Compare commits

...

12 Commits

Author SHA1 Message Date
Stefan Holmer
3cf0ef4593 Added configure option to enable error-concealment. Disabled by default.
Change-Id: I94580a5ecb13520195ea2b8a10ca11bb5a01d2a6
2011-04-29 14:08:47 +02:00
Stefan Holmer
0909b83427 Concealed MBs are always SPLITMV with partition=3. This can be optimized.
Also changed the criterion for when to skip decoding the residual,
now only skipping for blocks which actually is missing residual.
Now using mvs_corrupt_from_mb for this decision since asking the bool
decoder doesn't work (it has already finished decoding).

Change-Id: I3175f11c84ae701fc2935ebe22e1d75297072eae
2011-04-29 13:50:15 +02:00
John Koleszar
62da6700dc Update VP8DX_BOOL_DECODER_FILL to better detect EOS
Allow more reliable detection of truncated bitstreams by being more
precise with the count of "virtual" bits in the value buffer.
Specifically, the VP8_LOTS_OF_BITS value is accumulated into count,
rather than being assigned, which was losing the prior value,
increasing the required tolerance when testing for the error condition.

Change-Id: Ib5172eaa57323b939c439fff8a8ab5fa38da9b69
2011-04-29 11:22:09 +02:00
Stefan Holmer
98ea0d71a4 Added more descriptive comments and did some smaller refactoring. Also changed to setting the mb_skip_coeff flag when a macroblock needs to be concealed.
Change-Id: I0bbf6de899f5b27f4a8ca0454da7e928e8b23919
2011-04-28 16:28:07 +02:00
Stefan Holmer
8d49ea12c2 Added correct handling of motion vectors outside frame boundaries.
Change-Id: Ibf81e1d188d8dd6de877e1c52761fa212e848865
2011-04-20 12:08:27 +02:00
Stefan Holmer
766ad7edb6 Reverting some of the changes done in a64b37..., moving back the bool dec
error check to vp8_decode_mb_row.

Change-Id: I717ee57efc29b8e0619d6f00d1c64d0d20114a8b
2011-04-19 16:23:05 +02:00
Stefan Holmer
20431c1354 Forgot to remove two lines in previous submit
Change-Id: Idbc0bc328cf2f99071008fd4a54ea00bac7beb94
2011-04-19 15:38:39 +02:00
Stefan Holmer
1b913c1f78 Refactored find_neighboring_blocks() and moved the test for corrupt stream
and intra concealment inside vp8_decode_macroblock to be able tocapture
and conceal errors in the residual before reconstruction.

Change-Id: Id0f0bd87945a9bb1db0c20bb5467e2ff9aae5d28
2011-04-19 15:33:46 +02:00
Stefan Holmer
a64b37fdbc Added spatial motion vector interpolation. Used for intra blocks with missing residual coefficients.
Change-Id: I3e765b5dee251362d1330ebbcf9fa22d852377a1
2011-04-19 12:45:51 +02:00
Stefan Holmer
a2951d8deb Implemented a first version of the motion vector extrapolation error
concealment algorithm. Tested on foreman_cif.yuv only. Some special
cases are still not handled in a good way, for instance when receiving
intra blocks without coefficients.

Change-Id: Ie7bb41855860923b313645dacb3cf70f1e350549
2011-04-01 11:55:30 +02:00
Stefan Holmer
83a2b4e114 Added a first simple version of error-concealment
Added a first very simple version of error-concealment which simply
repeats the last decoded motion vector for corrupt MBs.

Change-Id: Ia83e111649afe11870c3c66065977bd0610c4fa1
2011-02-01 17:30:51 +01:00
Henrik Lundin
1422ce5cff Error concealment in decoder
Implementing an error concealment in the VP8 decoder.

Change-Id: I63934df71191ad0b1e65c89725d9e021e1d8d93d
2011-01-20 11:22:50 +01:00
15 changed files with 1177 additions and 77 deletions

3
configure vendored
View File

@ -37,6 +37,7 @@ Advanced options:
${toggle_multithread} multithreaded encoding and decoding.
${toggle_spatial_resampling} spatial sampling (scaling) support
${toggle_realtime_only} enable this option while building for real-time encoding
${toggle_error_concealment} enable this option to get a decoder which is able to conceal losses
${toggle_runtime_cpu_detect} runtime cpu detection
${toggle_shared} shared library support
${toggle_small} favor smaller size over speed
@ -249,6 +250,7 @@ CONFIG_LIST="
static_msvcrt
spatial_resampling
realtime_only
error_concealment
shared
small
arm_asm_detok
@ -289,6 +291,7 @@ CMDLINE_SELECT="
mem_tracker
spatial_resampling
realtime_only
error_concealment
shared
small
arm_asm_detok

View File

@ -77,6 +77,11 @@ GEN_EXAMPLES-$(CONFIG_ENCODERS) += decode_with_drops.c
endif
decode_with_drops.GUID = CE5C53C4-8DDA-438A-86ED-0DDD3CDB8D26
decode_with_drops.DESCRIPTION = Drops frames while decoding
ifeq ($(CONFIG_DECODERS),yes)
GEN_EXAMPLES-$(CONFIG_ENCODERS) += decode_with_partial_drops.c
endif
decode_partial_with_drops.GUID = CE5C53C4-8DDA-438A-86ED-0DDD3CDB8D27
decode_partial_with_drops.DESCRIPTION = Drops parts of frames while decoding
GEN_EXAMPLES-$(CONFIG_ENCODERS) += error_resilient.c
error_resilient.GUID = DF5837B9-4145-4F92-A031-44E4F832E00C
error_resilient.DESCRIPTION = Error Resiliency Feature

View File

@ -0,0 +1,213 @@
@TEMPLATE decoder_tmpl.c
Decode With Drops Example
=========================
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INTRODUCTION
This is an example utility which drops a series of frames, as specified
on the command line. This is useful for observing the error recovery
features of the codec.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INTRODUCTION
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ EXTRA_INCLUDES
#include <time.h>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ EXTRA_INCLUDES
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ HELPERS
struct parsed_header
{
char key_frame;
int version;
char show_frame;
int first_part_size;
};
int next_packet(struct parsed_header* hdr, int pos, int length, int mtu)
{
int size = 0;
int remaining = length - pos;
/* Uncompressed part is 3 bytes for P frames and 10 bytes for I frames */
int uncomp_part_size = (hdr->key_frame ? 10 : 3);
/* number of bytes yet to send from header and the first partition */
int remainFirst = uncomp_part_size + hdr->first_part_size - pos;
if (remainFirst > 0)
{
if (remainFirst <= mtu)
{
size = remainFirst;
}
else
{
size = mtu;
}
return size;
}
/* second partition; just slot it up according to MTU */
if (remaining <= mtu)
{
size = remaining;
return size;
}
return mtu;
}
void throw_packets(unsigned char* frame, int* size, int loss_rate, int* thrown, int* kept)
{
unsigned char loss_frame[256*1024];
int pkg_size = 1;
int count = 0;
int pos = 0;
int loss_pos = 0;
struct parsed_header hdr;
unsigned int tmp;
int mtu = 100;
if (*size < 3)
{
return;
}
putc('|', stdout);
/* parse uncompressed 3 bytes */
tmp = (frame[2] << 16) | (frame[1] << