 669, -259, 99},
{740, 646, -415, 23},
{568, 771, -346, 40},
{404, 833, -486, 209},
{398, 712, -423, 307},
{939, 935, -887, 17}
};
int taps4_32[10][4] = {
{477, 737, -393, 150},
{881, 630, -546, 67},
{506, 984, -443, -20},
{114, 459, -270, 528},
{433, 528, 14, 3},
{837, 470, -301, -30},
{181, 777, 89, -107},
{-29, 716, -232, 259},
{589, 646, -495, 255},
{740, 884, -728, 77}
};
const int c1 = (bs >= 32) ? taps4_32[mode][0] : ((bs >= 16) ?
taps4_16[mode][0] : ((bs >= 8) ? taps4_8[mode][0] : taps4_4[mode][0]));
const int c2 = (bs >= 32) ? taps4_32[mode][1] : ((bs >= 16) ?
taps4_16[mode][1] : ((bs >= 8) ? taps4_8[mode][1] : taps4_4[mode][1]));
const int c3 = (bs >= 32) ? taps4_32[mode][2] : ((bs >= 16) ?
taps4_16[mode][2] : ((bs >= 8) ? taps4_8[mode][2] : taps4_4[mode][2]));
const int c4 = (bs >= 32) ? taps4_32[mode][3] : ((bs >= 16) ?
taps4_16[mode][3] : ((bs >= 8) ? taps4_8[mode][3] : taps4_4[mode][3]));
k = 0;
mean = 0;
while (k < bs) {
mean = mean + (int)yleft_col[k];
mean = mean + (int)yabove_row[k];
k++;
}
mean = (mean + bs) / (2 * bs);
for (r = 0; r < bs; r++)
pred[r + 1][0] = (int)yleft_col[r] - mean;
for (c = 0; c < 2 * bs + 1; c++)
pred[0][c] = (int)yabove_row[c - 1] - mean;
for (r = 1; r < bs + 1; r++)
for (c = 1; c < 2 * bs + 1 - r; c++) {
ipred = c1 * pred[r - 1][c] + c2 * pred[r][c - 1]
+ c3 * pred[r - 1][c - 1] + c4 * pred[r - 1][c + 1];
pred[r][c] = ipred < 0 ? -((-ipred + round_val) >> prec_bits) :
((ipred + round_val) >> prec_bits);
}
for (r = 0; r < bs; r++) {
for (c = 0; c < bs; c++) {
ipred = pred[r + 1][c + 1] + mean;
ypred_ptr[c] = clip_pixel(ipred);
}
ypred_ptr += y_stride;
}
}
static void build_filter_intra_predictors(const MACROBLOCKD *xd,
const uint8_t *ref, int ref_stride,
uint8_t *dst, int dst_stride,
PREDICTION_MODE mode, TX_SIZE tx_size,
int up_available, int left_available,
int right_available, int x, int y,
int plane) {
int i;
DECLARE_ALIGNED_ARRAY(16, uint8_t, left_col, 64);
DECLARE_ALIGNED_ARRAY(16, uint8_t, above_data, 128 + 16);
uint8_t *above_row = above_data + 16;
const uint8_t *const_above_row = above_row;
const int bs = 4 << tx_size;
int frame_width, frame_height;
int x0, y0;
const struct macroblockd_plane *const pd = &xd->plane[plane];
// Get current frame pointer, width and height.
if (plane == 0) {
frame_width = xd->cur_buf->y_width;
frame_height = xd->cur_buf->y_height;
} else {
frame_width = xd->cur_buf->uv_width;
frame_height = xd->cur_buf->uv_height;
}
// Get block position in current frame.
x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
vpx_memset(left_col, 129, 64);
// left
if (left_available) {
if (xd->mb_to_bottom_edge < 0) {
/* slower path if the block needs border extension */
if (y0 + bs <= frame_height) {
for (i = 0; i < bs; ++i)
left_col[i] = ref[i * ref_stride - 1];
} else {
const int extend_bottom = frame_height - y0;
for (i = 0; i < extend_bottom; ++i)
left_col[i] = ref[i * ref_stride - 1];
for (; i < bs; ++i)
left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1];
}
} else {
/* faster path if the block does not need extension */
for (i = 0; i < bs; ++i)
left_col[i] = ref[i * ref_stride - 1];
}
}
// TODO(hkuang) do not extend 2*bs pixels for all modes.
// above
if (up_available) {
const uint8_t *above_ref = ref - ref_stride;
if (xd->mb_to_right_edge < 0) {
/* slower path if the block needs border extension */
if (x0 + 2 * bs <= frame_width) {
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, 2 * bs);
} else {
vpx_memcpy(above_row, above_ref, bs);
vpx_memset(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 + bs <= frame_width) {
const int r = frame_width - x0;
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
} else {
vpx_memcpy(above_row, above_ref, bs);
vpx_memset(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 <= frame_width) {
const int r = frame_width - x0;
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
} else {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
}
}
above_row[-1] = left_available ? above_ref[-1] : 129;
} else {
/* faster path if the block does not need extension */
if (bs == 4 && right_available && left_available) {
const_above_row = above_ref;
} else {
vpx_memcpy(above_row, above_ref, bs);
if (bs == 4 && right_available)
vpx_memcpy(above_row + bs, above_ref + bs, bs);
else
vpx_memset(above_row + bs, above_row[bs - 1], bs);
above_row[-1] = left_available ? above_ref[-1] : 129;
}
}
} else {
vpx_memset(above_row, 127, bs * 2);
above_row[-1] = 127;
}
// predict
filter_intra_predictors_4tap(dst, dst_stride, bs, const_above_row, left_col,
mode);
}
#endif
void vp9_predict_intra_block(const MACROBLOCKD *xd, int block_idx, int bwl_in,
TX_SIZE tx_size, PREDICTION_MODE mode,
#if CONFIG_FILTERINTRA
int filterbit,
#endif
const uint8_t *ref, int ref_stride,
uint8_t *dst, int dst_stride,
int aoff, int loff, int plane) {
@@ -456,8 +675,708 @@ void vp9_predict_intra_block(const MACROBLOCKD *xd, int block_idx, int bwl_in,
const int have_right = ((block_idx & wmask) != wmask);
const int x = aoff * 4;
const int y = loff * 4;
#if CONFIG_FILTERINTRA
const int filterflag = is_filter_allowed(mode) && is_filter_enabled(tx_size)
&& filterbit;
#endif
assert(bwl >= 0);
#if CONFIG_FILTERINTRA
if (!filterflag) {
#endif
build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, tx_size,
have_top, have_left, have_right, x, y, plane);
#if CONFIG_FILTERINTRA
} else {
build_filter_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode,
tx_size, have_top, have_left, have_right, x, y, plane);
}
#endif
}
#if CONFIG_INTERINTRA
#if CONFIG_MASKED_INTERINTRA
#define MASK_WEIGHT_BITS_INTERINTRA 6
static int get_masked_weight_interintra(int m) {
#define SMOOTHER_LEN_INTERINTRA 32
static const uint8_t smoothfn[2 * SMOOTHER_LEN_INTERINTRA + 1] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 2, 2, 3, 4, 5, 6,
8, 9, 12, 14, 17, 21, 24, 28,
32,
36, 40, 43, 47, 50, 52, 55, 56,
58, 59, 60, 61, 62, 62, 63, 63,
63, 63, 63, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64,
};
if (m < -SMOOTHER_LEN_INTERINTRA)
return 0;
else if (m > SMOOTHER_LEN_INTERINTRA)
return (1 << MASK_WEIGHT_BITS_INTERINTRA);
else
return smoothfn[m + SMOOTHER_LEN_INTERINTRA];
}
static int get_hard_mask_interintra(int m) {
return m > 0;
}
// Equation of line: f(x, y) = a[0]*(x - a[2]*w/4) + a[1]*(y - a[3]*h/4) = 0
// The soft mask is obtained by computing f(x, y) and then calling
// get_masked_weight(f(x, y)).
static const int mask_params_sml_interintra[1 << MASK_BITS_SML_INTERINTRA]
[4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
};
static const int mask_params_med_hgtw_interintra[1 << MASK_BITS_MED_INTERINTRA]
[4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
};
static const int mask_params_med_hltw_interintra[1 << MASK_BITS_MED_INTERINTRA]
[4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
};
static const int mask_params_med_heqw_interintra[1 << MASK_BITS_MED_INTERINTRA]
[4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{ 0, 2, 0, 1},
{ 0, -2, 0, 1},
{ 0, 2, 0, 3},
{ 0, -2, 0, 3},
{ 2, 0, 1, 0},
{-2, 0, 1, 0},
{ 2, 0, 3, 0},
{-2, 0, 3, 0},
};
static const int mask_params_big_hgtw_interintra[1 << MASK_BITS_BIG_INTERINTRA]
[4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
{ 0, 2, 0, 1},
{ 0, -2, 0, 1},
{ 0, 2, 0, 2},
{ 0, -2, 0, 2},
{ 0, 2, 0, 3},
{ 0, -2, 0, 3},
{ 2, 0, 2, 0},
{-2, 0, 2, 0},
};
static const int mask_params_big_hltw_interintra[1 << MASK_BITS_BIG_INTERINTRA]
[4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
{ 0, 2, 0, 2},
{ 0, -2, 0, 2},
{ 2, 0, 1, 0},
{-2, 0, 1, 0},
{ 2, 0, 2, 0},
{-2, 0, 2, 0},
{ 2, 0, 3, 0},
{-2, 0, 3, 0},
};
static const int mask_params_big_heqw_interintra[1 << MASK_BITS_BIG_INTERINTRA]
[4] = {
{-1, 2, 2, 2},
{ 1, -2, 2, 2},
{-2, 1, 2, 2},
{ 2, -1, 2, 2},
{ 2, 1, 2, 2},
{-2, -1, 2, 2},
{ 1, 2, 2, 2},
{-1, -2, 2, 2},
{-1, 2, 2, 1},
{ 1, -2, 2, 1},
{-1, 2, 2, 3},
{ 1, -2, 2, 3},
{ 1, 2, 2, 1},
{-1, -2, 2, 1},
{ 1, 2, 2, 3},
{-1, -2, 2, 3},
{-2, 1, 1, 2},
{ 2, -1, 1, 2},
{-2, 1, 3, 2},
{ 2, -1, 3, 2},
{ 2, 1, 1, 2},
{-2, -1, 1, 2},
{ 2, 1, 3, 2},
{-2, -1, 3, 2},
{ 0, 2, 0, 1},
{ 0, -2, 0, 1},
{ 0, 2, 0, 3},
{ 0, -2, 0, 3},
{ 2, 0, 1, 0},
{-2, 0, 1, 0},
{ 2, 0, 3, 0},
{-2, 0, 3, 0},
};
static const int *get_mask_params_interintra(int mask_index,
BLOCK_SIZE sb_type,
int h, int w) {
const int *a;
const int mask_bits = get_mask_bits_interintra(sb_type);
if (mask_index == MASK_NONE_INTERINTRA)
return NULL;
if (mask_bits == MASK_BITS_SML_INTERINTRA) {
a = mask_params_sml_interintra[mask_index];
} else if (mask_bits == MASK_BITS_MED_INTERINTRA) {
if (h > w)
a = mask_params_med_hgtw_interintra[mask_index];
else if (h < w)
a = mask_params_med_hltw_interintra[mask_index];
else
a = mask_params_med_heqw_interintra[mask_index];
} else if (mask_bits == MASK_BITS_BIG_INTERINTRA) {
if (h > w)
a = mask_params_big_hgtw_interintra[mask_index];
else if (h < w)
a = mask_params_big_hltw_interintra[mask_index];
else
a = mask_params_big_heqw_interintra[mask_index];
} else {
assert(0);
}
return a;
}
void vp9_generate_masked_weight_interintra(int mask_index,
BLOCK_SIZE sb_type,
int h, int w,
uint8_t *mask, int stride) {
int i, j;
const int *a = get_mask_params_interintra(mask_index, sb_type, h, w);
if (!a) return;
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int x = (j - (a[2] * w) / 4);
int y = (i - (a[3] * h) / 4);
int m = a[0] * x + a[1] * y;
mask[i * stride + j] = get_masked_weight_interintra(m);
}
}
void vp9_generate_hard_mask_interintra(int mask_index, BLOCK_SIZE sb_type,
int h, int w, uint8_t *mask, int stride) {
int i, j;
const int *a = get_mask_params_interintra(mask_index, sb_type, h, w);
if (!a) return;
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int x = (j - (a[2] * w) / 4);
int y = (i - (a[3] * h) / 4);
int m = a[0] * x + a[1] * y;
mask[i * stride + j] = get_hard_mask_interintra(m);
}
}
#endif
static void combine_interintra(PREDICTION_MODE mode,
#if CONFIG_MASKED_INTERINTRA
int use_masked_interintra,
int mask_index,
BLOCK_SIZE bsize,
#endif
uint8_t *comppred,
int compstride,
uint8_t *interpred,
int interstride,
uint8_t *intrapred,
int intrastride,
int bw, int bh) {
static const int scale_bits = 8;
static const int scale_max = 256;
static const int scale_round = 127;
static const int weights1d[64] = {
128, 125, 122, 119, 116, 114, 111, 109,
107, 105, 103, 101, 99, 97, 96, 94,
93, 91, 90, 89, 88, 86, 85, 84,
83, 82, 81, 81, 80, 79, 78, 78,
77, 76, 76, 75, 75, 74, 74, 73,
73, 72, 72, 71, 71, 71, 70, 70,
70, 70, 69, 69, 69, 69, 68, 68,
68, 68, 68, 67, 67, 67, 67, 67,
};
int size = MAX(bw, bh);
int size_scale = (size >= 64 ? 1 :
size == 32 ? 2 :
size == 16 ? 4 :
size == 8 ? 8 : 16);
int i, j;
#if CONFIG_MASKED_INTERINTRA
if (use_masked_interintra && get_mask_bits_interintra(bsize)) {
uint8_t mask[4096];
vp9_generate_masked_weight_interintra(mask_index, bsize, bh, bw, mask, bw);
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int m = mask[i * bw + j];
comppred[i * compstride + j] =
(intrapred[i * intrastride + j] * m +
interpred[i * interstride + j] *
((1 << MASK_WEIGHT_BITS_INTERINTRA) - m) +
(1 << (MASK_WEIGHT_BITS_INTERINTRA - 1))) >>
MASK_WEIGHT_BITS_INTERINTRA;
}
}
return;
}
#endif
switch (mode) {
case V_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = weights1d[i * size_scale];
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case H_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = weights1d[j * size_scale];
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case D63_PRED:
case D117_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (weights1d[i * size_scale] * 3 +
weights1d[j * size_scale]) >> 2;
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case D207_PRED:
case D153_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (weights1d[j * size_scale] * 3 +
weights1d[i * size_scale]) >> 2;
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case D135_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = weights1d[(i < j ? i : j) * size_scale];
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case D45_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (weights1d[i * size_scale] +
weights1d[j * size_scale]) >> 1;
comppred[i * compstride + j] =
((scale_max - scale) * interpred[i * interstride + j] +
scale * intrapred[i * intrastride + j] + scale_round)
>> scale_bits;
}
}
break;
case TM_PRED:
case DC_PRED:
default:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
comppred[i * compstride + j] = (interpred[i * interstride + j] +
intrapred[i * intrastride + j]) >> 1;
}
}
break;
}
}
static void build_intra_predictors_for_2nd_block_interintra
(const MACROBLOCKD *xd, const uint8_t *ref,
int ref_stride, uint8_t *dst, int dst_stride,
PREDICTION_MODE mode, TX_SIZE tx_size,
int up_available, int left_available,
int right_available, int bwltbh,
int x, int y, int plane) {
int i;
DECLARE_ALIGNED_ARRAY(16, uint8_t, left_col, 64);
DECLARE_ALIGNED_ARRAY(16, uint8_t, above_data, 128 + 16);
uint8_t *above_row = above_data + 16;
const uint8_t *const_above_row = above_row;
const int bs = 4 << tx_size;
int frame_width, frame_height;
int x0, y0;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const uint8_t *ref_fi;
int ref_stride_fi;
// 127 127 127 .. 127 127 127 127 127 127
// 129 A B .. Y Z
// 129 C D .. W X
// 129 E F .. U V
// 129 G H .. S T T T T T
// ..
once(init_intra_pred_fn_ptrs);
// Get current frame pointer, width and height.
if (plane == 0) {
frame_width = xd->cur_buf->y_width;
frame_height = xd->cur_buf->y_height;
} else {
frame_width = xd->cur_buf->uv_width;
frame_height = xd->cur_buf->uv_height;
}
// Get block position in current frame.
x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
vpx_memset(left_col, 129, 64);
// left
if (left_available) {
if (bwltbh) {
ref_fi = ref;
ref_stride_fi = ref_stride;
} else {
ref_fi = dst;
ref_stride_fi = dst_stride;
}
if (xd->mb_to_bottom_edge < 0) {
/* slower path if the block needs border extension */
if (y0 + bs <= frame_height) {
for (i = 0; i < bs; ++i)
left_col[i] = ref_fi[i * ref_stride_fi - 1];
} else {
const int extend_bottom = frame_height - y0;
assert(extend_bottom >= 0);
for (i = 0; i < extend_bottom; ++i)
left_col[i] = ref_fi[i * ref_stride_fi - 1];
for (; i < bs; ++i)
left_col[i] = ref_fi[(extend_bottom - 1) * ref_stride_fi - 1];
}
} else {
/* faster path if the block does not need extension */
for (i = 0; i < bs; ++i)
left_col[i] = ref_fi[i * ref_stride_fi - 1];
}
}
// TODO(hkuang) do not extend 2*bs pixels for all modes.
// above
if (up_available) {
const uint8_t *above_ref;
if (bwltbh) {
ref_fi = dst;
ref_stride_fi = dst_stride;
above_row[-1] = left_available ? ref[-ref_stride-1] : 129;
} else {
ref_fi = ref;
ref_stride_fi = ref_stride;
above_row[-1] = ref[-ref_stride-1];
}
above_ref = ref_fi - ref_stride_fi;
if (xd->mb_to_right_edge < 0) {
/* slower path if the block needs border extension */
if (x0 + 2 * bs <= frame_width) {
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, 2 * bs);
} else {
vpx_memcpy(above_row, above_ref, bs);
vpx_memset(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 + bs <= frame_width) {
const int r = frame_width - x0;
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
} else {
vpx_memcpy(above_row, above_ref, bs);
vpx_memset(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 <= frame_width) {
const int r = frame_width - x0;
assert(r >= 0);
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
} else {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
}
}
} else {
/* faster path if the block does not need extension */
if (bs == 4 && right_available && left_available) {
const_above_row = above_ref;
} else {
vpx_memcpy(above_row, above_ref, bs);
if (bs == 4 && right_available)
vpx_memcpy(above_row + bs, above_ref + bs, bs);
else
vpx_memset(above_row + bs, above_row[bs - 1], bs);
}
}
} else {
vpx_memset(above_row, 127, bs * 2);
above_row[-1] = 127;
}
// predict
if (mode == DC_PRED) {
dc_pred[left_available][up_available][tx_size](dst, dst_stride,
const_above_row, left_col);
} else {
pred[mode][tx_size](dst, dst_stride, const_above_row, left_col);
}
}
// Break down rectangular intra prediction for joint spatio-temporal prediction
// into two square intra predictions.
static void build_intra_predictors_for_interintra(MACROBLOCKD *xd,
uint8_t *src, int src_stride,
uint8_t *pred_ptr, int stride,
PREDICTION_MODE mode,
int bw, int bh,
int up_available, int left_available,
int right_available, int plane) {
if (bw == bh) {
build_intra_predictors(xd, src, src_stride, pred_ptr, stride,
mode, intra_size_log2_for_interintra(bw),
up_available, left_available, right_available,
0, 0, plane);
} else if (bw < bh) {
uint8_t *src_bottom = src + bw * src_stride;
uint8_t *pred_ptr_bottom = pred_ptr + bw * stride;
build_intra_predictors(xd, src, src_stride, pred_ptr, stride,
mode, intra_size_log2_for_interintra(bw),
up_available, left_available, right_available,
0, 0, plane);
build_intra_predictors_for_2nd_block_interintra(xd, src_bottom, src_stride,
pred_ptr_bottom, stride,
mode, intra_size_log2_for_interintra(bw),
up_available, left_available, 0, 1,
0, bw, plane);
} else {
uint8_t *src_right = src + bh;
uint8_t *pred_ptr_right = pred_ptr + bh;
build_intra_predictors(xd, src, src_stride, pred_ptr, stride,
mode, intra_size_log2_for_interintra(bh),
up_available, left_available, 1,
0, 0, plane);
build_intra_predictors_for_2nd_block_interintra(xd, src_right, src_stride,
pred_ptr_right, stride,
mode, intra_size_log2_for_interintra(bh),
up_available, left_available, right_available, 0,
bh, 0, plane);
}
}
void vp9_build_interintra_predictors_sby(MACROBLOCKD *xd,
uint8_t *ypred,
int ystride,
BLOCK_SIZE bsize) {
int bw = 4 << b_width_log2(bsize);
int bh = 4 << b_height_log2(bsize);
uint8_t intrapredictor[4096];
build_intra_predictors_for_interintra(
xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride,
intrapredictor, bw,
xd->mi[0]->mbmi.interintra_mode, bw, bh,
xd->up_available, xd->left_available, 0, 0);
combine_interintra(xd->mi[0]->mbmi.interintra_mode,
#if CONFIG_MASKED_INTERINTRA
xd->mi[0]->mbmi.use_masked_interintra,
xd->mi[0]->mbmi.interintra_mask_index,
bsize,
#endif
xd->plane[0].dst.buf, xd->plane[0].dst.stride,
ypred, ystride, intrapredictor, bw, bw, bh);
}
void vp9_build_interintra_predictors_sbuv(MACROBLOCKD *xd,
uint8_t *upred,
uint8_t *vpred,
int ustride, int vstride,
BLOCK_SIZE bsize) {
int bwl = b_width_log2(bsize), bw = 2 << bwl;
int bhl = b_height_log2(bsize), bh = 2 << bhl;
uint8_t uintrapredictor[1024];
uint8_t vintrapredictor[1024];
build_intra_predictors_for_interintra(
xd, xd->plane[1].dst.buf, xd->plane[1].dst.stride,
uintrapredictor, bw,
xd->mi[0]->mbmi.interintra_uv_mode, bw, bh,
xd->up_available, xd->left_available, 0, 1);
build_intra_predictors_for_interintra(
xd, xd->plane[2].dst.buf, xd->plane[1].dst.stride,
vintrapredictor, bw,
xd->mi[0]->mbmi.interintra_uv_mode, bw, bh,
xd->up_available, xd->left_available, 0, 2);
combine_interintra(xd->mi[0]->mbmi.interintra_uv_mode,
#if CONFIG_MASKED_INTERINTRA
xd->mi[0]->mbmi.use_masked_interintra,
xd->mi[0]->mbmi.interintra_uv_mask_index,
bsize,
#endif
xd->plane[1].dst.buf, xd->plane[1].dst.stride,
upred, ustride, uintrapredictor, bw, bw, bh);
combine_interintra(xd->mi[0]->mbmi.interintra_uv_mode,
#if CONFIG_MASKED_INTERINTRA
xd->mi[0]->mbmi.use_masked_interintra,
xd->mi[0]->mbmi.interintra_uv_mask_index,
bsize,
#endif
xd->plane[2].dst.buf, xd->plane[2].dst.stride,
vpred, vstride, vintrapredictor, bw, bw, bh);
}
void vp9_build_interintra_predictors(MACROBLOCKD *xd,
uint8_t *ypred,
uint8_t *upred,
uint8_t *vpred,
int ystride, int ustride, int vstride,
BLOCK_SIZE bsize) {
vp9_build_interintra_predictors_sby(xd, ypred, ystride, bsize);
vp9_build_interintra_predictors_sbuv(xd, upred, vpred,
ustride, vstride, bsize);
}
#endif

View File

@@ -20,9 +20,37 @@ extern "C" {
void vp9_predict_intra_block(const MACROBLOCKD *xd, int block_idx, int bwl_in,
TX_SIZE tx_size, PREDICTION_MODE mode,
#if CONFIG_FILTERINTRA
int filterbit,
#endif
const uint8_t *ref, int ref_stride,
uint8_t *dst, int dst_stride,
int aoff, int loff, int plane);
#if CONFIG_INTERINTRA
void vp9_build_interintra_predictors(MACROBLOCKD *xd,
uint8_t *ypred,
uint8_t *upred,
uint8_t *vpred,
int ystride,
int ustride,
int vstride,
BLOCK_SIZE bsize);
void vp9_build_interintra_predictors_sby(MACROBLOCKD *xd,
uint8_t *ypred,
int ystride,
BLOCK_SIZE bsize);
void vp9_build_interintra_predictors_sbuv(MACROBLOCKD *xd,
uint8_t *upred,
uint8_t *vpred,
int ustride, int vstride,
BLOCK_SIZE bsize);
#if CONFIG_MASKED_INTERINTRA
void vp9_generate_masked_weight_interintra(int mask_index,
BLOCK_SIZE sb_type,
int h, int w,
uint8_t *mask, int stride);
#endif
#endif
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -305,15 +305,15 @@ specialize qw/vp9_convolve_avg neon_asm dspr2/, "$sse2_x86inc";
$vp9_convolve_avg_neon_asm=vp9_convolve_avg_neon;
add_proto qw/void vp9_convolve8/, "const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h";
specialize qw/vp9_convolve8 sse2 ssse3 avx2 neon_asm dspr2/;
specialize qw/vp9_convolve8 sse2 ssse3 neon_asm dspr2/;
$vp9_convolve8_neon_asm=vp9_convolve8_neon;
add_proto qw/void vp9_convolve8_horiz/, "const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h";
specialize qw/vp9_convolve8_horiz sse2 ssse3 avx2 neon_asm dspr2/;
specialize qw/vp9_convolve8_horiz sse2 ssse3 neon_asm dspr2/;
$vp9_convolve8_horiz_neon_asm=vp9_convolve8_horiz_neon;
add_proto qw/void vp9_convolve8_vert/, "const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h";
specialize qw/vp9_convolve8_vert sse2 ssse3 avx2 neon_asm dspr2/;
specialize qw/vp9_convolve8_vert sse2 ssse3 neon_asm dspr2/;
$vp9_convolve8_vert_neon_asm=vp9_convolve8_vert_neon;
add_proto qw/void vp9_convolve8_avg/, "const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h";
@@ -402,25 +402,25 @@ if (vpx_config("CONFIG_VP9_ENCODER") eq "yes") {
# variance
add_proto qw/unsigned int vp9_variance32x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse";
specialize qw/vp9_variance32x16/, "$sse2_x86inc", "$avx2_x86inc";
specialize qw/vp9_variance32x16 avx2/, "$sse2_x86inc";
add_proto qw/unsigned int vp9_variance16x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse";
specialize qw/vp9_variance16x32/, "$sse2_x86inc";
add_proto qw/unsigned int vp9_variance64x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse";
specialize qw/vp9_variance64x32/, "$sse2_x86inc", "$avx2_x86inc";
specialize qw/vp9_variance64x32 avx2/, "$sse2_x86inc";
add_proto qw/unsigned int vp9_variance32x64/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse";
specialize qw/vp9_variance32x64/, "$sse2_x86inc";
add_proto qw/unsigned int vp9_variance32x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse";
specialize qw/vp9_variance32x32/, "$sse2_x86inc", "$avx2_x86inc";
specialize qw/vp9_variance32x32 avx2/, "$sse2_x86inc";
add_proto qw/unsigned int vp9_variance64x64/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse";
specialize qw/vp9_variance64x64/, "$sse2_x86inc", "$avx2_x86inc";
specialize qw/vp9_variance64x64 avx2/, "$sse2_x86inc";
add_proto qw/unsigned int vp9_variance16x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse";
specialize qw/vp9_variance16x16 mmx/, "$sse2_x86inc", "$avx2_x86inc";
specialize qw/vp9_variance16x16 mmx avx2/, "$sse2_x86inc";
add_proto qw/unsigned int vp9_variance16x8/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse";
specialize qw/vp9_variance16x8 mmx/, "$sse2_x86inc";
@@ -447,10 +447,10 @@ add_proto qw/unsigned int vp9_variance4x4/, "const uint8_t *src_ptr, int source_
specialize qw/vp9_variance4x4 mmx/, "$sse2_x86inc";
add_proto qw/unsigned int vp9_sub_pixel_variance64x64/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse";
specialize qw/vp9_sub_pixel_variance64x64 avx2/, "$sse2_x86inc", "$ssse3_x86inc";
specialize qw/vp9_sub_pixel_variance64x64/, "$sse2_x86inc", "$ssse3_x86inc";
add_proto qw/unsigned int vp9_sub_pixel_avg_variance64x64/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse, const uint8_t *second_pred";
specialize qw/vp9_sub_pixel_avg_variance64x64 avx2/, "$sse2_x86inc", "$ssse3_x86inc";
specialize qw/vp9_sub_pixel_avg_variance64x64/, "$sse2_x86inc", "$ssse3_x86inc";
add_proto qw/unsigned int vp9_sub_pixel_variance32x64/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse";
specialize qw/vp9_sub_pixel_variance32x64/, "$sse2_x86inc", "$ssse3_x86inc";
@@ -477,10 +477,10 @@ add_proto qw/unsigned int vp9_sub_pixel_avg_variance16x32/, "const uint8_t *src_
specialize qw/vp9_sub_pixel_avg_variance16x32/, "$sse2_x86inc", "$ssse3_x86inc";
add_proto qw/unsigned int vp9_sub_pixel_variance32x32/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse";
specialize qw/vp9_sub_pixel_variance32x32 avx2/, "$sse2_x86inc", "$ssse3_x86inc";
specialize qw/vp9_sub_pixel_variance32x32/, "$sse2_x86inc", "$ssse3_x86inc";
add_proto qw/unsigned int vp9_sub_pixel_avg_variance32x32/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse, const uint8_t *second_pred";
specialize qw/vp9_sub_pixel_avg_variance32x32 avx2/, "$sse2_x86inc", "$ssse3_x86inc";
specialize qw/vp9_sub_pixel_avg_variance32x32/, "$sse2_x86inc", "$ssse3_x86inc";
add_proto qw/unsigned int vp9_sub_pixel_variance16x16/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse";
specialize qw/vp9_sub_pixel_variance16x16/, "$sse2_x86inc", "$ssse3_x86inc";
@@ -506,6 +506,125 @@ specialize qw/vp9_sub_pixel_variance8x8/, "$sse2_x86inc", "$ssse3_x86inc";
add_proto qw/unsigned int vp9_sub_pixel_avg_variance8x8/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse, const uint8_t *second_pred";
specialize qw/vp9_sub_pixel_avg_variance8x8/, "$sse2_x86inc", "$ssse3_x86inc";
if ((vpx_config("CONFIG_MASKED_INTERINTER") eq "yes") || ((vpx_config("CONFIG_INTERINTRA") eq "yes") && (vpx_config("CONFIG_MASKED_INTERINTRA") eq "yes"))) {
add_proto qw/unsigned int vp9_masked_variance32x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance32x16/;
add_proto qw/unsigned int vp9_masked_variance16x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masdctked_variance16x32/;
add_proto qw/unsigned int vp9_masked_variance64x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance64x32/;
add_proto qw/unsigned int vp9_masked_variance32x64/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance32x64/;
add_proto qw/unsigned int vp9_masked_variance32x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance32x32/;
add_proto qw/unsigned int vp9_masked_variance64x64/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance64x64/;
add_proto qw/unsigned int vp9_masked_variance16x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance16x16/;
add_proto qw/unsigned int vp9_masked_variance16x8/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance16x8/;
add_proto qw/unsigned int vp9_masked_variance8x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance8x16/;
add_proto qw/unsigned int vp9_masked_variance8x8/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance8x8/;
add_proto qw/unsigned int vp9_masked_variance8x4/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance8x4/;
add_proto qw/unsigned int vp9_masked_variance4x8/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance4x8/;
add_proto qw/unsigned int vp9_masked_variance4x4/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_variance4x4/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance64x64/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance64x64/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance32x64/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance32x64/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance64x32/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance64x32/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance32x16/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance32x16/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance16x32/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance16x32/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance32x32/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance32x32/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance16x16/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance16x16/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance8x16/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance8x16/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance16x8/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance16x8/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance8x8/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance8x8/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance8x4/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance8x4/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance4x8/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance4x8/;
add_proto qw/unsigned int vp9_masked_sub_pixel_variance4x4/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride, unsigned int *sse";
specialize qw/vp9_masked_sub_pixel_variance4x4/;
add_proto qw/unsigned int vp9_masked_sad64x64/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad64x64/;
add_proto qw/unsigned int vp9_masked_sad32x64/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad32x64/;
add_proto qw/unsigned int vp9_masked_sad64x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad64x32/;
add_proto qw/unsigned int vp9_masked_sad32x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad32x16/;
add_proto qw/unsigned int vp9_masked_sad16x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad16x32/;
add_proto qw/unsigned int vp9_masked_sad32x32/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad32x32/;
add_proto qw/unsigned int vp9_masked_sad16x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad16x16/;
add_proto qw/unsigned int vp9_masked_sad16x8/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad16x8/;
add_proto qw/unsigned int vp9_masked_sad8x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad8x16/;
add_proto qw/unsigned int vp9_masked_sad8x8/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad8x8/;
add_proto qw/unsigned int vp9_masked_sad8x4/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad8x4/;
add_proto qw/unsigned int vp9_masked_sad4x8/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad4x8/;
add_proto qw/unsigned int vp9_masked_sad4x4/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int ref_stride, const uint8_t *mask, int mask_stride";
specialize qw/vp9_masked_sad4x4/;
}
# TODO(jingning): need to convert 8x4/4x8 functions into mmx/sse form
add_proto qw/unsigned int vp9_sub_pixel_variance8x4/, "const uint8_t *src_ptr, int source_stride, int xoffset, int yoffset, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse";
specialize qw/vp9_sub_pixel_variance8x4/, "$sse2_x86inc", "$ssse3_x86inc";
@@ -653,7 +772,7 @@ add_proto qw/void vp9_sad4x4x8/, "const uint8_t *src_ptr, int src_stride, const
specialize qw/vp9_sad4x4x8 sse4/;
add_proto qw/void vp9_sad64x64x4d/, "const uint8_t *src_ptr, int src_stride, const uint8_t* const ref_ptr[], int ref_stride, unsigned int *sad_array";
specialize qw/vp9_sad64x64x4d sse2 avx2/;
specialize qw/vp9_sad64x64x4d sse2/;
add_proto qw/void vp9_sad32x64x4d/, "const uint8_t *src_ptr, int src_stride, const uint8_t* const ref_ptr[], int ref_stride, unsigned int *sad_array";
specialize qw/vp9_sad32x64x4d sse2/;
@@ -668,7 +787,7 @@ add_proto qw/void vp9_sad16x32x4d/, "const uint8_t *src_ptr, int src_stride, co
specialize qw/vp9_sad16x32x4d sse2/;
add_proto qw/void vp9_sad32x32x4d/, "const uint8_t *src_ptr, int src_stride, const uint8_t* const ref_ptr[], int ref_stride, unsigned int *sad_array";
specialize qw/vp9_sad32x32x4d sse2 avx2/;
specialize qw/vp9_sad32x32x4d sse2/;
add_proto qw/void vp9_sad16x16x4d/, "const uint8_t *src_ptr, int src_stride, const uint8_t* const ref_ptr[], int ref_stride, unsigned int *sad_array";
specialize qw/vp9_sad16x16x4d sse2/;
@@ -693,7 +812,7 @@ add_proto qw/void vp9_sad4x4x4d/, "const uint8_t *src_ptr, int src_stride, cons
specialize qw/vp9_sad4x4x4d sse/;
add_proto qw/unsigned int vp9_mse16x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int recon_stride, unsigned int *sse";
specialize qw/vp9_mse16x16 mmx/, "$sse2_x86inc", "$avx2_x86inc";
specialize qw/vp9_mse16x16 mmx avx2/, "$sse2_x86inc";
add_proto qw/unsigned int vp9_mse8x16/, "const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, int recon_stride, unsigned int *sse";
specialize qw/vp9_mse8x16/;
@@ -739,19 +858,31 @@ add_proto qw/void vp9_fht8x8/, "const int16_t *input, int16_t *output, int strid
specialize qw/vp9_fht8x8 sse2 avx2/;
add_proto qw/void vp9_fht16x16/, "const int16_t *input, int16_t *output, int stride, int tx_type";
specialize qw/vp9_fht16x16 sse2 avx2/;
specialize qw/vp9_fht16x16 sse2/;
add_proto qw/void vp9_fwht4x4/, "const int16_t *input, int16_t *output, int stride";
specialize qw/vp9_fwht4x4/, "$mmx_x86inc";
add_proto qw/void vp9_fdct4x4_1/, "const int16_t *input, int16_t *output, int stride";
specialize qw/vp9_fdct4x4_1 sse2/;
add_proto qw/void vp9_fdct4x4/, "const int16_t *input, int16_t *output, int stride";
specialize qw/vp9_fdct4x4 sse2 avx2/;
add_proto qw/void vp9_fdct8x8_1/, "const int16_t *input, int16_t *output, int stride";
specialize qw/vp9_fdct8x8_1 sse2/;
add_proto qw/void vp9_fdct8x8/, "const int16_t *input, int16_t *output, int stride";
specialize qw/vp9_fdct8x8 sse2 avx2/, "$ssse3_x86_64";
add_proto qw/void vp9_fdct16x16_1/, "const int16_t *input, int16_t *output, int stride";
specialize qw/vp9_fdct16x16_1 sse2/;
add_proto qw/void vp9_fdct16x16/, "const int16_t *input, int16_t *output, int stride";
specialize qw/vp9_fdct16x16 sse2 avx2/;
specialize qw/vp9_fdct16x16 sse2/;
add_proto qw/void vp9_fdct32x32_1/, "const int16_t *input, int16_t *output, int stride";
specialize qw/vp9_fdct32x32_1 sse2/;
add_proto qw/void vp9_fdct32x32/, "const int16_t *input, int16_t *output, int stride";
specialize qw/vp9_fdct32x32 sse2 avx2/;

View File

@@ -46,8 +46,8 @@ static INLINE int vp9_is_valid_scale(const struct scale_factors *sf) {
}
static INLINE int vp9_is_scaled(const struct scale_factors *sf) {
return sf->x_scale_fp != REF_NO_SCALE ||
sf->y_scale_fp != REF_NO_SCALE;
return vp9_is_valid_scale(sf) &&
(sf->x_scale_fp != REF_NO_SCALE || sf->y_scale_fp != REF_NO_SCALE);
}
#ifdef __cplusplus

View File

@@ -464,7 +464,6 @@ sym(vp9_mbpost_proc_down_mmx):
; unsigned char whiteclamp[16],
; unsigned char bothclamp[16],
; unsigned int width, unsigned int height, int pitch)
extern sym(rand)
global sym(vp9_plane_add_noise_mmx) PRIVATE
sym(vp9_plane_add_noise_mmx):
push rbp
@@ -476,7 +475,7 @@ sym(vp9_plane_add_noise_mmx):
; end prolog
.addnoise_loop:
call sym(rand) WRT_PLT
call sym(LIBVPX_RAND) WRT_PLT
mov rcx, arg(1) ;noise
and rax, 0xff
add rcx, rax

View File

@@ -629,7 +629,6 @@ sym(vp9_mbpost_proc_across_ip_xmm):
; unsigned char whiteclamp[16],
; unsigned char bothclamp[16],
; unsigned int width, unsigned int height, int pitch)
extern sym(rand)
global sym(vp9_plane_add_noise_wmt) PRIVATE
sym(vp9_plane_add_noise_wmt):
push rbp
@@ -641,7 +640,7 @@ sym(vp9_plane_add_noise_wmt):
; end prolog
.addnoise_loop:
call sym(rand) WRT_PLT
call sym(LIBVPX_RAND) WRT_PLT
mov rcx, arg(1) ;noise
and rax, 0xff
add rcx, rax

View File

@@ -254,11 +254,24 @@ static void predict_and_reconstruct_intra_block(int plane, int block,
: mi->mbmi.uv_mode;
int x, y;
uint8_t *dst;
#if CONFIG_FILTERINTRA
int fbit;
if (plane == 0)
if (mi->mbmi.sb_type < BLOCK_8X8)
fbit = mi->b_filter_info[block];
else
fbit = is_filter_enabled(tx_size) ? mi->mbmi.filterbit : 0;
else
fbit = is_filter_enabled(tx_size) ? mi->mbmi.uv_filterbit : 0;
#endif
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y);
dst = &pd->dst.buf[4 * y * pd->dst.stride + 4 * x];
vp9_predict_intra_block(xd, block >> (tx_size << 1),
b_width_log2(plane_bsize), tx_size, mode,
#if CONFIG_FILTERINTRA
fbit,
#endif
dst, pd->dst.stride, dst, pd->dst.stride,
x, y, plane);
@@ -312,13 +325,6 @@ static MB_MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
for (x = !y; x < x_mis; ++x)
xd->mi[y * cm->mi_stride + x] = xd->mi[0];
#if CONFIG_TRANSCODE && WRITE_MI_ARRAY
for (y = 0; y < y_mis; ++y)
for (x = !y; x < x_mis; ++x)
vpx_memcpy(&cm->mi[offset + y * cm->mi_stride + x],
&cm->mi[offset], sizeof(MODE_INFO));
#endif
set_skip_context(xd, mi_row, mi_col);
// Distance of Mb to the various image edges. These are specified to 8th pel
@@ -329,6 +335,84 @@ static MB_MODE_INFO *set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
return &xd->mi[0]->mbmi;
}
#if CONFIG_SUPERTX
static void set_offsets_extend(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
BLOCK_SIZE top_bsize,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori) {
const int bw = num_8x8_blocks_wide_lookup[top_bsize];
const int bh = num_8x8_blocks_high_lookup[top_bsize];
const int offset = mi_row * cm->mi_stride + mi_col;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
set_mi_row_col(xd, tile, mi_row_ori, bh, mi_col_ori, bw,
cm->mi_rows, cm->mi_cols);
}
static void set_mb_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
BLOCK_SIZE bsize, int mi_row, int mi_col) {
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
xd->mi[0]->mbmi.sb_type = bsize;
for (y = 0; y < y_mis; ++y)
for (x = !y; x < x_mis; ++x)
xd->mi[y * cm->mi_stride + x] = xd->mi[0];
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
}
static void set_offsets_topblock(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
BLOCK_SIZE bsize, int mi_row, int mi_col) {
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int offset = mi_row * cm->mi_stride + mi_col;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
}
static void set_param_topblock(VP9_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
#if CONFIG_EXT_TX
int txfm,
#endif
int skip) {
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
const int offset = mi_row * cm->mi_stride + mi_col;
int x, y;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
for (y = 0; y < y_mis; ++y)
for (x = 0; x < x_mis; ++x) {
xd->mi[y * cm->mi_stride + x]->mbmi.skip = skip;
#if CONFIG_EXT_TX
xd->mi[y * cm->mi_stride + x]->mbmi.ext_txfrm = txfm;
#endif
}
}
#endif
static void set_ref(VP9_COMMON *const cm, MACROBLOCKD *const xd,
int idx, int mi_row, int mi_col) {
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
@@ -342,14 +426,246 @@ static void set_ref(VP9_COMMON *const cm, MACROBLOCKD *const xd,
xd->corrupted |= ref_buffer->buf->corrupted;
}
#if CONFIG_SUPERTX
static void dec_predict_b_extend(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE top_bsize) {
set_offsets_extend(cm, xd, tile, top_bsize, mi_row, mi_col,
mi_row_ori, mi_col_ori);
set_ref(cm, xd, 0, mi_row_ori, mi_col_ori);
if (has_second_ref(&xd->mi[0]->mbmi))
set_ref(cm, xd, 1, mi_row_ori, mi_col_ori);
xd->mi[0]->mbmi.tx_size = b_width_log2(top_bsize);
#if !CONFIG_MASKED_INTERINTER
vp9_dec_build_inter_predictors_sb(xd, mi_row_ori, mi_col_ori, top_bsize);
#else
vp9_dec_build_inter_predictors_sb_extend(xd, mi_row, mi_col,
mi_row_ori, mi_col_ori, top_bsize);
#endif
}
static void dec_predict_b_sub8x8_extend(VP9_COMMON *const cm,
MACROBLOCKD *const xd,
const TileInfo *const tile,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE top_bsize,
PARTITION_TYPE partition) {
set_offsets_extend(cm, xd, tile, top_bsize, mi_row, mi_col,
mi_row_ori, mi_col_ori);
set_ref(cm, xd, 0, mi_row_ori, mi_col_ori);
if (has_second_ref(&xd->mi[0]->mbmi))
set_ref(cm, xd, 1, mi_row_ori, mi_col_ori);
xd->mi[0]->mbmi.tx_size = b_width_log2(top_bsize);
vp9_dec_build_inter_predictors_sby_sub8x8_extend(xd, mi_row, mi_col,
mi_row_ori, mi_col_ori,
top_bsize, partition);
vp9_dec_build_inter_predictors_sbuv_sub8x8_extend(xd,
#if CONFIG_MASKED_INTERINTER
mi_row, mi_col,
#endif
mi_row_ori, mi_col_ori,
top_bsize);
}
static void dec_predict_sb_complex(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
int mi_row, int mi_col,
int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize,
uint8_t *dst_buf[3], int dst_stride[3]) {
const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
MB_MODE_INFO *mbmi;
int i, offset = mi_row * cm->mi_stride + mi_col;
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf1, MAX_MB_PLANE * 32 * 32);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf2, MAX_MB_PLANE * 32 * 32);
DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf3, MAX_MB_PLANE * 32 * 32);
uint8_t *dst_buf1[3] = {tmp_buf1, tmp_buf1 + 32 * 32, tmp_buf1 + 2 * 32 * 32};
uint8_t *dst_buf2[3] = {tmp_buf2, tmp_buf2 + 32 * 32, tmp_buf2 + 2 * 32 * 32};
uint8_t *dst_buf3[3] = {tmp_buf3, tmp_buf3 + 32 * 32, tmp_buf3 + 2 * 32 * 32};
int dst_stride1[3] = {32, 32, 32};
int dst_stride2[3] = {32, 32, 32};
int dst_stride3[3] = {32, 32, 32};
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
mbmi = &xd->mi[0]->mbmi;
partition = partition_lookup[bsl][mbmi->sb_type];
subsize = get_subsize(bsize, partition);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
}
switch (partition) {
case PARTITION_NONE:
assert(bsize < top_bsize);
dec_predict_b_extend(cm, xd, tile, mi_row, mi_col, mi_row_ori, mi_col_ori,
top_bsize);
break;
case PARTITION_HORZ:
if (bsize > BLOCK_8X8) {
dec_predict_b_extend(cm, xd, tile, mi_row, mi_col, mi_row_ori,
mi_col_ori, top_bsize);
} else {
dec_predict_b_sub8x8_extend(cm, xd, tile, mi_row, mi_col,
mi_row_ori, mi_col_ori,
top_bsize, partition);
}
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = tmp_buf1 + i * 32 * 32;
xd->plane[i].dst.stride = 32;
}
dec_predict_b_extend(cm, xd, tile, mi_row + hbs, mi_col,
mi_row_ori, mi_col_ori, top_bsize);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp9_build_masked_inter_predictor_complex(dst_buf[i], dst_stride[i],
dst_buf1[i], dst_stride1[i],
i,
mi_row, mi_col,
mi_row_ori, mi_col_ori,
bsize, top_bsize,
PARTITION_HORZ);
}
}
break;
case PARTITION_VERT:
if (bsize > BLOCK_8X8) {
dec_predict_b_extend(cm, xd, tile, mi_row, mi_col, mi_row_ori,
mi_col_ori, top_bsize);
} else {
dec_predict_b_sub8x8_extend(cm, xd, tile, mi_row, mi_col,
mi_row_ori, mi_col_ori,
top_bsize, partition);
}
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = tmp_buf1 + i * 32 * 32;
xd->plane[i].dst.stride = 32;
}
dec_predict_b_extend(cm, xd, tile, mi_row, mi_col + hbs, mi_row_ori,
mi_col_ori, top_bsize);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
vp9_build_masked_inter_predictor_complex(dst_buf[i], dst_stride[i],
dst_buf1[i], dst_stride1[i],
i,
mi_row, mi_col,
mi_row_ori, mi_col_ori,
bsize, top_bsize,
PARTITION_VERT);
}
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
dec_predict_b_sub8x8_extend(cm, xd, tile, mi_row, mi_col,
mi_row_ori, mi_col_ori,
top_bsize, partition);
} else {
dec_predict_sb_complex(cm, xd, tile, mi_row, mi_col,
mi_row_ori, mi_col_ori, subsize, top_bsize,
dst_buf, dst_stride);
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols)
dec_predict_sb_complex(cm, xd, tile, mi_row, mi_col + hbs,
mi_row_ori, mi_col_ori, subsize, top_bsize,
dst_buf1, dst_stride1);
if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols)
dec_predict_sb_complex(cm, xd, tile, mi_row + hbs, mi_col,
mi_row_ori, mi_col_ori, subsize, top_bsize,
dst_buf2, dst_stride2);
if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols)
dec_predict_sb_complex(cm, xd, tile, mi_row + hbs, mi_col + hbs,
mi_row_ori, mi_col_ori, subsize, top_bsize,
dst_buf3, dst_stride3);
for (i = 0; i < MAX_MB_PLANE; i++) {
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
vp9_build_masked_inter_predictor_complex(dst_buf[i], dst_stride[i],
dst_buf1[i],
dst_stride1[i],
i, mi_row, mi_col,
mi_row_ori, mi_col_ori,
bsize, top_bsize,
PARTITION_VERT);
if (mi_row + hbs < cm->mi_rows) {
vp9_build_masked_inter_predictor_complex(dst_buf2[i],
dst_stride2[i],
dst_buf3[i],
dst_stride3[i],
i, mi_row, mi_col,
mi_row_ori, mi_col_ori,
bsize, top_bsize,
PARTITION_VERT);
vp9_build_masked_inter_predictor_complex(dst_buf[i],
dst_stride[i],
dst_buf2[i],
dst_stride2[i],
i, mi_row, mi_col,
mi_row_ori, mi_col_ori,
bsize, top_bsize,
PARTITION_HORZ);
}
} else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) {
vp9_build_masked_inter_predictor_complex(dst_buf[i],
dst_stride[i],
dst_buf2[i],
dst_stride2[i],
i, mi_row, mi_col,
mi_row_ori, mi_col_ori,
bsize, top_bsize,
PARTITION_HORZ);
}
}
}
break;
default:
assert(0);
}
}
#endif
static void decode_block(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col,
vp9_reader *r, BLOCK_SIZE bsize) {
const int less8x8 = bsize < BLOCK_8X8;
#if !CONFIG_SUPERTX
MB_MODE_INFO *mbmi = set_offsets(cm, xd, tile, bsize, mi_row, mi_col);
vp9_read_mode_info(cm, xd, tile, mi_row, mi_col, r);
#else
MB_MODE_INFO *mbmi;
if (!supertx_enabled) {
mbmi = set_offsets(cm, xd, tile, bsize, mi_row, mi_col);
} else {
set_mb_offsets(cm, xd, tile, bsize, mi_row, mi_col);
}
#endif
vp9_read_mode_info(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r);
#if CONFIG_SUPERTX
if (!supertx_enabled) {
#endif
if (less8x8)
bsize = BLOCK_8X8;
@@ -383,6 +699,9 @@ static void decode_block(VP9_COMMON *const cm, MACROBLOCKD *const xd,
mbmi->skip = 1; // skip loopfilter
}
}
#if CONFIG_SUPERTX
}
#endif
xd->corrupted |= vp9_reader_has_error(r);
}
@@ -413,38 +732,19 @@ static PARTITION_TYPE read_partition(VP9_COMMON *cm, MACROBLOCKD *xd, int hbs,
static void decode_partition(VP9_COMMON *const cm, MACROBLOCKD *const xd,
const TileInfo *const tile,
#if CONFIG_SUPERTX
int read_token, int supertx_enabled,
#endif
int mi_row, int mi_col,
vp9_reader* r, BLOCK_SIZE bsize) {
const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
#if CONFIG_TRANSCODE && READ_MI_ARRAY
// This is for test purpose only. It verifies the external file
// contains the right mode_info array.
if (bsize == BLOCK_64X64) {
MODE_INFO mi_array[64];
FILE *pf = cm->mi_array_pf;
if (pf) {
int i, j;
for (j = 0; j < MI_BLOCK_SIZE; ++j)
for (i = 0; i < MI_BLOCK_SIZE; ++i)
fread(&mi_array[j * 8 + i], 1, sizeof(MODE_INFO), pf);
}
if (pf && mi_row == 0 && mi_col == 8) {
int i, j;
for (j = 0; j < MI_BLOCK_SIZE; ++j) {
for (i = 0; i < MI_BLOCK_SIZE; ++i) {
MB_MODE_INFO *mbmi = &mi_array[j * 8 + i].mbmi;
b_mode_info *bmi = mi_array[j * 8 + i].bmi;
fprintf(stderr, "pos (%d, %d), bsize %d, mode %d\n",
mi_row + j , mi_col + i, mbmi->sb_type, bmi[0].as_mode);
}
}
fprintf(stderr, "\n");
}
}
#if CONFIG_SUPERTX
int skip = 0;
#if CONFIG_EXT_TX
int txfm = 0;
#endif
#endif
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
@@ -452,54 +752,145 @@ static void decode_partition(VP9_COMMON *const cm, MACROBLOCKD *const xd,
partition = read_partition(cm, xd, hbs, mi_row, mi_col, bsize, r);
subsize = get_subsize(bsize, partition);
#if CONFIG_SUPERTX
if (cm->frame_type != KEY_FRAME &&
partition != PARTITION_NONE &&
bsize <= BLOCK_32X32 &&
!supertx_enabled) {
TX_SIZE supertx_size = b_width_log2(bsize);
if (partition == PARTITION_SPLIT) {
supertx_enabled = vp9_read(r, cm->fc.supertxsplit_prob[supertx_size]);
cm->counts.supertxsplit[supertx_size][supertx_enabled]++;
} else {
supertx_enabled = vp9_read(r, cm->fc.supertx_prob[supertx_size]);
cm->counts.supertx[supertx_size][supertx_enabled]++;
}
}
if (supertx_enabled && read_token) {
int offset = mi_row * cm->mi_stride + mi_col;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[bsize],
mi_col, num_8x8_blocks_wide_lookup[bsize],
cm->mi_rows, cm->mi_cols);
set_skip_context(xd, mi_row, mi_col);
// Here we assume mbmi->segment_id = 0
skip = read_skip(cm, xd, 0, r);
if (skip)
reset_skip_context(xd, bsize);
#if CONFIG_EXT_TX
if (bsize <= BLOCK_16X16 && !skip) {
txfm = vp9_read(r, cm->fc.ext_tx_prob);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.ext_tx[txfm];
}
#endif
}
#endif
if (subsize < BLOCK_8X8) {
decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, subsize);
} else {
switch (partition) {
case PARTITION_NONE:
decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, subsize);
break;
case PARTITION_HORZ:
decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, subsize);
if (mi_row + hbs < cm->mi_rows)
decode_block(cm, xd, tile, mi_row + hbs, mi_col, r, subsize);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + hbs, mi_col, r, subsize);
break;
case PARTITION_VERT:
decode_block(cm, xd, tile, mi_row, mi_col, r, subsize);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r, subsize);
if (mi_col + hbs < cm->mi_cols)
decode_block(cm, xd, tile, mi_row, mi_col + hbs, r, subsize);
decode_block(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + hbs, r, subsize);
break;
case PARTITION_SPLIT:
decode_partition(cm, xd, tile, mi_row, mi_col, r, subsize);
decode_partition(cm, xd, tile, mi_row, mi_col + hbs, r, subsize);
decode_partition(cm, xd, tile, mi_row + hbs, mi_col, r, subsize);
decode_partition(cm, xd, tile, mi_row + hbs, mi_col + hbs, r, subsize);
decode_partition(cm, xd, tile,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row, mi_col, r, subsize);
decode_partition(cm, xd, tile,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row, mi_col + hbs, r, subsize);
decode_partition(cm, xd, tile,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row + hbs, mi_col, r, subsize);
decode_partition(cm, xd, tile,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row + hbs, mi_col + hbs, r, subsize);
break;
default:
assert(0 && "Invalid partition type");
}
}
#if CONFIG_SUPERTX
if (supertx_enabled && read_token) {
uint8_t *dst_buf[3];
int dst_stride[3], i;
vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
for (i = 0; i < MAX_MB_PLANE; i++) {
dst_buf[i] = xd->plane[i].dst.buf;
dst_stride[i] = xd->plane[i].dst.stride;
}
dec_predict_sb_complex(cm, xd, tile, mi_row, mi_col, mi_row, mi_col,
bsize, bsize, dst_buf, dst_stride);
if (!skip) {
int eobtotal = 0;
struct inter_args arg = { cm, xd, r, &eobtotal };
set_offsets_topblock(cm, xd, tile, bsize, mi_row, mi_col);
#if CONFIG_EXT_TX
xd->mi[0]->mbmi.ext_txfrm = txfm;
#endif
vp9_foreach_transformed_block(xd, bsize, reconstruct_inter_block, &arg);
if (!(subsize < BLOCK_8X8) && eobtotal == 0)
skip = 1;
}
set_param_topblock(cm, xd, bsize, mi_row, mi_col,
#if CONFIG_EXT_TX
txfm,
#endif
skip);
}
#endif
// update partition context
if (bsize >= BLOCK_8X8 &&
(bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
#if CONFIG_TRANSCODE && WRITE_MI_ARRAY
if (bsize == BLOCK_64X64) {
FILE *pf = cm->mi_array_pf;
if (pf) {
int i, j;
int offset = mi_row * cm->mi_stride + mi_col;
for (j = 0; j < MI_BLOCK_SIZE; ++j)
for (i = 0; i < MI_BLOCK_SIZE; ++i)
fwrite(&cm->mi[offset + j * cm->mi_stride + i],
1, sizeof(MODE_INFO), pf);
} else {
assert(0);
}
}
#endif
}
static void setup_token_decoder(const uint8_t *data,
@@ -736,6 +1127,10 @@ static void setup_tile_info(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) {
while (max_ones-- && vp9_rb_read_bit(rb))
cm->log2_tile_cols++;
if (cm->log2_tile_cols > 6)
vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid number of tile columns");
// rows
cm->log2_tile_rows = vp9_rb_read_bit(rb);
if (cm->log2_tile_rows)
@@ -889,7 +1284,11 @@ static const uint8_t *decode_tiles(VP9Decoder *pbi,
vp9_zero(tile_data->xd.left_seg_context);
for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
mi_col += MI_BLOCK_SIZE) {
decode_partition(tile_data->cm, &tile_data->xd, &tile, mi_row, mi_col,
decode_partition(tile_data->cm, &tile_data->xd, &tile,
#if CONFIG_SUPERTX
1, 0,
#endif
mi_row, mi_col,
&tile_data->bit_reader, BLOCK_64X64);
}
}
@@ -943,6 +1342,9 @@ static int tile_worker_hook(void *arg1, void *arg2) {
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE) {
decode_partition(tile_data->cm, &tile_data->xd, tile,
#if CONFIG_SUPERTX
1, 0,
#endif
mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64);
}
}
@@ -1128,7 +1530,7 @@ static size_t read_uncompressed_header(VP9Decoder *pbi,
// Show an existing frame directly.
const int frame_to_show = cm->ref_frame_map[vp9_rb_read_literal(rb, 3)];
if (cm->frame_bufs[frame_to_show].ref_count < 1)
if (frame_to_show < 0 || cm->frame_bufs[frame_to_show].ref_count < 1)
vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM,
"Buffer %d does not contain a decoded frame",
frame_to_show);
@@ -1293,6 +1695,62 @@ static int read_compressed_header(VP9Decoder *pbi, const uint8_t *data,
vp9_diff_update_prob(&r, &fc->partition_prob[j][i]);
read_mv_probs(nmvc, cm->allow_high_precision_mv, &r);
#if CONFIG_EXT_TX
vp9_diff_update_prob(&r, &fc->ext_tx_prob);
#endif
#if CONFIG_MASKED_INTERINTER
if (cm->reference_mode != SINGLE_REFERENCE) {
cm->use_masked_interinter = vp9_read_bit(&r);
if (cm->use_masked_interinter) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (get_mask_bits(i))
vp9_diff_update_prob(&r, &fc->masked_interinter_prob[i]);
}
}
} else {
cm->use_masked_interinter = 0;
}
#endif
#if CONFIG_INTERINTRA
if (cm->reference_mode != COMPOUND_REFERENCE) {
cm->use_interintra = vp9_read_bit(&r);
if (cm->use_interintra) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i)) {
vp9_diff_update_prob(&r, &fc->interintra_prob[i]);
}
}
#if CONFIG_MASKED_INTERINTRA
cm->use_masked_interintra = vp9_read_bit(&r);
if (cm->use_masked_interintra) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i) && get_mask_bits_interintra(i))
vp9_diff_update_prob(&r, &fc->masked_interintra_prob[i]);
}
}
} else {
cm->use_masked_interintra = 0;
#endif
}
} else {
cm->use_interintra = 0;
#if CONFIG_MASKED_INTERINTRA
cm->use_masked_interintra = 0;
#endif
}
#endif
#if CONFIG_COPY_CODING
for (j = 0; j < COPY_MODE_CONTEXTS; j++) {
for (i = 0; i < 1; i++)
vp9_diff_update_prob(&r, &fc->copy_mode_probs_l2[j][i]);
for (i = 0; i < 2; i++)
vp9_diff_update_prob(&r, &fc->copy_mode_probs[j][i]);
}
#endif
}
return vp9_reader_has_error(&r);
@@ -1344,6 +1802,10 @@ static void debug_check_frame_counts(const VP9_COMMON *const cm) {
assert(!memcmp(&cm->counts.tx, &zero_counts.tx, sizeof(cm->counts.tx)));
assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip)));
assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv)));
#if CONFIG_EXT_TX
assert(!memcmp(cm->counts.ext_tx, zero_counts.ext_tx,
sizeof(cm->counts.ext_tx)));
#endif
}
#endif // NDEBUG

View File

@@ -54,6 +54,36 @@ static PREDICTION_MODE read_inter_mode(VP9_COMMON *cm, vp9_reader *r, int ctx) {
return NEARESTMV + mode;
}
#if CONFIG_COPY_CODING
static COPY_MODE read_copy_mode(VP9_COMMON *cm, vp9_reader *r,
int num_candidate, int ctx) {
COPY_MODE mode;
switch (num_candidate) {
case 0:
assert(0);
break;
case 1:
mode = REF0;
break;
case 2:
mode = REF0 + vp9_read_tree(r, vp9_copy_mode_tree_l2,
cm->fc.copy_mode_probs_l2[ctx]);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.copy_mode_l2[ctx][mode - REF0];
break;
default:
mode = REF0 + vp9_read_tree(r, vp9_copy_mode_tree,
cm->fc.copy_mode_probs[ctx]);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.copy_mode[ctx][mode - REF0];
break;
}
return mode;
}
#endif
static int read_segment_id(vp9_reader *r, const struct segmentation *seg) {
return vp9_read_tree(r, vp9_segment_tree, seg->tree_probs);
}
@@ -144,7 +174,11 @@ static int read_inter_segment_id(VP9_COMMON *const cm, MACROBLOCKD *const xd,
return segment_id;
}
#if CONFIG_SUPERTX
int read_skip(VP9_COMMON *cm, const MACROBLOCKD *xd,
#else
static int read_skip(VP9_COMMON *cm, const MACROBLOCKD *xd,
#endif
int segment_id, vp9_reader *r) {
if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
@@ -175,29 +209,85 @@ static void read_intra_frame_mode_info(VP9_COMMON *const cm,
switch (bsize) {
case BLOCK_4X4:
#if !CONFIG_FILTERINTRA
for (i = 0; i < 4; ++i)
#else
for (i = 0; i < 4; ++i) {
#endif
mi->bmi[i].as_mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, i));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[i].as_mode))
mi->b_filter_info[i] =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[i].as_mode]);
else
mi->b_filter_info[i] = 0;
}
mbmi->filterbit = mi->b_filter_info[3];
#endif
mbmi->mode = mi->bmi[3].as_mode;
break;
case BLOCK_4X8:
mi->bmi[0].as_mode = mi->bmi[2].as_mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[0].as_mode))
mi->b_filter_info[0] = mi->b_filter_info[2] =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[0].as_mode]);
else
mi->b_filter_info[0] = mi->b_filter_info[2] = 0;
#endif
mi->bmi[1].as_mode = mi->bmi[3].as_mode = mbmi->mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 1));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[1].as_mode))
mi->b_filter_info[1] = mi->b_filter_info[3] = mbmi->filterbit =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[1].as_mode]);
else
mi->b_filter_info[1] = mi->b_filter_info[3] = mbmi->filterbit = 0;
#endif
break;
case BLOCK_8X4:
mi->bmi[0].as_mode = mi->bmi[1].as_mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 0));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[0].as_mode))
mi->b_filter_info[0] = mi->b_filter_info[1] =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[0].as_mode]);
else
mi->b_filter_info[0] = mi->b_filter_info[1] = 0;
#endif
mi->bmi[2].as_mode = mi->bmi[3].as_mode = mbmi->mode =
read_intra_mode(r, get_y_mode_probs(mi, above_mi, left_mi, 2));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[2].as_mode))
mi->b_filter_info[2] = mi->b_filter_info[3] = mbmi->filterbit =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[2].as_mode]);
else
mi->b_filter_info[2] = mi->b_filter_info[3] = mbmi->filterbit = 0;
#endif
break;
default:
mbmi->mode = read_intra_mode(r,
get_y_mode_probs(mi, above_mi, left_mi, 0));
#if CONFIG_FILTERINTRA
if (is_filter_enabled(mbmi->tx_size) && is_filter_allowed(mbmi->mode))
mbmi->filterbit = vp9_read(r,
cm->fc.filterintra_prob[mbmi->tx_size][mbmi->mode]);
else
mbmi->filterbit = 0;
#endif
}
mbmi->uv_mode = read_intra_mode(r, vp9_kf_uv_mode_prob[mbmi->mode]);
#if CONFIG_FILTERINTRA
if (is_filter_enabled(get_uv_tx_size(mbmi)) &&
is_filter_allowed(mbmi->uv_mode))
mbmi->uv_filterbit = vp9_read(r,
cm->fc.filterintra_prob[get_uv_tx_size(mbmi)][mbmi->uv_mode]);
else
mbmi->uv_filterbit = 0;
#endif
}
static int read_mv_component(vp9_reader *r,
@@ -335,25 +425,97 @@ static void read_intra_block_mode_info(VP9_COMMON *const cm, MODE_INFO *mi,
switch (bsize) {
case BLOCK_4X4:
#if !CONFIG_FILTERINTRA
for (i = 0; i < 4; ++i)
#else
for (i = 0; i < 4; ++i) {
#endif
mi->bmi[i].as_mode = read_intra_mode_y(cm, r, 0);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[i].as_mode)) {
mi->b_filter_info[i] =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[i].as_mode]);
cm->counts.filterintra[0][mi->bmi[i].as_mode]
[mi->b_filter_info[i]]++;
} else {
mi->b_filter_info[i] = 0;
}
}
mbmi->filterbit = mi->b_filter_info[3];
#endif
mbmi->mode = mi->bmi[3].as_mode;
break;
case BLOCK_4X8:
mi->bmi[0].as_mode = mi->bmi[2].as_mode = read_intra_mode_y(cm, r, 0);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[0].as_mode)) {
mi->b_filter_info[0] = mi->b_filter_info[2] =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[0].as_mode]);
cm->counts.filterintra[0][mi->bmi[0].as_mode][mi->b_filter_info[0]]++;
} else {
mi->b_filter_info[0] = mi->b_filter_info[2] = 0;
}
#endif
mi->bmi[1].as_mode = mi->bmi[3].as_mode = mbmi->mode =
read_intra_mode_y(cm, r, 0);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[1].as_mode)) {
mi->b_filter_info[1] = mi->b_filter_info[3] = mbmi->filterbit =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[1].as_mode]);
cm->counts.filterintra[0][mi->bmi[1].as_mode][mi->b_filter_info[1]]++;
} else {
mi->b_filter_info[1] = mi->b_filter_info[3] = mbmi->filterbit = 0;
}
#endif
break;
case BLOCK_8X4:
mi->bmi[0].as_mode = mi->bmi[1].as_mode = read_intra_mode_y(cm, r, 0);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[0].as_mode)) {
mi->b_filter_info[0] = mi->b_filter_info[1] =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[0].as_mode]);
cm->counts.filterintra[0][mi->bmi[0].as_mode][mi->b_filter_info[0]]++;
} else {
mi->b_filter_info[0] = mi->b_filter_info[1] = 0;
}
#endif
mi->bmi[2].as_mode = mi->bmi[3].as_mode = mbmi->mode =
read_intra_mode_y(cm, r, 0);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[2].as_mode)) {
mi->b_filter_info[2] = mi->b_filter_info[3] = mbmi->filterbit =
vp9_read(r, cm->fc.filterintra_prob[0][mi->bmi[2].as_mode]);
cm->counts.filterintra[0][mi->bmi[2].as_mode][mi->b_filter_info[2]]++;
} else {
mi->b_filter_info[2] = mi->b_filter_info[3] = mbmi->filterbit = 0;
}
#endif
break;
default:
mbmi->mode = read_intra_mode_y(cm, r, size_group_lookup[bsize]);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mbmi->mode) && is_filter_enabled(mbmi->tx_size)) {
mbmi->filterbit = vp9_read(r,
cm->fc.filterintra_prob[mbmi->tx_size][mbmi->mode]);
cm->counts.filterintra[mbmi->tx_size][mbmi->mode][mbmi->filterbit]++;
} else {
mbmi->filterbit = 0;
}
#endif
}
mbmi->uv_mode = read_intra_mode_uv(cm, r, mbmi->mode);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mbmi->uv_mode) &&
is_filter_enabled(get_uv_tx_size(mbmi))) {
mbmi->uv_filterbit = vp9_read(r,
cm->fc.filterintra_prob[get_uv_tx_size(mbmi)][mbmi->uv_mode]);
cm->counts.filterintra[get_uv_tx_size(mbmi)]
[mbmi->uv_mode][mbmi->uv_filterbit]++;
} else {
mbmi->uv_filterbit = 0;
}
#endif
}
static INLINE int is_mv_valid(const MV *mv) {
@@ -422,6 +584,9 @@ static void read_inter_block_mode_info(VP9_COMMON *const cm,
MACROBLOCKD *const xd,
const TileInfo *const tile,
MODE_INFO *const mi,
#if CONFIG_SUPERTX && CONFIG_EXT_TX
int supertx_enabled,
#endif
int mi_row, int mi_col, vp9_reader *r) {
MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
@@ -464,6 +629,37 @@ static void read_inter_block_mode_info(VP9_COMMON *const cm,
? read_switchable_interp_filter(cm, xd, r)
: cm->interp_filter;
#if CONFIG_INTERINTRA
if ((cm->use_interintra) &&
is_interintra_allowed(bsize) &&
is_inter_mode(mbmi->mode) &&
(mbmi->ref_frame[1] <= INTRA_FRAME)) {
mbmi->ref_frame[1] = vp9_read(r, cm->fc.interintra_prob[bsize]) ?
INTRA_FRAME : NONE;
cm->counts.interintra[bsize][mbmi->ref_frame[1] == INTRA_FRAME]++;
#if CONFIG_MASKED_INTERINTRA
mbmi->use_masked_interintra = 0;
#endif
if (mbmi->ref_frame[1] == INTRA_FRAME) {
mbmi->interintra_mode =
read_intra_mode_y(cm, r, size_group_lookup[bsize]);
mbmi->interintra_uv_mode = mbmi->interintra_mode;
#if CONFIG_MASKED_INTERINTRA
if (cm->use_masked_interintra && get_mask_bits_interintra(bsize)) {
mbmi->use_masked_interintra = vp9_read(r,
cm->fc.masked_interintra_prob[bsize]);
cm->counts.masked_interintra[bsize][mbmi->use_masked_interintra]++;
if (mbmi->use_masked_interintra) {
mbmi->interintra_mask_index = vp9_read_literal(r,
get_mask_bits_interintra(bsize));
mbmi->interintra_uv_mask_index = mbmi->interintra_mask_index;
}
}
#endif
}
}
#endif
if (bsize < BLOCK_8X8) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; // 1 or 2
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; // 1 or 2
@@ -497,10 +693,6 @@ static void read_inter_block_mode_info(VP9_COMMON *const cm,
mi->bmi[j + 2] = mi->bmi[j];
if (num_4x4_w == 2)
mi->bmi[j + 1] = mi->bmi[j];
#if CONFIG_TRANSCODE
mi->bmi[j].as_mode = b_mode;
#endif
}
}
@@ -512,35 +704,160 @@ static void read_inter_block_mode_info(VP9_COMMON *const cm,
xd->corrupted |= !assign_mv(cm, mbmi->mode, mbmi->mv, nearestmv,
nearestmv, nearmv, is_compound, allow_hp, r);
}
#if CONFIG_MASKED_INTERINTER
mbmi->use_masked_interinter = 0;
if (cm->use_masked_interinter &&
cm->reference_mode != SINGLE_REFERENCE &&
is_inter_mode(mbmi->mode) &&
get_mask_bits(bsize) &&
mbmi->ref_frame[1] > INTRA_FRAME) {
mbmi->use_masked_interinter =
vp9_read(r, cm->fc.masked_interinter_prob[bsize]);
cm->counts.masked_interinter[bsize][mbmi->use_masked_interinter]++;
if (mbmi->use_masked_interinter) {
mbmi->mask_index = vp9_read_literal(r, get_mask_bits(bsize));
}
}
#endif
}
static void read_inter_frame_mode_info(VP9_COMMON *const cm,
MACROBLOCKD *const xd,
const TileInfo *const tile,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col, vp9_reader *r) {
MODE_INFO *const mi = xd->mi[0];
MB_MODE_INFO *const mbmi = &mi->mbmi;
int inter_block;
#if CONFIG_COPY_CODING
int num_candidate = 0;
MB_MODE_INFO *inter_ref_list[18] = {NULL};
#endif
mbmi->mv[0].as_int = 0;
mbmi->mv[1].as_int = 0;
#if CONFIG_COPY_CODING
if (mbmi->sb_type >= BLOCK_8X8)
num_candidate = vp9_construct_ref_inter_list(cm, xd, mbmi->sb_type,
mi_row, mi_col, inter_ref_list);
if (mbmi->sb_type >= BLOCK_8X8 && num_candidate > 0) {
int ctx = vp9_get_copy_mode_context(xd);
int is_copy = vp9_read(r, cm->fc.copy_noref_prob[ctx][mbmi->sb_type]);
++cm->counts.copy_noref[ctx][mbmi->sb_type][is_copy];
if (!is_copy) {
mbmi->copy_mode = NOREF;
} else {
mbmi->copy_mode = read_copy_mode(cm, r, num_candidate, ctx);
}
} else {
mbmi->copy_mode = NOREF;
}
if (mbmi->copy_mode != NOREF) {
BLOCK_SIZE bsize_backup = mbmi->sb_type;
int skip_backup = mbmi->skip;
COPY_MODE copy_mode_backup = mbmi->copy_mode;
#if CONFIG_SUPERTX
TX_SIZE tx_size_backup = mbmi->tx_size;
#endif
#if CONFIG_EXT_TX
EXT_TX_TYPE ext_txfrm_backup = mbmi->ext_txfrm;
#endif
inter_block = 1;
*mbmi = *inter_ref_list[mbmi->copy_mode - REF0];
#if CONFIG_MASKED_INTERINTER
mbmi->use_masked_interinter = 0;
#endif
#if CONFIG_INTERINTRA
if (mbmi->ref_frame[1] == INTRA_FRAME)
mbmi->ref_frame[1] = NONE;
#endif
#if CONFIG_SUPERTX
mbmi->tx_size = tx_size_backup;
#endif
#if CONFIG_EXT_TX
mbmi->ext_txfrm = ext_txfrm_backup;
#endif
mbmi->sb_type = bsize_backup;
mbmi->mode = NEARESTMV;
mbmi->skip = skip_backup;
mbmi->copy_mode = copy_mode_backup;
}
#endif
#if CONFIG_SUPERTX
if (!supertx_enabled) {
#endif
mbmi->segment_id = read_inter_segment_id(cm, xd, mi_row, mi_col, r);
mbmi->skip = read_skip(cm, xd, mbmi->segment_id, r);
#if CONFIG_COPY_CODING
if (mbmi->copy_mode == NOREF)
#endif
inter_block = read_is_inter_block(cm, xd, mbmi->segment_id, r);
mbmi->tx_size = read_tx_size(cm, xd, cm->tx_mode, mbmi->sb_type,
!mbmi->skip || !inter_block, r);
#if CONFIG_EXT_TX
if (inter_block &&
mbmi->tx_size <= TX_16X16 &&
mbmi->sb_type >= BLOCK_8X8 &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif
!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) &&
!mbmi->skip) {
mbmi->ext_txfrm = vp9_read(r, cm->fc.ext_tx_prob);
if (!cm->frame_parallel_decoding_mode)
++cm->counts.ext_tx[mbmi->ext_txfrm];
} else {
mbmi->ext_txfrm = NORM;
}
#endif
#if CONFIG_SUPERTX
} else {
const int ctx = vp9_get_intra_inter_context(xd);
mbmi->segment_id = 0;
inter_block = 1;
if (!cm->frame_parallel_decoding_mode)
#if CONFIG_COPY_CODING
if (mbmi->copy_mode == NOREF)
#endif
++cm->counts.intra_inter[ctx][1];
}
#endif
#if CONFIG_COPY_CODING
if (mbmi->copy_mode == NOREF) {
#endif
if (inter_block)
read_inter_block_mode_info(cm, xd, tile, mi, mi_row, mi_col, r);
read_inter_block_mode_info(cm, xd, tile, mi,
#if CONFIG_SUPERTX && CONFIG_EXT_TX
supertx_enabled,
#endif
mi_row, mi_col, r);
else
read_intra_block_mode_info(cm, mi, r);
#if CONFIG_COPY_CODING
}
#endif
}
void vp9_read_mode_info(VP9_COMMON *cm, MACROBLOCKD *xd,
const TileInfo *const tile,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col, vp9_reader *r) {
if (frame_is_intra_only(cm))
read_intra_frame_mode_info(cm, xd, mi_row, mi_col, r);
else
read_inter_frame_mode_info(cm, xd, tile, mi_row, mi_col, r);
read_inter_frame_mode_info(cm, xd, tile,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col, r);
}

View File

@@ -21,8 +21,16 @@ struct TileInfo;
void vp9_read_mode_info(VP9_COMMON *cm, MACROBLOCKD *xd,
const struct TileInfo *const tile,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col, vp9_reader *r);
#if CONFIG_SUPERTX
int read_skip(VP9_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, vp9_reader *r);
#endif
#ifdef __cplusplus
} // extern "C"
#endif

View File

@@ -32,14 +32,11 @@
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/decoder/vp9_dthread.h"
#include <stdio.h>
static void initialize_dec() {
static int init_done = 0;
if (!init_done) {
vp9_init_neighbors();
vp9_init_quant_tables();
init_done = 1;
}
}
@@ -81,9 +78,6 @@ VP9Decoder *vp9_decoder_create() {
vp9_worker_init(&pbi->lf_worker);
#if CONFIG_TRANSCODE && WRITE_MI_ARRAY
cm->mi_array_pf = fopen("mode_info_array_2.bin", "rb");
#endif
return pbi;
}
@@ -91,10 +85,6 @@ void vp9_decoder_remove(VP9Decoder *pbi) {
VP9_COMMON *const cm = &pbi->common;
int i;
#if CONFIG_TRANSCODE && WRITE_MI_ARRAY
fclose(cm->mi_array_pf);
#endif
vp9_remove_common(cm);
vp9_worker_end(&pbi->lf_worker);
vpx_free(pbi->lf_worker.data1);
@@ -220,7 +210,10 @@ static void swap_frame_buffers(VP9Decoder *pbi) {
}
cm->frame_to_show = get_frame_new_buffer(cm);
cm->frame_bufs[cm->new_fb_idx].ref_count--;
if (!pbi->frame_parallel_decode || !cm->show_frame) {
--cm->frame_bufs[cm->new_fb_idx].ref_count;
}
// Invalidate these references until the next frame starts.
for (ref_index = 0; ref_index < 3; ref_index++)
@@ -249,7 +242,9 @@ int vp9_receive_compressed_data(VP9Decoder *pbi,
}
// Check if the previous frame was a frame without any references to it.
if (cm->new_fb_idx >= 0 && cm->frame_bufs[cm->new_fb_idx].ref_count == 0)
// Release frame buffer if not decoding in frame parallel mode.
if (!pbi->frame_parallel_decode && cm->new_fb_idx >= 0
&& cm->frame_bufs[cm->new_fb_idx].ref_count == 0)
cm->release_fb_cb(cm->cb_priv,
&cm->frame_bufs[cm->new_fb_idx].raw_frame_buffer);
cm->new_fb_idx = get_free_fb(cm);
@@ -264,10 +259,10 @@ int vp9_receive_compressed_data(VP9Decoder *pbi,
// TODO(jkoleszar): Error concealment is undefined and non-normative
// at this point, but if it becomes so, [0] may not always be the correct
// thing to do here.
if (cm->frame_refs[0].idx != INT_MAX)
if (cm->frame_refs[0].idx != INT_MAX && cm->frame_refs[0].buf != NULL)
cm->frame_refs[0].buf->corrupted = 1;
if (cm->frame_bufs[cm->new_fb_idx].ref_count > 0)
if (cm->new_fb_idx > 0 && cm->frame_bufs[cm->new_fb_idx].ref_count > 0)
cm->frame_bufs[cm->new_fb_idx].ref_count--;
return -1;

View File

@@ -27,11 +27,6 @@
extern "C" {
#endif
#if CONFIG_TRANSCODE
#define WRITE_MI_ARRAY 0
#define READ_MI_ARRAY 0
#endif
// TODO(hkuang): combine this with TileWorkerData.
typedef struct TileData {
VP9_COMMON *cm;
@@ -48,6 +43,8 @@ typedef struct VP9Decoder {
int refresh_frame_flags;
int frame_parallel_decode; // frame-based threading.
VP9Worker lf_worker;
VP9Worker *tile_workers;
int num_tile_workers;

View File

@@ -40,6 +40,23 @@ typedef struct VP9LfSyncData {
int sync_range;
} VP9LfSync;
// WorkerData for the FrameWorker thread. It contains all the information of
// the worker and decode structures for decoding a frame.
typedef struct FrameWorkerData {
struct VP9Decoder *pbi;
const uint8_t *data;
const uint8_t *data_end;
size_t data_size;
void *user_priv;
int result;
int worker_id;
// scratch_buffer is used in frame parallel mode only.
// It is used to make a copy of the compressed data.
uint8_t *scratch_buffer;
size_t scratch_buffer_size;
} FrameWorkerData;
// Allocate memory for loopfilter row synchronization.
void vp9_loop_filter_alloc(struct VP9Common *cm, VP9LfSync *lf_sync,
int rows, int width);

View File

@@ -10,7 +10,7 @@
#include "vp9/decoder/vp9_read_bit_buffer.h"
size_t vp9_rb_bytes_read(struct vp9_read_bit_buffer *rb) {
return rb->bit_offset / CHAR_BIT + (rb->bit_offset % CHAR_BIT > 0);
return (rb->bit_offset + CHAR_BIT - 1) / CHAR_BIT;
}
int vp9_rb_read_bit(struct vp9_read_bit_buffer *rb) {

View File

@@ -38,12 +38,32 @@ static struct vp9_token intra_mode_encodings[INTRA_MODES];
static struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS];
static struct vp9_token partition_encodings[PARTITION_TYPES];
static struct vp9_token inter_mode_encodings[INTER_MODES];
#if CONFIG_COPY_CODING
static struct vp9_token copy_mode_encodings_l2[2];
static struct vp9_token copy_mode_encodings[COPY_MODE_COUNT - 1];
#endif
#if CONFIG_SUPERTX
static int vp9_check_supertx(VP9_COMMON *cm, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
MODE_INFO **mi;
mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
return mi[0]->mbmi.tx_size == bsize_to_tx_size(bsize) &&
mi[0]->mbmi.sb_type < bsize;
}
#endif
void vp9_entropy_mode_init() {
vp9_tokens_from_tree(intra_mode_encodings, vp9_intra_mode_tree);
vp9_tokens_from_tree(switchable_interp_encodings, vp9_switchable_interp_tree);
vp9_tokens_from_tree(partition_encodings, vp9_partition_tree);
vp9_tokens_from_tree(inter_mode_encodings, vp9_inter_mode_tree);
#if CONFIG_COPY_CODING
vp9_tokens_from_tree(copy_mode_encodings_l2, vp9_copy_mode_tree_l2);
vp9_tokens_from_tree(copy_mode_encodings, vp9_copy_mode_tree);
#endif
}
static void write_intra_mode(vp9_writer *w, PREDICTION_MODE mode,
@@ -58,6 +78,21 @@ static void write_inter_mode(vp9_writer *w, PREDICTION_MODE mode,
&inter_mode_encodings[INTER_OFFSET(mode)]);
}
#if CONFIG_COPY_CODING
static void write_copy_mode(VP9_COMMON *cm, vp9_writer *w, COPY_MODE mode,
int inter_ref_count, int copy_mode_context) {
if (inter_ref_count == 2) {
vp9_write_token(w, vp9_copy_mode_tree_l2,
cm->fc.copy_mode_probs_l2[copy_mode_context],
&copy_mode_encodings_l2[mode - REF0]);
} else if (inter_ref_count > 2) {
vp9_write_token(w, vp9_copy_mode_tree,
cm->fc.copy_mode_probs[copy_mode_context],
&copy_mode_encodings[mode - REF0]);
}
}
#endif
static void encode_unsigned_max(struct vp9_write_bit_buffer *wb,
int data, int max) {
vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
@@ -225,6 +260,9 @@ static void write_ref_frames(const VP9_COMP *cpi, vp9_writer *w) {
}
static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
vp9_writer *w) {
VP9_COMMON *const cm = &cpi->common;
const nmv_context *nmvc = &cm->fc.nmvc;
@@ -239,7 +277,19 @@ static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
const int is_inter = is_inter_block(mbmi);
const int is_compound = has_second_ref(mbmi);
int skip, ref;
#if CONFIG_COPY_CODING
int copy_mode_context = vp9_get_copy_mode_context(xd);
#endif
#if CONFIG_COPY_CODING
if (bsize >= BLOCK_8X8 && mbmi->inter_ref_count > 0) {
vp9_write(w, mbmi->copy_mode != NOREF,
cm->fc.copy_noref_prob[copy_mode_context][bsize]);
if (mbmi->copy_mode != NOREF)
write_copy_mode(cm, w, mbmi->copy_mode, mbmi->inter_ref_count,
copy_mode_context);
}
#endif
if (seg->update_map) {
if (seg->temporal_update) {
const int pred_flag = mbmi->seg_id_predicted;
@@ -252,20 +302,57 @@ static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
}
}
#if CONFIG_SUPERTX
if (!supertx_enabled)
#endif
skip = write_skip(cpi, segment_id, mi, w);
#if CONFIG_SUPERTX
else
skip = mbmi->skip;
#endif
#if CONFIG_SUPERTX
if (!supertx_enabled) {
#endif
#if CONFIG_COPY_CODING
if (mbmi->copy_mode == NOREF)
#endif
if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
vp9_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
#if CONFIG_SUPERTX
}
#endif
if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif
!(is_inter &&
(skip || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
write_selected_tx_size(cpi, mbmi->tx_size, bsize, w);
}
#if CONFIG_EXT_TX
if (is_inter &&
mbmi->tx_size <= TX_16X16 &&
bsize >= BLOCK_8X8 &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif
!mbmi->skip &&
!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
vp9_write(w, mbmi->ext_txfrm, cm->fc.ext_tx_prob);
}
#endif
if (!is_inter) {
if (bsize >= BLOCK_8X8) {
write_intra_mode(w, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mode) && is_filter_enabled(mbmi->tx_size)) {
vp9_write(w, mbmi->filterbit,
cm->fc.filterintra_prob[mbmi->tx_size][mode]);
}
#endif
} else {
int idx, idy;
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
@@ -274,11 +361,28 @@ static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
for (idx = 0; idx < 2; idx += num_4x4_w) {
const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
write_intra_mode(w, b_mode, cm->fc.y_mode_prob[0]);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(b_mode)) {
vp9_write(w, mi->b_filter_info[idy * 2 + idx],
cm->fc.filterintra_prob[0][b_mode]);
}
#endif
}
}
}
write_intra_mode(w, mbmi->uv_mode, cm->fc.uv_mode_prob[mode]);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mbmi->uv_mode) &&
is_filter_enabled(get_uv_tx_size(mbmi))) {
vp9_write(w, mbmi->uv_filterbit,
cm->fc.filterintra_prob[get_uv_tx_size(mbmi)][mbmi->uv_mode]);
}
#endif
#if !CONFIG_COPY_CODING
} else {
#else
} else if (mbmi->copy_mode == NOREF) {
#endif
const int mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]];
const vp9_prob *const inter_probs = cm->fc.inter_mode_probs[mode_ctx];
write_ref_frames(cpi, w);
@@ -300,6 +404,32 @@ static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
assert(mbmi->interp_filter == cm->interp_filter);
}
#if CONFIG_INTERINTRA
if ((cm->use_interintra) &&
cpi->common.reference_mode != COMPOUND_REFERENCE &&
is_interintra_allowed(bsize) &&
is_inter_mode(mode) &&
(mbmi->ref_frame[1] <= INTRA_FRAME)) {
vp9_write(w, mbmi->ref_frame[1] == INTRA_FRAME,
cm->fc.interintra_prob[bsize]);
if (mbmi->ref_frame[1] == INTRA_FRAME) {
write_intra_mode(w, mbmi->interintra_mode,
cm->fc.y_mode_prob[size_group_lookup[bsize]]);
#if CONFIG_MASKED_INTERINTRA
if (get_mask_bits_interintra(bsize) &&
cm->use_masked_interintra) {
vp9_write(w, mbmi->use_masked_interintra,
cm->fc.masked_interintra_prob[bsize]);
if (mbmi->use_masked_interintra) {
vp9_write_literal(w, mbmi->interintra_mask_index,
get_mask_bits_interintra(bsize));
}
}
#endif
}
}
#endif
if (bsize < BLOCK_8X8) {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
@@ -326,6 +456,18 @@ static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
allow_hp);
}
}
#if CONFIG_MASKED_INTERINTER
if (cm->use_masked_interinter &&
cm->reference_mode != SINGLE_REFERENCE &&
is_inter_mode(mode) &&
get_mask_bits(mbmi->sb_type) &&
mbmi->ref_frame[1] > INTRA_FRAME) {
vp9_write(w, mbmi->use_masked_interinter,
cm->fc.masked_interinter_prob[bsize]);
if (mbmi->use_masked_interinter)
vp9_write_literal(w, mbmi->mask_index, get_mask_bits(mbmi->sb_type));
}
#endif
}
}
@@ -350,6 +492,11 @@ static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8,
if (bsize >= BLOCK_8X8) {
write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mbmi->mode) && is_filter_enabled(mbmi->tx_size))
vp9_write(w, mbmi->filterbit,
cm->fc.filterintra_prob[mbmi->tx_size][mbmi->mode]);
#endif
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
@@ -360,15 +507,29 @@ static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8,
const int block = idy * 2 + idx;
write_intra_mode(w, mi->bmi[block].as_mode,
get_y_mode_probs(mi, above_mi, left_mi, block));
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mi->bmi[block].as_mode))
vp9_write(w, mi->b_filter_info[block],
cm->fc.filterintra_prob[0][mi->bmi[block].as_mode]);
#endif
}
}
}
write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]);
#if CONFIG_FILTERINTRA
if (is_filter_allowed(mbmi->uv_mode) &&
is_filter_enabled(get_uv_tx_size(mbmi)))
vp9_write(w, mbmi->uv_filterbit,
cm->fc.filterintra_prob[get_uv_tx_size(mbmi)][mbmi->uv_mode]);
#endif
}
static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
#if CONFIG_SUPERTX
int supertx_enabled,
#endif
int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
@@ -384,11 +545,21 @@ static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
if (frame_is_intra_only(cm)) {
write_mb_modes_kf(cpi, xd->mi, w);
} else {
#if CONFIG_SUPERTX
pack_inter_mode_mvs(cpi, m, supertx_enabled, w);
#else
pack_inter_mode_mvs(cpi, m, w);
#endif
}
#if CONFIG_SUPERTX
if (!supertx_enabled) {
#endif
assert(*tok < tok_end);
pack_mb_tokens(w, tok, tok_end);
#if CONFIG_SUPERTX
}
#endif
}
static void write_partition(VP9_COMMON *cm, MACROBLOCKD *xd,
@@ -415,6 +586,9 @@ static void write_partition(VP9_COMMON *cm, MACROBLOCKD *xd,
static void write_modes_sb(VP9_COMP *cpi,
const TileInfo *const tile,
vp9_writer *w, TOKENEXTRA **tok, TOKENEXTRA *tok_end,
#if CONFIG_SUPERTX
int pack_token, int supertx_enabled,
#endif
int mi_row, int mi_col, BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
@@ -431,36 +605,105 @@ static void write_modes_sb(VP9_COMP *cpi,
partition = partition_lookup[bsl][m->mbmi.sb_type];
write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
subsize = get_subsize(bsize, partition);
#if CONFIG_SUPERTX
xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
set_mi_row_col(xd, tile,
mi_row, num_8x8_blocks_high_lookup[bsize],
mi_col, num_8x8_blocks_wide_lookup[bsize],
cm->mi_rows, cm->mi_cols);
if (!supertx_enabled && cm->frame_type != KEY_FRAME &&
partition != PARTITION_NONE && bsize <= BLOCK_32X32) {
TX_SIZE supertx_size = bsize_to_tx_size(bsize); // b_width_log2(bsize);
vp9_prob prob = partition == PARTITION_SPLIT ?
cm->fc.supertxsplit_prob[supertx_size] :
cm->fc.supertx_prob[supertx_size];
supertx_enabled = (xd->mi[0]->mbmi.tx_size == supertx_size);
vp9_write(w, supertx_enabled, prob);
if (supertx_enabled) {
vp9_write(w, xd->mi[0]->mbmi.skip, vp9_get_skip_prob(cm, xd));
#if CONFIG_EXT_TX
if (supertx_size <= TX_16X16 && !xd->mi[0]->mbmi.skip)
vp9_write(w, xd->mi[0]->mbmi.ext_txfrm, cm->fc.ext_tx_prob);
#endif
}
}
#endif
if (subsize < BLOCK_8X8) {
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col);
} else {
switch (partition) {
case PARTITION_NONE:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col);
break;
case PARTITION_HORZ:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col);
if (mi_row + bs < cm->mi_rows)
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row + bs, mi_col);
break;
case PARTITION_VERT:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col);
if (mi_col + bs < cm->mi_cols)
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
write_modes_b(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
supertx_enabled,
#endif
mi_row, mi_col + bs);
break;
case PARTITION_SPLIT:
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row, mi_col + bs,
subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row + bs, mi_col,
subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
!supertx_enabled, supertx_enabled,
#endif
mi_row + bs, mi_col + bs,
subsize);
break;
default:
assert(0);
}
}
#if CONFIG_SUPERTX
if (partition != PARTITION_NONE && supertx_enabled && pack_token) {
assert(*tok < tok_end);
pack_mb_tokens(w, tok, tok_end);
}
#endif
// update partition context
if (bsize >= BLOCK_8X8 &&
@@ -478,7 +721,11 @@ static void write_modes(VP9_COMP *cpi,
vp9_zero(cpi->mb.e_mbd.left_seg_context);
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE)
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col,
write_modes_sb(cpi, tile, w, tok, tok_end,
#if CONFIG_SUPERTX
1, 0,
#endif
mi_row, mi_col,
BLOCK_64X64);
}
}
@@ -890,14 +1137,8 @@ static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) {
}
static int get_refresh_mask(VP9_COMP *cpi) {
// Should the GF or ARF be updated using the transmitted frame or buffer
#if CONFIG_MULTIPLE_ARF
if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame &&
!cpi->refresh_alt_ref_frame) {
#else
if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame &&
!cpi->use_svc) {
#endif
if (!cpi->multi_arf_allowed && cpi->refresh_golden_frame &&
cpi->rc.is_src_frame_alt_ref && !cpi->use_svc) {
// Preserve the previously existing golden frame and update the frame in
// the alt ref slot instead. This is highly specific to the use of
// alt-ref as a forward reference, and this needs to be generalized as
@@ -910,15 +1151,10 @@ static int get_refresh_mask(VP9_COMP *cpi) {
(cpi->refresh_golden_frame << cpi->alt_fb_idx);
} else {
int arf_idx = cpi->alt_fb_idx;
#if CONFIG_MULTIPLE_ARF
// Determine which ARF buffer to use to encode this ARF frame.
if (cpi->multi_arf_enabled) {
int sn = cpi->sequence_number;
arf_idx = (cpi->frame_coding_order[sn] < 0) ?
cpi->arf_buffer_idx[sn + 1] :
cpi->arf_buffer_idx[sn];
if ((cpi->pass == 2) && cpi->multi_arf_allowed) {
const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
arf_idx = gf_group->arf_update_idx[gf_group->index];
}
#endif
return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
(cpi->refresh_golden_frame << cpi->gld_fb_idx) |
(cpi->refresh_alt_ref_frame << arf_idx);
@@ -1187,6 +1423,104 @@ static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
cm->counts.partition[i], PARTITION_TYPES, &header_bc);
vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc);
#if CONFIG_EXT_TX
vp9_cond_prob_diff_update(&header_bc, &fc->ext_tx_prob, cm->counts.ext_tx);
#endif
#if CONFIG_MASKED_INTERINTER
if (cm->reference_mode != SINGLE_REFERENCE) {
if (!cpi->dummy_packing && cm->use_masked_interinter) {
cm->use_masked_interinter = 0;
for (i = 0; i < BLOCK_SIZES; i++)
if (get_mask_bits(i) && (cm->counts.masked_interinter[i][1] > 0)) {
cm->use_masked_interinter = 1;
break;
}
}
vp9_write_bit(&header_bc, cm->use_masked_interinter);
if (cm->use_masked_interinter) {
for (i = 0; i < BLOCK_SIZES; i++)
if (get_mask_bits(i))
vp9_cond_prob_diff_update(&header_bc,
&fc->masked_interinter_prob[i],
cm->counts.masked_interinter[i]);
} else {
vp9_zero(cm->counts.masked_interinter);
}
} else {
if (!cpi->dummy_packing)
cm->use_masked_interinter = 0;
vp9_zero(cm->counts.masked_interinter);
}
#endif
#if CONFIG_INTERINTRA
if (cm->reference_mode != COMPOUND_REFERENCE) {
if (!cpi->dummy_packing && cm->use_interintra) {
cm->use_interintra = 0;
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i) && (cm->counts.interintra[i][1] > 0)) {
cm->use_interintra = 1;
break;
}
}
}
vp9_write_bit(&header_bc, cm->use_interintra);
if (cm->use_interintra) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i)) {
vp9_cond_prob_diff_update(&header_bc,
&fc->interintra_prob[i],
cm->counts.interintra[i]);
}
}
#if CONFIG_MASKED_INTERINTRA
if (!cpi->dummy_packing && cm->use_masked_interintra) {
cm->use_masked_interintra = 0;
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i) && get_mask_bits_interintra(i) &&
(cm->counts.masked_interintra[i][1] > 0)) {
cm->use_masked_interintra = 1;
break;
}
}
}
vp9_write_bit(&header_bc, cm->use_masked_interintra);
if (cm->use_masked_interintra) {
for (i = 0; i < BLOCK_SIZES; i++) {
if (is_interintra_allowed(i) && get_mask_bits_interintra(i))
vp9_cond_prob_diff_update(&header_bc,
&fc->masked_interintra_prob[i],
cm->counts.masked_interintra[i]);
}
} else {
vp9_zero(cm->counts.masked_interintra);
}
#endif
} else {
vp9_zero(cm->counts.interintra);
}
} else {
if (!cpi->dummy_packing)
cm->use_interintra = 0;
vp9_zero(cm->counts.interintra);
#if CONFIG_MASKED_INTERINTRA
if (!cpi->dummy_packing)
cm->use_masked_interintra = 0;
vp9_zero(cm->counts.masked_interintra);
#endif
}
#endif
#if CONFIG_COPY_CODING
for (i = 0; i < COPY_MODE_CONTEXTS; i++) {
prob_diff_update(vp9_copy_mode_tree_l2, cm->fc.copy_mode_probs_l2[i],
cm->counts.copy_mode_l2[i], 2, &header_bc);
prob_diff_update(vp9_copy_mode_tree, cm->fc.copy_mode_probs[i],
cm->counts.copy_mode[i], 3, &header_bc);
}
#endif
}
vp9_stop_encode(&header_bc);

View File

@@ -28,6 +28,7 @@ struct macroblock_plane {
struct buf_2d src;
// Quantizer setings
int16_t *quant_fp;
int16_t *quant;
int16_t *quant_shift;
int16_t *zbin;
@@ -48,7 +49,7 @@ struct macroblock {
MACROBLOCKD e_mbd;
int skip_block;
int select_txfm_size;
int select_tx_size;
int skip_recode;
int skip_optimize;
int q_index;
@@ -92,8 +93,6 @@ struct macroblock {
int encode_breakout;
int in_active_map;
// note that token_costs is the cost when eob node is skipped
vp9_coeff_cost token_costs[TX_SIZES];
@@ -105,6 +104,9 @@ struct macroblock {
int use_lp32x32fdct;
int skip_encode;
// skip forward transform and quantization
int skip_txfm;
// Used to store sub partition's choices.
MV pred_mv[MAX_REF_FRAMES];

View File

@@ -100,15 +100,10 @@ void vp9_setup_pc_tree(VP9_COMMON *cm, VP9_COMP *cpi) {
vpx_free(cpi->leaf_tree);
CHECK_MEM_ERROR(cm, cpi->leaf_tree, vpx_calloc(leaf_nodes,
sizeof(*cpi->leaf_tree)));
#if CONFIG_TRANSCODE
vpx_memset(cpi->leaf_tree, 0, sizeof(*cpi->leaf_tree));
#endif
vpx_free(cpi->pc_tree);
CHECK_MEM_ERROR(cm, cpi->pc_tree, vpx_calloc(tree_nodes,
sizeof(*cpi->pc_tree)));
#if CONFIG_TRANSCODE
vpx_memset(cpi->pc_tree, 0, sizeof(*cpi->pc_tree));
#endif
this_pc = &cpi->pc_tree[0];
this_leaf = &cpi->leaf_tree[0];

View File

@@ -33,6 +33,7 @@ typedef struct {
int is_coded;
int num_4x4_blk;
int skip;
int skip_txfm;
int best_mode_index;
int hybrid_pred_diff;
int comp_pred_diff;

View File

@@ -43,6 +43,17 @@ static void fdct4(const int16_t *input, int16_t *output) {
output[3] = fdct_round_shift(temp2);
}
void vp9_fdct4x4_1_c(const int16_t *input, int16_t *output, int stride) {
int r, c;
int16_t sum = 0;
for (r = 0; r < 4; ++r)
for (c = 0; c < 4; ++c)
sum += input[r * stride + c];
output[0] = sum << 1;
output[1] = 0;
}
void vp9_fdct4x4_c(const int16_t *input, int16_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
@@ -240,6 +251,17 @@ static void fdct8(const int16_t *input, int16_t *output) {
output[7] = fdct_round_shift(t3);
}
void vp9_fdct8x8_1_c(const int16_t *input, int16_t *output, int stride) {
int r, c;
int16_t sum = 0;
for (r = 0; r < 8; ++r)
for (c = 0; c < 8; ++c)
sum += input[r * stride + c];
output[0] = sum;
output[1] = 0;
}
void vp9_fdct8x8_c(const int16_t *input, int16_t *final_output, int stride) {
int i, j;
int16_t intermediate[64];
@@ -311,6 +333,17 @@ void vp9_fdct8x8_c(const int16_t *input, int16_t *final_output, int stride) {
}
}
void vp9_fdct16x16_1_c(const int16_t *input, int16_t *output, int stride) {
int r, c;
int16_t sum = 0;
for (r = 0; r < 16; ++r)
for (c = 0; c < 16; ++c)
sum += input[r * stride + c];
output[0] = sum >> 1;
output[1] = 0;
}
void vp9_fdct16x16_c(const int16_t *input, int16_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
@@ -1329,6 +1362,17 @@ static void fdct32(const int *input, int *output, int round) {
output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64);
}
void vp9_fdct32x32_1_c(const int16_t *input, int16_t *output, int stride) {
int r, c;
int16_t sum = 0;
for (r = 0; r < 32; ++r)
for (c = 0; c < 32; ++c)
sum += input[r * stride + c];
output[0] = sum >> 3;
output[1] = 0;
}
void vp9_fdct32x32_c(const int16_t *input, int16_t *out, int stride) {
int i, j;
int output[32 * 32];

199
vp9/encoder/vp9_denoiser.c Normal file
View File

@@ -0,0 +1,199 @@
/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "vpx_scale/yv12config.h"
#include "vpx/vpx_integer.h"
#include "vp9/encoder/vp9_denoiser.h"
static const int widths[] = {4, 4, 8, 8, 8, 16, 16, 16, 32, 32, 32, 64, 64};
static const int heights[] = {4, 8, 4, 8, 16, 8, 16, 32, 16, 32, 64, 32, 64};
int vp9_denoiser_filter() {
return 0;
}
static int update_running_avg(const uint8_t *mc_avg, int mc_avg_stride,
uint8_t *avg, int avg_stride,
const uint8_t *sig, int sig_stride,
int increase_denoising, BLOCK_SIZE bs) {
int r, c;
int diff, adj, absdiff;
int shift_inc1 = 0, shift_inc2 = 1;
int adj_val[] = {3, 4, 6};
int total_adj = 0;
if (increase_denoising) {
shift_inc1 = 1;
shift_inc2 = 2;
}
for (r = 0; r < heights[bs]; ++r) {
for (c = 0; c < widths[bs]; ++c) {
diff = mc_avg[c] - sig[c];
absdiff = abs(diff);
if (absdiff <= 3 + shift_inc1) {
avg[c] = mc_avg[c];
total_adj += diff;
} else {
switch (absdiff) {
case 4: case 5: case 6: case 7:
adj = adj_val[0];
break;
case 8: case 9: case 10: case 11:
case 12: case 13: case 14: case 15:
adj = adj_val[1];
break;
default:
adj = adj_val[2];
}
if (diff > 0) {
avg[c] = MIN(UINT8_MAX, sig[c] + adj);
total_adj += adj;
} else {
avg[c] = MAX(0, sig[c] - adj);
total_adj -= adj;
}
}
}
sig += sig_stride;
avg += avg_stride;
mc_avg += mc_avg_stride;
}
return total_adj;
}
static uint8_t *block_start(uint8_t *framebuf, int stride,
int mi_row, int mi_col) {
return framebuf + (stride * mi_row * 8) + (mi_col * 8);
}
void copy_block(uint8_t *dest, int dest_stride,
uint8_t *src, int src_stride, BLOCK_SIZE bs) {
int r, c;
for (r = 0; r < heights[bs]; ++r) {
for (c = 0; c < widths[bs]; ++c) {
dest[c] = src[c];
}
dest += dest_stride;
src += src_stride;
}
}
void vp9_denoiser_denoise(VP9_DENOISER *denoiser, MACROBLOCK *mb,
int mi_row, int mi_col, BLOCK_SIZE bs) {
int decision = COPY_BLOCK;
YV12_BUFFER_CONFIG avg = denoiser->running_avg_y[INTRA_FRAME];
YV12_BUFFER_CONFIG mc_avg = denoiser->mc_running_avg_y;
uint8_t *avg_start = block_start(avg.y_buffer, avg.y_stride, mi_row, mi_col);
uint8_t *mc_avg_start = block_start(mc_avg.y_buffer, mc_avg.y_stride,
mi_row, mi_col);
struct buf_2d src = mb->plane[0].src;
update_running_avg(mc_avg_start, mc_avg.y_stride, avg_start, avg.y_stride,
mb->plane[0].src.buf, mb->plane[0].src.stride, 0, bs);
if (decision == FILTER_BLOCK) {
// TODO(tkopp)
}
if (decision == COPY_BLOCK) {
copy_block(avg_start, avg.y_stride, src.buf, src.stride, bs);
}
}
static void copy_frame(YV12_BUFFER_CONFIG dest, const YV12_BUFFER_CONFIG src) {
int r, c;
const uint8_t *srcbuf = src.y_buffer;
uint8_t *destbuf = dest.y_buffer;
assert(dest.y_width == src.y_width);
assert(dest.y_height == src.y_height);
for (r = 0; r < dest.y_height; ++r) {
for (c = 0; c < dest.y_width; ++c) {
destbuf[c] = srcbuf[c];
}
destbuf += dest.y_stride;
srcbuf += src.y_stride;
}
}
void vp9_denoiser_update_frame_info(VP9_DENOISER *denoiser,
YV12_BUFFER_CONFIG src,
FRAME_TYPE frame_type,
int refresh_alt_ref_frame,
int refresh_golden_frame,
int refresh_last_frame) {
if (frame_type == KEY_FRAME) {
int i;
copy_frame(denoiser->running_avg_y[LAST_FRAME], src);
for (i = 2; i < MAX_REF_FRAMES - 1; i++) {
copy_frame(denoiser->running_avg_y[i],
denoiser->running_avg_y[LAST_FRAME]);
}
} else { /* For non key frames */
if (refresh_alt_ref_frame) {
copy_frame(denoiser->running_avg_y[ALTREF_FRAME],
denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_golden_frame) {
copy_frame(denoiser->running_avg_y[GOLDEN_FRAME],
denoiser->running_avg_y[INTRA_FRAME]);
}
if (refresh_last_frame) {
copy_frame(denoiser->running_avg_y[LAST_FRAME],
denoiser->running_avg_y[INTRA_FRAME]);
}
}
}
void vp9_denoiser_update_frame_stats() {
}
int vp9_denoiser_alloc(VP9_DENOISER *denoiser, int width, int height,
int ssx, int ssy, int border) {
int i, fail;
assert(denoiser != NULL);
for (i = 0; i < MAX_REF_FRAMES; ++i) {
fail = vp9_alloc_frame_buffer(&denoiser->running_avg_y[i], width, height,
ssx, ssy, border);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
}
fail = vp9_alloc_frame_buffer(&denoiser->mc_running_avg_y, width, height,
ssx, ssy, border);
if (fail) {
vp9_denoiser_free(denoiser);
return 1;
}
return 0;
}
void vp9_denoiser_free(VP9_DENOISER *denoiser) {
int i;
if (denoiser == NULL) {
return;
}
for (i = 0; i < MAX_REF_FRAMES; ++i) {
if (&denoiser->running_avg_y[i] != NULL) {
vp9_free_frame_buffer(&denoiser->running_avg_y[i]);
}
}
if (&denoiser->mc_running_avg_y != NULL) {
vp9_free_frame_buffer(&denoiser->mc_running_avg_y);
}
}

View File

@@ -0,0 +1,52 @@
/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP9_ENCODER_DENOISER_H_
#define VP9_ENCODER_DENOISER_H_
#include "vp9/encoder/vp9_block.h"
#include "vpx_scale/yv12config.h"
#ifdef __cplusplus
extern "C" {
#endif
enum vp9_denoiser_decision {
COPY_BLOCK,
FILTER_BLOCK
};
typedef struct vp9_denoiser {
YV12_BUFFER_CONFIG running_avg_y[MAX_REF_FRAMES];
YV12_BUFFER_CONFIG mc_running_avg_y;
} VP9_DENOISER;
void vp9_denoiser_update_frame_info(VP9_DENOISER *denoiser,
YV12_BUFFER_CONFIG src,
FRAME_TYPE frame_type,
int refresh_alt_ref_frame,
int refresh_golden_frame,
int refresh_last_frame);
void vp9_denoiser_denoise(VP9_DENOISER *denoiser, MACROBLOCK *mb,
int mi_row, int mi_col, BLOCK_SIZE bs);
void vp9_denoiser_update_frame_stats();
int vp9_denoiser_alloc(VP9_DENOISER *denoiser, int width, int height,
int ssx, int ssy, int border);
void vp9_denoiser_free(VP9_DENOISER *denoiser);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // VP9_ENCODER_DENOISER_H_

File diff suppressed because it is too large Load Diff

View File

@@ -301,6 +301,52 @@ static INLINE void fdct32x32(int rd_transform,
vp9_fdct32x32(src, dst, src_stride);
}
void vp9_xform_quant_fp(MACROBLOCK *x, int plane, int block,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
int16_t *const coeff = BLOCK_OFFSET(p->coeff, block);
int16_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
int i, j;
const int16_t *src_diff;
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
src_diff = &p->src_diff[4 * (j * diff_stride + i)];
switch (tx_size) {
case TX_32X32:
vp9_fdct32x32_1(src_diff, coeff, diff_stride);
vp9_quantize_dc_32x32(coeff, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_16X16:
vp9_fdct16x16_1(src_diff, coeff, diff_stride);
vp9_quantize_dc(coeff, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_8X8:
vp9_fdct8x8_1(src_diff, coeff, diff_stride);
vp9_quantize_dc(coeff, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
case TX_4X4:
x->fwd_txm4x4(src_diff, coeff, diff_stride);
vp9_quantize_dc(coeff, x->skip_block, p->round,
p->quant_fp[0], qcoeff, dqcoeff,
pd->dequant[0], eob);
break;
default:
assert(0);
}
}
void vp9_xform_quant(MACROBLOCK *x, int plane, int block,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
@@ -314,6 +360,9 @@ void vp9_xform_quant(MACROBLOCK *x, int plane, int block,
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
int i, j;
const int16_t *src_diff;
#if CONFIG_EXT_TX
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
#endif
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
src_diff = &p->src_diff[4 * (j * diff_stride + i)];
@@ -326,21 +375,45 @@ void vp9_xform_quant(MACROBLOCK *x, int plane, int block,
scan_order->iscan);
break;
case TX_16X16:
#if CONFIG_EXT_TX
if (plane != 0 || mbmi->ext_txfrm == NORM) {
#endif
vp9_fdct16x16(src_diff, coeff, diff_stride);
#if CONFIG_EXT_TX
} else {
vp9_fht16x16(src_diff, coeff, diff_stride, ADST_ADST);
}
#endif
vp9_quantize_b(coeff, 256, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_8X8:
#if CONFIG_EXT_TX
if (plane != 0 || mbmi->ext_txfrm == NORM) {
#endif
vp9_fdct8x8(src_diff, coeff, diff_stride);
#if CONFIG_EXT_TX
} else {
vp9_fht8x8(src_diff, coeff, diff_stride, ADST_ADST);
}
#endif
vp9_quantize_b(coeff, 64, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob,
scan_order->scan, scan_order->iscan);
break;
case TX_4X4:
#if CONFIG_EXT_TX
if (plane != 0 || mbmi->ext_txfrm == NORM) {
#endif
x->fwd_txm4x4(src_diff, coeff, diff_stride);
#if CONFIG_EXT_TX
} else {
vp9_fht4x4(src_diff, coeff, diff_stride, ADST_ADST);
}
#endif
vp9_quantize_b(coeff, 16, x->skip_block, p->zbin, p->round,
p->quant, p->quant_shift, qcoeff, dqcoeff,
pd->dequant, p->zbin_extra, eob,
@@ -363,6 +436,9 @@ static void encode_block(int plane, int block, BLOCK_SIZE plane_bsize,
int i, j;
uint8_t *dst;
ENTROPY_CONTEXT *a, *l;
#if CONFIG_EXT_TX
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
#endif
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
dst = &pd->dst.buf[4 * j * pd->dst.stride + 4 * i];
a = &ctx->ta[plane][i];
@@ -376,8 +452,19 @@ static void encode_block(int plane, int block, BLOCK_SIZE plane_bsize,
return;
}
if (!x->skip_recode)
vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
if (x->skip_txfm == 0) {
// full forward transform and quantization
if (!x->skip_recode)
vp9_xform_quant(x, plane, block, plane_bsize, tx_size);
} else if (x->skip_txfm == 2) {
// fast path forward transform and quantization
vp9_xform_quant_fp(x, plane, block, plane_bsize, tx_size);
} else {
// skip forward transform
p->eobs[block] = 0;
*a = *l = 0;
return;
}
if (x->optimize && (!x->skip_recode || !x->skip_optimize)) {
const int ctx = combine_entropy_contexts(*a, *l);
@@ -397,16 +484,43 @@ static void encode_block(int plane, int block, BLOCK_SIZE plane_bsize,
vp9_idct32x32_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
break;
case TX_16X16:
#if CONFIG_EXT_TX
if (plane != 0 || mbmi->ext_txfrm == NORM) {
#endif
vp9_idct16x16_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
#if CONFIG_EXT_TX
} else {
vp9_iht16x16_add(ADST_ADST, dqcoeff, dst, pd->dst.stride,
p->eobs[block]);
}
#endif
break;
case TX_8X8:
#if CONFIG_EXT_TX
if (plane != 0 || mbmi->ext_txfrm == NORM) {
#endif
vp9_idct8x8_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
#if CONFIG_EXT_TX
} else {
vp9_iht8x8_add(ADST_ADST, dqcoeff, dst, pd->dst.stride,
p->eobs[block]);
}
#endif
break;
case TX_4X4:
#if CONFIG_EXT_TX
if (plane != 0 || mbmi->ext_txfrm == NORM) {
#endif
// this is like vp9_short_idct4x4 but has a special case around eob<=1
// which is significant (not just an optimization) for the lossless
// case.
x->itxm_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
#if CONFIG_EXT_TX
} else {
vp9_iht4x4_add(ADST_ADST, dqcoeff, dst, pd->dst.stride,
p->eobs[block]);
}
#endif
break;
default:
assert(0 && "Invalid transform size");
@@ -422,6 +536,10 @@ static void encode_block_pass1(int plane, int block, BLOCK_SIZE plane_bsize,
int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
int i, j;
uint8_t *dst;
#if CONFIG_EXT_TX
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
mbmi->ext_txfrm = NORM;
#endif
txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &i, &j);
dst = &pd->dst.buf[4 * j * pd->dst.stride + 4 * i];
@@ -460,6 +578,26 @@ void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) {
}
}
#if CONFIG_SUPERTX
void vp9_encode_sb_supertx(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = {x, &ctx, &mbmi->skip};
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
BLOCK_SIZE plane_size = bsize - 3 * (plane > 0);
const struct macroblockd_plane* const pd = &xd->plane[plane];
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi) : mbmi->tx_size;
vp9_subtract_plane(x, bsize, plane);
vp9_get_entropy_contexts(bsize, tx_size, pd,
ctx.ta[plane], ctx.tl[plane]);
encode_block(plane, 0, plane_size, bsize_to_tx_size(plane_size), &arg);
}
}
#endif
static void encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct encode_b_args* const args = arg;
@@ -474,6 +612,9 @@ static void encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
const scan_order *scan_order;
TX_TYPE tx_type;
PREDICTION_MODE mode;
#if CONFIG_FILTERINTRA
int fbit = 0;
#endif
const int bwl = b_width_log2(plane_bsize);
const int diff_stride = 4 * (1 << bwl);
uint8_t *src, *dst;
@@ -487,11 +628,20 @@ static void encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
src = &p->src.buf[4 * (j * src_stride + i)];
src_diff = &p->src_diff[4 * (j * diff_stride + i)];
#if CONFIG_FILTERINTRA
if (mbmi->sb_type < BLOCK_8X8 && plane == 0)
fbit = xd->mi[0]->b_filter_info[block];
else
fbit = plane == 0 ? mbmi->filterbit : mbmi->uv_filterbit;
#endif
switch (tx_size) {
case TX_32X32:
scan_order = &vp9_default_scan_orders[TX_32X32];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
vp9_predict_intra_block(xd, block >> 6, bwl, TX_32X32, mode,
#if CONFIG_FILTERINTRA
fbit,
#endif
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride, i, j, plane);
@@ -512,6 +662,9 @@ static void encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
scan_order = &vp9_scan_orders[TX_16X16][tx_type];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
vp9_predict_intra_block(xd, block >> 4, bwl, TX_16X16, mode,
#if CONFIG_FILTERINTRA
fbit,
#endif
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride, i, j, plane);
@@ -532,6 +685,9 @@ static void encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
scan_order = &vp9_scan_orders[TX_8X8][tx_type];
mode = plane == 0 ? mbmi->mode : mbmi->uv_mode;
vp9_predict_intra_block(xd, block >> 2, bwl, TX_8X8, mode,
#if CONFIG_FILTERINTRA
fbit,
#endif
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride, i, j, plane);
@@ -552,6 +708,9 @@ static void encode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize,
scan_order = &vp9_scan_orders[TX_4X4][tx_type];
mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mbmi->uv_mode;
vp9_predict_intra_block(xd, block, bwl, TX_4X4, mode,
#if CONFIG_FILTERINTRA
fbit,
#endif
x->skip_encode ? src : dst,
x->skip_encode ? src_stride : dst_stride,
dst, dst_stride, i, j, plane);

View File

@@ -21,8 +21,12 @@ extern "C" {
#endif
void vp9_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize);
#if CONFIG_SUPERTX
void vp9_encode_sb_supertx(MACROBLOCK *x, BLOCK_SIZE bsize);
#endif
void vp9_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize);
void vp9_xform_quant_fp(MACROBLOCK *x, int plane, int block,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size);
void vp9_xform_quant(MACROBLOCK *x, int plane, int block,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size);

View File

@@ -216,7 +216,7 @@ void vp9_encode_mv(VP9_COMP* cpi, vp9_writer* w,
// If auto_mv_step_size is enabled then keep track of the largest
// motion vector component used.
if (!cpi->dummy_packing && cpi->sf.auto_mv_step_size) {
if (!cpi->dummy_packing && cpi->sf.mv.auto_mv_step_size) {
unsigned int maxv = MAX(abs(mv->row), abs(mv->col)) >> 3;
cpi->max_mv_magnitude = MAX(maxv, cpi->max_mv_magnitude);
}

File diff suppressed because it is too large Load Diff

View File

@@ -32,10 +32,14 @@
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_speed_features.h"
#include "vp9/encoder/vp9_svc_layercontext.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/encoder/vp9_variance.h"
#if CONFIG_DENOISING
#include "vp9/encoder/vp9_denoiser.h"
#endif
#ifdef __cplusplus
extern "C" {
@@ -43,9 +47,6 @@ extern "C" {
#define DEFAULT_GF_INTERVAL 10
#define MAX_MODES 30
#define MAX_REFS 6
typedef struct {
int nmvjointcost[MV_JOINTS];
int nmvcosts[2][MV_VALS];
@@ -63,57 +64,6 @@ typedef struct {
FRAME_CONTEXT fc;
} CODING_CONTEXT;
// This enumerator type needs to be kept aligned with the mode order in
// const MODE_DEFINITION vp9_mode_order[MAX_MODES] used in the rd code.
typedef enum {
THR_NEARESTMV,
THR_NEARESTA,
THR_NEARESTG,
THR_DC,
THR_NEWMV,
THR_NEWA,
THR_NEWG,
THR_NEARMV,
THR_NEARA,
THR_COMP_NEARESTLA,
THR_COMP_NEARESTGA,
THR_TM,
THR_COMP_NEARLA,
THR_COMP_NEWLA,
THR_NEARG,
THR_COMP_NEARGA,
THR_COMP_NEWGA,
THR_ZEROMV,
THR_ZEROG,
THR_ZEROA,
THR_COMP_ZEROLA,
THR_COMP_ZEROGA,
THR_H_PRED,
THR_V_PRED,
THR_D135_PRED,
THR_D207_PRED,
THR_D153_PRED,
THR_D63_PRED,
THR_D117_PRED,
THR_D45_PRED,
} THR_MODES;
typedef enum {
THR_LAST,
THR_GOLD,
THR_ALTR,
THR_COMP_LA,
THR_COMP_GA,
THR_INTRA,
} THR_MODES_SUB8X8;
typedef enum {
// encode_breakout is disabled.
ENCODE_BREAKOUT_DISABLED = 0,
@@ -130,13 +80,6 @@ typedef enum {
ONETWO = 3
} VPX_SCALING;
typedef enum {
RC_MODE_VBR = 0,
RC_MODE_CBR = 1,
RC_MODE_CONSTRAINED_QUALITY = 2,
RC_MODE_CONSTANT_QUALITY = 3,
} RC_MODE;
typedef enum {
// Good Quality Fast Encoding. The encoder balances quality with the
// amount of time it takes to encode the output. (speed setting
@@ -209,7 +152,8 @@ typedef struct VP9EncoderConfig {
// ----------------------------------------------------------------
// DATARATE CONTROL OPTIONS
RC_MODE rc_mode; // vbr, cbr, constrained quality or constant quality
// vbr, cbr, constrained quality or constant quality
enum vpx_rc_mode rc_mode;
// buffer targeting aggressiveness
int under_shoot_pct;
@@ -238,8 +182,6 @@ typedef struct VP9EncoderConfig {
// Enable feature to reduce the frame quantization every x frames.
int frame_periodic_boost;
int kf_extern_coding;
// two pass datarate control
int two_pass_vbrbias; // two pass datarate control tweaks
int two_pass_vbrmin_section;
@@ -286,6 +228,10 @@ typedef struct VP9EncoderConfig {
vp8e_tuning tuning;
} VP9EncoderConfig;
static INLINE int is_altref_enabled(const VP9EncoderConfig *cfg) {
return cfg->mode != REALTIME && cfg->play_alternate && cfg->lag_in_frames > 0;
}
static INLINE int is_lossless_requested(const VP9EncoderConfig *cfg) {
return cfg->best_allowed_q == 0 && cfg->worst_allowed_q == 0;
}
@@ -294,32 +240,6 @@ static INLINE int is_best_mode(MODE mode) {
return mode == ONE_PASS_BEST || mode == TWO_PASS_SECOND_BEST;
}
typedef struct RD_OPT {
// Thresh_mult is used to set a threshold for the rd score. A higher value
// means that we will accept the best mode so far more often. This number
// is used in combination with the current block size, and thresh_freq_fact
// to pick a threshold.
int thresh_mult[MAX_MODES];
int thresh_mult_sub8x8[MAX_REFS];
int threshes[MAX_SEGMENTS][BLOCK_SIZES][MAX_MODES];
int thresh_freq_fact[BLOCK_SIZES][MAX_MODES];
int64_t comp_pred_diff[REFERENCE_MODES];
int64_t prediction_type_threshes[MAX_REF_FRAMES][REFERENCE_MODES];
int64_t tx_select_diff[TX_MODES];
// FIXME(rbultje) can this overflow?
int tx_select_threshes[MAX_REF_FRAMES][TX_MODES];
int64_t filter_diff[SWITCHABLE_FILTER_CONTEXTS];
int64_t filter_threshes[MAX_REF_FRAMES][SWITCHABLE_FILTER_CONTEXTS];
int64_t filter_cache[SWITCHABLE_FILTER_CONTEXTS];
int64_t mask_filter;
int RDMULT;
int RDDIV;
} RD_OPT;
typedef struct VP9_COMP {
QUANTS quants;
MACROBLOCK mb;
@@ -327,11 +247,7 @@ typedef struct VP9_COMP {
VP9EncoderConfig oxcf;
struct lookahead_ctx *lookahead;
struct lookahead_entry *source;
#if CONFIG_MULTIPLE_ARF
struct lookahead_entry *alt_ref_source[REF_FRAMES];
#else
struct lookahead_entry *alt_ref_source;
#endif
struct lookahead_entry *last_source;
YV12_BUFFER_CONFIG *Source;
@@ -350,9 +266,6 @@ typedef struct VP9_COMP {
int gld_fb_idx;
int alt_fb_idx;
#if CONFIG_MULTIPLE_ARF
int alt_ref_fb_idx[REF_FRAMES - 3];
#endif
int refresh_last_frame;
int refresh_golden_frame;
int refresh_alt_ref_frame;
@@ -370,13 +283,6 @@ typedef struct VP9_COMP {
TOKENEXTRA *tok;
unsigned int tok_count[4][1 << 6];
#if CONFIG_MULTIPLE_ARF
// Position within a frame coding order (including any additional ARF frames).
unsigned int sequence_number;
// Next frame in naturally occurring order that has not yet been coded.
int next_frame_in_order;
#endif
// Ambient reconstruction err target for force key frames
int ambient_err;
@@ -426,9 +332,6 @@ typedef struct VP9_COMP {
unsigned char *complexity_map;
unsigned char *active_map;
unsigned int active_map_enabled;
CYCLIC_REFRESH *cyclic_refresh;
fractional_mv_step_fp *find_fractional_mv_step;
@@ -506,23 +409,31 @@ typedef struct VP9_COMP {
int intra_uv_mode_cost[FRAME_TYPES][INTRA_MODES];
int y_mode_costs[INTRA_MODES][INTRA_MODES][INTRA_MODES];
int switchable_interp_costs[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS];
#if CONFIG_COPY_CODING
int copy_mode_cost_l2[COPY_MODE_CONTEXTS][2];
int copy_mode_cost[COPY_MODE_CONTEXTS][COPY_MODE_COUNT - 1];
#endif
PICK_MODE_CONTEXT *leaf_tree;
PC_TREE *pc_tree;
PC_TREE *pc_root;
int partition_cost[PARTITION_CONTEXTS][PARTITION_TYPES];
#if CONFIG_MULTIPLE_ARF
// ARF tracking variables.
int multi_arf_allowed;
int multi_arf_enabled;
unsigned int frame_coding_order_period;
unsigned int new_frame_coding_order_period;
int frame_coding_order[MAX_LAG_BUFFERS * 2];
int arf_buffer_idx[MAX_LAG_BUFFERS * 3 / 2];
int arf_weight[MAX_LAG_BUFFERS];
int arf_buffered;
int this_frame_weight;
int max_arf_level;
#if CONFIG_DENOISING
VP9_DENOISER denoiser;
#endif
#if CONFIG_MASKED_INTERINTER
unsigned int masked_interinter_select_counts[2];
#endif
#if CONFIG_INTERINTRA
unsigned int interintra_select_count[2];
#if CONFIG_MASKED_INTERINTRA
unsigned int masked_interintra_select_count[2];
#endif
#endif
} VP9_COMP;
@@ -619,10 +530,14 @@ void vp9_update_reference_frames(VP9_COMP *cpi);
int64_t vp9_rescale(int64_t val, int64_t num, int denom);
void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv);
YV12_BUFFER_CONFIG *vp9_scale_if_required(VP9_COMMON *cm,
YV12_BUFFER_CONFIG *unscaled,
YV12_BUFFER_CONFIG *scaled);
void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags);
static INLINE void set_ref_ptrs(VP9_COMMON *cm, MACROBLOCKD *xd,
MV_REFERENCE_FRAME ref0,
MV_REFERENCE_FRAME ref1) {

View File

@@ -33,7 +33,6 @@
#include "vp9/encoder/vp9_firstpass.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_variance.h"
@@ -56,14 +55,7 @@
#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001)
#define MIN_KF_BOOST 300
#if CONFIG_MULTIPLE_ARF
// Set MIN_GF_INTERVAL to 1 for the full decomposition.
#define MIN_GF_INTERVAL 2
#else
#define MIN_GF_INTERVAL 4
#endif
#define MIN_GF_INTERVAL 4
#define LONG_TERM_VBR_CORRECTION
static void swap_yv12(YV12_BUFFER_CONFIG *a, YV12_BUFFER_CONFIG *b) {
@@ -137,14 +129,13 @@ static void output_stats(FIRSTPASS_STATS *stats,
FILE *fpfile;
fpfile = fopen("firstpass.stt", "a");
fprintf(fpfile, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f"
fprintf(fpfile, "%12.0f %12.0f %12.0f %12.0f %12.4f %12.4f"
"%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f"
"%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n",
stats->frame,
stats->intra_error,
stats->coded_error,
stats->sr_coded_error,
stats->ssim_weighted_pred_err,
stats->pcnt_inter,
stats->pcnt_motion,
stats->pcnt_second_ref,
@@ -498,6 +489,8 @@ void vp9_first_pass(VP9_COMP *cpi) {
&cpi->scaled_source);
}
vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
vp9_setup_src_planes(x, cpi->Source, 0, 0);
vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL);
vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0);
@@ -505,8 +498,6 @@ void vp9_first_pass(VP9_COMP *cpi) {
xd->mi = cm->mi_grid_visible;
xd->mi[0] = cm->mi;
vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
vp9_frame_init_quantizer(cpi);
for (i = 0; i < MAX_MB_PLANE; ++i) {
@@ -595,8 +586,9 @@ void vp9_first_pass(VP9_COMP *cpi) {
// Other than for the first frame do a motion search.
if (cm->current_video_frame > 0) {
int tmp_err, motion_error;
int tmp_err, motion_error, raw_motion_error;
int_mv mv, tmp_mv;
struct buf_2d unscaled_last_source_buf_2d;
xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
motion_error = get_prediction_error(bsize, &x->plane[0].src,
@@ -604,67 +596,83 @@ void vp9_first_pass(VP9_COMP *cpi) {
// Assume 0,0 motion with no mv overhead.
mv.as_int = tmp_mv.as_int = 0;
// Test last reference frame using the previous best mv as the
// starting point (best reference) for the search.
first_pass_motion_search(cpi, x, &best_ref_mv.as_mv, &mv.as_mv,
&motion_error);
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp9_clear_system_state();
motion_error = (int)(motion_error * error_weight);
}
// Compute the motion error of the 0,0 motion using the last source
// frame as the reference. Skip the further motion search on
// reconstructed frame if this error is small.
unscaled_last_source_buf_2d.buf =
cpi->unscaled_last_source->y_buffer + recon_yoffset;
unscaled_last_source_buf_2d.stride =
cpi->unscaled_last_source->y_stride;
raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
&unscaled_last_source_buf_2d);
// If the current best reference mv is not centered on 0,0 then do a 0,0
// based search as well.
if (best_ref_mv.as_int) {
tmp_err = INT_MAX;
first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv.as_mv,
&tmp_err);
// TODO(pengchong): Replace the hard-coded threshold
if (raw_motion_error > 25 ||
(cpi->use_svc && cpi->svc.number_temporal_layers == 1)) {
// Test last reference frame using the previous best mv as the
// starting point (best reference) for the search.
first_pass_motion_search(cpi, x, &best_ref_mv.as_mv, &mv.as_mv,
&motion_error);
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp9_clear_system_state();
tmp_err = (int)(tmp_err * error_weight);
motion_error = (int)(motion_error * error_weight);
}
if (tmp_err < motion_error) {
motion_error = tmp_err;
mv.as_int = tmp_mv.as_int;
}
}
// If the current best reference mv is not centered on 0,0 then do a
// 0,0 based search as well.
if (best_ref_mv.as_int) {
tmp_err = INT_MAX;
first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv.as_mv, &tmp_err);
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp9_clear_system_state();
tmp_err = (int)(tmp_err * error_weight);
}
// Search in an older reference frame.
if (cm->current_video_frame > 1 && gld_yv12 != NULL) {
// Assume 0,0 motion with no mv overhead.
int gf_motion_error;
xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
&xd->plane[0].pre[0]);
first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv.as_mv,
&gf_motion_error);
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp9_clear_system_state();
gf_motion_error = (int)(gf_motion_error * error_weight);
if (tmp_err < motion_error) {
motion_error = tmp_err;
mv.as_int = tmp_mv.as_int;
}
}
if (gf_motion_error < motion_error && gf_motion_error < this_error)
++second_ref_count;
// Search in an older reference frame.
if (cm->current_video_frame > 1 && gld_yv12 != NULL) {
// Assume 0,0 motion with no mv overhead.
int gf_motion_error;
// Reset to last frame as reference buffer.
xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
&xd->plane[0].pre[0]);
// In accumulating a score for the older reference frame take the
// best of the motion predicted score and the intra coded error
// (just as will be done for) accumulation of "coded_error" for
// the last frame.
if (gf_motion_error < this_error)
sr_coded_error += gf_motion_error;
else
sr_coded_error += this_error;
first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv.as_mv,
&gf_motion_error);
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
vp9_clear_system_state();
gf_motion_error = (int)(gf_motion_error * error_weight);
}
if (gf_motion_error < motion_error && gf_motion_error < this_error)
++second_ref_count;
// Reset to last frame as reference buffer.
xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
// In accumulating a score for the older reference frame take the
// best of the motion predicted score and the intra coded error
// (just as will be done for) accumulation of "coded_error" for
// the last frame.
if (gf_motion_error < this_error)
sr_coded_error += gf_motion_error;
else
sr_coded_error += this_error;
} else {
sr_coded_error += motion_error;
}
} else {
sr_coded_error += motion_error;
}
// Start by assuming that intra mode is best.
best_ref_mv.as_int = 0;
@@ -905,7 +913,7 @@ static int get_twopass_worst_quality(const VP9_COMP *cpi,
}
// Restriction on active max q for constrained quality mode.
if (cpi->oxcf.rc_mode == RC_MODE_CONSTRAINED_QUALITY)
if (cpi->oxcf.rc_mode == VPX_CQ)
q = MAX(q, oxcf->cq_level);
return q;
}
@@ -1066,38 +1074,30 @@ static int detect_flash(const TWO_PASS *twopass, int offset) {
}
// Update the motion related elements to the GF arf boost calculation.
static void accumulate_frame_motion_stats(
FIRSTPASS_STATS *this_frame,
double *this_frame_mv_in_out,
double *mv_in_out_accumulator,
double *abs_mv_in_out_accumulator,
double *mv_ratio_accumulator) {
double motion_pct;
// Accumulate motion stats.
motion_pct = this_frame->pcnt_motion;
static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
double *mv_in_out,
double *mv_in_out_accumulator,
double *abs_mv_in_out_accumulator,
double *mv_ratio_accumulator) {
const double pct = stats->pcnt_motion;
// Accumulate Motion In/Out of frame stats.
*this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct;
*mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct;
*abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct);
*mv_in_out = stats->mv_in_out_count * pct;
*mv_in_out_accumulator += *mv_in_out;
*abs_mv_in_out_accumulator += fabs(*mv_in_out);
// Accumulate a measure of how uniform (or conversely how random)
// the motion field is (a ratio of absmv / mv).
if (motion_pct > 0.05) {
const double this_frame_mvr_ratio = fabs(this_frame->mvr_abs) /
DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr));
// Accumulate a measure of how uniform (or conversely how random) the motion
// field is (a ratio of abs(mv) / mv).
if (pct > 0.05) {
const double mvr_ratio = fabs(stats->mvr_abs) /
DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
const double mvc_ratio = fabs(stats->mvc_abs) /
DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
const double this_frame_mvc_ratio = fabs(this_frame->mvc_abs) /
DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc));
*mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs)
? (this_frame_mvr_ratio * motion_pct)
: this_frame->mvr_abs * motion_pct;
*mv_ratio_accumulator += (this_frame_mvc_ratio < this_frame->mvc_abs)
? (this_frame_mvc_ratio * motion_pct)
: this_frame->mvc_abs * motion_pct;
*mv_ratio_accumulator += pct * (mvr_ratio < stats->mvr_abs ?
mvr_ratio : stats->mvr_abs);
*mv_ratio_accumulator += pct * (mvc_ratio < stats->mvc_abs ?
mvc_ratio : stats->mvc_abs);
}
}
@@ -1214,144 +1214,6 @@ static int calc_arf_boost(VP9_COMP *cpi, int offset,
return arf_boost;
}
#if CONFIG_MULTIPLE_ARF
// Work out the frame coding order for a GF or an ARF group.
// The current implementation codes frames in their natural order for a
// GF group, and inserts additional ARFs into an ARF group using a
// binary split approach.
// NOTE: this function is currently implemented recursively.
static void schedule_frames(VP9_COMP *cpi, const int start, const int end,
const int arf_idx, const int gf_or_arf_group,
const int level) {
int i, abs_end, half_range;
int *cfo = cpi->frame_coding_order;
int idx = cpi->new_frame_coding_order_period;
// If (end < 0) an ARF should be coded at position (-end).
assert(start >= 0);
// printf("start:%d end:%d\n", start, end);
// GF Group: code frames in logical order.
if (gf_or_arf_group == 0) {
assert(end >= start);
for (i = start; i <= end; ++i) {
cfo[idx] = i;
cpi->arf_buffer_idx[idx] = arf_idx;
cpi->arf_weight[idx] = -1;
++idx;
}
cpi->new_frame_coding_order_period = idx;
return;
}
// ARF Group: Work out the ARF schedule and mark ARF frames as negative.
if (end < 0) {
// printf("start:%d end:%d\n", -end, -end);
// ARF frame is at the end of the range.
cfo[idx] = end;
// What ARF buffer does this ARF use as predictor.
cpi->arf_buffer_idx[idx] = (arf_idx > 2) ? (arf_idx - 1) : 2;
cpi->arf_weight[idx] = level;
++idx;
abs_end = -end;
} else {
abs_end = end;
}
half_range = (abs_end - start) >> 1;
// ARFs may not be adjacent, they must be separated by at least
// MIN_GF_INTERVAL non-ARF frames.
if ((start + MIN_GF_INTERVAL) >= (abs_end - MIN_GF_INTERVAL)) {
// printf("start:%d end:%d\n", start, abs_end);
// Update the coding order and active ARF.
for (i = start; i <= abs_end; ++i) {
cfo[idx] = i;
cpi->arf_buffer_idx[idx] = arf_idx;
cpi->arf_weight[idx] = -1;
++idx;
}
cpi->new_frame_coding_order_period = idx;
} else {
// Place a new ARF at the mid-point of the range.
cpi->new_frame_coding_order_period = idx;
schedule_frames(cpi, start, -(start + half_range), arf_idx + 1,
gf_or_arf_group, level + 1);
schedule_frames(cpi, start + half_range + 1, abs_end, arf_idx,
gf_or_arf_group, level + 1);
}
}
#define FIXED_ARF_GROUP_SIZE 16
void define_fixed_arf_period(VP9_COMP *cpi) {
int i;
int max_level = INT_MIN;
assert(cpi->multi_arf_enabled);
assert(cpi->oxcf.lag_in_frames >= FIXED_ARF_GROUP_SIZE);
// Save the weight of the last frame in the sequence before next
// sequence pattern overwrites it.
cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number];
assert(cpi->this_frame_weight >= 0);
cpi->twopass.gf_zeromotion_pct = 0;
// Initialize frame coding order variables.
cpi->new_frame_coding_order_period = 0;
cpi->next_frame_in_order = 0;
cpi->arf_buffered = 0;
vp9_zero(cpi->frame_coding_order);
vp9_zero(cpi->arf_buffer_idx);
vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight));
if (cpi->rc.frames_to_key <= (FIXED_ARF_GROUP_SIZE + 8)) {
// Setup a GF group close to the keyframe.
cpi->rc.source_alt_ref_pending = 0;
cpi->rc.baseline_gf_interval = cpi->rc.frames_to_key;
schedule_frames(cpi, 0, (cpi->rc.baseline_gf_interval - 1), 2, 0, 0);
} else {
// Setup a fixed period ARF group.
cpi->rc.source_alt_ref_pending = 1;
cpi->rc.baseline_gf_interval = FIXED_ARF_GROUP_SIZE;
schedule_frames(cpi, 0, -(cpi->rc.baseline_gf_interval - 1), 2, 1, 0);
}
// Replace level indicator of -1 with correct level.
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
if (cpi->arf_weight[i] > max_level) {
max_level = cpi->arf_weight[i];
}
}
++max_level;
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
if (cpi->arf_weight[i] == -1) {
cpi->arf_weight[i] = max_level;
}
}
cpi->max_arf_level = max_level;
#if 0
printf("\nSchedule: ");
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
printf("%4d ", cpi->frame_coding_order[i]);
}
printf("\n");
printf("ARFref: ");
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
printf("%4d ", cpi->arf_buffer_idx[i]);
}
printf("\n");
printf("Weight: ");
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
printf("%4d ", cpi->arf_weight[i]);
}
printf("\n");
#endif
}
#endif
// Calculate a section intra ratio used in setting max loop filter.
static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
const FIRSTPASS_STATS *end,
@@ -1421,6 +1283,18 @@ static int calculate_boost_bits(int frame_count,
return MAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), 0);
}
// Current limit on maximum number of active arfs in a GF/ARF group.
#define MAX_ACTIVE_ARFS 2
#define ARF_SLOT1 2
#define ARF_SLOT2 3
// This function indirects the choice of buffers for arfs.
// At the moment the values are fixed but this may change as part of
// the integration process with other codec features that swap buffers around.
static void get_arf_buffer_indices(unsigned char *arf_buffer_indices) {
arf_buffer_indices[0] = ARF_SLOT1;
arf_buffer_indices[1] = ARF_SLOT2;
}
static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
double group_error, int gf_arf_bits) {
RATE_CONTROL *const rc = &cpi->rc;
@@ -1428,42 +1302,85 @@ static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
TWO_PASS *twopass = &cpi->twopass;
FIRSTPASS_STATS frame_stats;
int i;
int group_frame_index = 1;
int frame_index = 1;
int target_frame_size;
int key_frame;
const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
int64_t total_group_bits = gf_group_bits;
double modified_err = 0.0;
double err_fraction;
int mid_boost_bits = 0;
int mid_frame_idx;
unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS];
key_frame = cpi->common.frame_type == KEY_FRAME ||
vp9_is_upper_layer_key_frame(cpi);
get_arf_buffer_indices(arf_buffer_indices);
// For key frames the frame target rate is already set and it
// is also the golden frame.
// NOTE: We dont bother to check for the special case of ARF overlay
// frames here, as there is clamping code for this in the function
// vp9_rc_clamp_pframe_target_size(), which applies to one and two pass
// encodes.
if (!key_frame) {
twopass->gf_group_bit_allocation[0] = gf_arf_bits;
if (rc->source_alt_ref_active) {
twopass->gf_group.update_type[0] = OVERLAY_UPDATE;
twopass->gf_group.rf_level[0] = INTER_NORMAL;
twopass->gf_group.bit_allocation[0] = 0;
twopass->gf_group.arf_update_idx[0] = arf_buffer_indices[0];
twopass->gf_group.arf_ref_idx[0] = arf_buffer_indices[0];
} else {
twopass->gf_group.update_type[0] = GF_UPDATE;
twopass->gf_group.rf_level[0] = GF_ARF_STD;
twopass->gf_group.bit_allocation[0] = gf_arf_bits;
twopass->gf_group.arf_update_idx[0] = arf_buffer_indices[0];
twopass->gf_group.arf_ref_idx[0] = arf_buffer_indices[0];
}
// Step over the golden frame / overlay frame
if (EOF == input_stats(twopass, &frame_stats))
return;
}
// Store the bits to spend on the ARF if there is one.
if (rc->source_alt_ref_pending) {
twopass->gf_group_bit_allocation[group_frame_index++] = gf_arf_bits;
}
// Deduct the boost bits for arf or gf if it is not a key frame.
// Deduct the boost bits for arf (or gf if it is not a key frame)
// from the group total.
if (rc->source_alt_ref_pending || !key_frame)
total_group_bits -= gf_arf_bits;
// Store the bits to spend on the ARF if there is one.
if (rc->source_alt_ref_pending) {
if (cpi->multi_arf_enabled) {
// A portion of the gf / arf extra bits are set asside for lower level
// boosted frames in the middle of the group.
mid_boost_bits += gf_arf_bits >> 5;
gf_arf_bits -= (gf_arf_bits >> 5);
}
twopass->gf_group.update_type[frame_index] = ARF_UPDATE;
twopass->gf_group.rf_level[frame_index] = GF_ARF_STD;
twopass->gf_group.bit_allocation[frame_index] = gf_arf_bits;
twopass->gf_group.arf_src_offset[frame_index] =
(unsigned char)(rc->baseline_gf_interval - 1);
twopass->gf_group.arf_update_idx[frame_index] = arf_buffer_indices[0];
twopass->gf_group.arf_ref_idx[frame_index] = arf_buffer_indices[0];
++frame_index;
if (cpi->multi_arf_enabled) {
// Set aside a slot for a level 1 arf.
twopass->gf_group.update_type[frame_index] = ARF_UPDATE;
twopass->gf_group.rf_level[frame_index] = GF_ARF_LOW;
twopass->gf_group.arf_src_offset[frame_index] =
(unsigned char)((rc->baseline_gf_interval >> 1) - 1);
twopass->gf_group.arf_update_idx[frame_index] = arf_buffer_indices[1];
twopass->gf_group.arf_ref_idx[frame_index] = arf_buffer_indices[0];
++frame_index;
}
}
// Define middle frame
mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1;
// Allocate bits to the other frames in the group.
for (i = 0; i < rc->baseline_gf_interval - 1; ++i) {
int arf_idx = 0;
if (EOF == input_stats(twopass, &frame_stats))
break;
@@ -1475,10 +1392,48 @@ static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
err_fraction = 0.0;
target_frame_size = (int)((double)total_group_bits * err_fraction);
if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) {
mid_boost_bits += (target_frame_size >> 4);
target_frame_size -= (target_frame_size >> 4);
if (frame_index <= mid_frame_idx)
arf_idx = 1;
}
twopass->gf_group.arf_update_idx[frame_index] = arf_buffer_indices[arf_idx];
twopass->gf_group.arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx];
target_frame_size = clamp(target_frame_size, 0,
MIN(max_bits, (int)total_group_bits));
twopass->gf_group_bit_allocation[group_frame_index++] = target_frame_size;
twopass->gf_group.update_type[frame_index] = LF_UPDATE;
twopass->gf_group.rf_level[frame_index] = INTER_NORMAL;
twopass->gf_group.bit_allocation[frame_index] = target_frame_size;
++frame_index;
}
// Note:
// We need to configure the frame at the end of the sequence + 1 that will be
// the start frame for the next group. Otherwise prior to the call to
// vp9_rc_get_second_pass_params() the data will be undefined.
twopass->gf_group.arf_update_idx[frame_index] = arf_buffer_indices[0];
twopass->gf_group.arf_ref_idx[frame_index] = arf_buffer_indices[0];
if (rc->source_alt_ref_pending) {
twopass->gf_group.update_type[frame_index] = OVERLAY_UPDATE;
twopass->gf_group.rf_level[frame_index] = INTER_NORMAL;
// Final setup for second arf and its overlay.
if (cpi->multi_arf_enabled) {
twopass->gf_group.bit_allocation[2] =
twopass->gf_group.bit_allocation[mid_frame_idx] + mid_boost_bits;
twopass->gf_group.update_type[mid_frame_idx] = OVERLAY_UPDATE;
twopass->gf_group.bit_allocation[mid_frame_idx] = 0;
}
} else {
twopass->gf_group.update_type[frame_index] = GF_UPDATE;
twopass->gf_group.rf_level[frame_index] = GF_ARF_STD;
}
}
@@ -1508,7 +1463,7 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
double mv_in_out_accumulator = 0.0;
double abs_mv_in_out_accumulator = 0.0;
double mv_ratio_accumulator_thresh;
unsigned int allow_alt_ref = oxcf->play_alternate && oxcf->lag_in_frames;
unsigned int allow_alt_ref = is_altref_enabled(oxcf);
int f_boost = 0;
int b_boost = 0;
@@ -1521,8 +1476,7 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
// Reset the GF group data structures unless this is a key
// frame in which case it will already have been done.
if (cpi->common.frame_type != KEY_FRAME) {
twopass->gf_group_index = 0;
vp9_zero(twopass->gf_group_bit_allocation);
vp9_zero(twopass->gf_group);
}
vp9_clear_system_state();
@@ -1644,24 +1598,14 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
}
}
#if CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled) {
// Initialize frame coding order variables.
cpi->new_frame_coding_order_period = 0;
cpi->next_frame_in_order = 0;
cpi->arf_buffered = 0;
vp9_zero(cpi->frame_coding_order);
vp9_zero(cpi->arf_buffer_idx);
vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight));
}
#endif
// Set the interval until the next gf.
if (cpi->common.frame_type == KEY_FRAME || rc->source_alt_ref_active)
rc->baseline_gf_interval = i - 1;
else
rc->baseline_gf_interval = i;
rc->frames_till_gf_update_due = rc->baseline_gf_interval;
// Should we use the alternate reference frame.
if (allow_alt_ref &&
(i < cpi->oxcf.lag_in_frames) &&
@@ -1674,62 +1618,11 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
&b_boost);
rc->source_alt_ref_pending = 1;
#if CONFIG_MULTIPLE_ARF
// Set the ARF schedule.
if (cpi->multi_arf_enabled) {
schedule_frames(cpi, 0, -(rc->baseline_gf_interval - 1), 2, 1, 0);
}
#endif
} else {
rc->gfu_boost = (int)boost_score;
rc->source_alt_ref_pending = 0;
#if CONFIG_MULTIPLE_ARF
// Set the GF schedule.
if (cpi->multi_arf_enabled) {
schedule_frames(cpi, 0, rc->baseline_gf_interval - 1, 2, 0, 0);
assert(cpi->new_frame_coding_order_period ==
rc->baseline_gf_interval);
}
#endif
}
#if CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled && (cpi->common.frame_type != KEY_FRAME)) {
int max_level = INT_MIN;
// Replace level indicator of -1 with correct level.
for (i = 0; i < cpi->frame_coding_order_period; ++i) {
if (cpi->arf_weight[i] > max_level) {
max_level = cpi->arf_weight[i];
}
}
++max_level;
for (i = 0; i < cpi->frame_coding_order_period; ++i) {
if (cpi->arf_weight[i] == -1) {
cpi->arf_weight[i] = max_level;
}
}
cpi->max_arf_level = max_level;
}
#if 0
if (cpi->multi_arf_enabled) {
printf("\nSchedule: ");
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
printf("%4d ", cpi->frame_coding_order[i]);
}
printf("\n");
printf("ARFref: ");
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
printf("%4d ", cpi->arf_buffer_idx[i]);
}
printf("\n");
printf("Weight: ");
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
printf("%4d ", cpi->arf_weight[i]);
}
printf("\n");
}
#endif
#endif
// Reset the file position.
reset_fpf_position(twopass, start_pos);
@@ -1879,8 +1772,7 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
cpi->common.frame_type = KEY_FRAME;
// Reset the GF group data structures.
twopass->gf_group_index = 0;
vp9_zero(twopass->gf_group_bit_allocation);
vp9_zero(twopass->gf_group);
// Is this a forced key frame by interval.
rc->this_key_frame_forced = rc->next_key_frame_forced;
@@ -2071,7 +1963,9 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
twopass->kf_group_bits -= kf_bits;
// Save the bits to spend on the key frame.
twopass->gf_group_bit_allocation[0] = kf_bits;
twopass->gf_group.bit_allocation[0] = kf_bits;
twopass->gf_group.update_type[0] = KF_UPDATE;
twopass->gf_group.rf_level[0] = KF_STD;
// Note the total error score of the kf group minus the key frame itself.
twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
@@ -2099,6 +1993,44 @@ void vbr_rate_correction(int * this_frame_target,
}
}
// Define the reference buffers that will be updated post encode.
void configure_buffer_updates(VP9_COMP *cpi) {
TWO_PASS *const twopass = &cpi->twopass;
cpi->rc.is_src_frame_alt_ref = 0;
switch (twopass->gf_group.update_type[twopass->gf_group.index]) {
case KF_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 1;
break;
case LF_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 0;
break;
case GF_UPDATE:
cpi->refresh_last_frame = 1;
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 0;
break;
case OVERLAY_UPDATE:
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 1;
cpi->refresh_alt_ref_frame = 0;
cpi->rc.is_src_frame_alt_ref = 1;
break;
case ARF_UPDATE:
cpi->refresh_last_frame = 0;
cpi->refresh_golden_frame = 0;
cpi->refresh_alt_ref_frame = 1;
break;
default:
assert(0);
}
}
void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
RATE_CONTROL *const rc = &cpi->rc;
@@ -2123,19 +2055,17 @@ void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
if (!twopass->stats_in)
return;
// Increment the gf group index.
++twopass->gf_group_index;
// If this is an arf frame then we dont want to read the stats file or
// advance the input pointer as we already have what we need.
if (cpi->refresh_alt_ref_frame) {
if (twopass->gf_group.update_type[twopass->gf_group.index] == ARF_UPDATE) {
int target_rate;
target_rate = twopass->gf_group_bit_allocation[twopass->gf_group_index];
configure_buffer_updates(cpi);
target_rate = twopass->gf_group.bit_allocation[twopass->gf_group.index];
target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
rc->base_frame_target = target_rate;
#ifdef LONG_TERM_VBR_CORRECTION
// Correction to rate target based on prior over or under shoot.
if (cpi->oxcf.rc_mode == RC_MODE_VBR)
if (cpi->oxcf.rc_mode == VPX_VBR)
vbr_rate_correction(&target_rate, rc->vbr_bits_off_target);
#endif
vp9_rc_set_frame_target(cpi, target_rate);
@@ -2150,7 +2080,7 @@ void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
twopass->gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
}
if (cpi->oxcf.rc_mode == RC_MODE_CONSTANT_QUALITY) {
if (cpi->oxcf.rc_mode == VPX_Q) {
twopass->active_worst_quality = cpi->oxcf.cq_level;
} else if (cm->current_video_frame == 0 ||
(is_spatial_svc && lc->current_video_frame_in_layer == 0)) {
@@ -2194,15 +2124,7 @@ void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
// Define a new GF/ARF group. (Should always enter here for key frames).
if (rc->frames_till_gf_update_due == 0) {
#if CONFIG_MULTIPLE_ARF
if (cpi->multi_arf_enabled) {
define_fixed_arf_period(cpi);
} else {
#endif
define_gf_group(cpi, &this_frame_copy);
#if CONFIG_MULTIPLE_ARF
}
#endif
define_gf_group(cpi, &this_frame_copy);
if (twopass->gf_zeromotion_pct > 995) {
// As long as max_thresh for encode breakout is small enough, it is ok
@@ -2226,7 +2148,9 @@ void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
}
}
target_rate = twopass->gf_group_bit_allocation[twopass->gf_group_index];
configure_buffer_updates(cpi);
target_rate = twopass->gf_group.bit_allocation[twopass->gf_group.index];
if (cpi->common.frame_type == KEY_FRAME)
target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate);
else
@@ -2235,7 +2159,7 @@ void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
rc->base_frame_target = target_rate;
#ifdef LONG_TERM_VBR_CORRECTION
// Correction to rate target based on prior over or under shoot.
if (cpi->oxcf.rc_mode == RC_MODE_VBR)
if (cpi->oxcf.rc_mode == VPX_VBR)
vbr_rate_correction(&target_rate, rc->vbr_bits_off_target);
#endif
vp9_rc_set_frame_target(cpi, target_rate);
@@ -2289,4 +2213,7 @@ void vp9_twopass_postencode_update(VP9_COMP *cpi) {
twopass->kf_group_bits -= bits_used;
}
twopass->kf_group_bits = MAX(twopass->kf_group_bits, 0);
// Increment the gf group index ready for the next frame.
++twopass->gf_group.index;
}

Some files were not shown because too many files have changed in this diff Show More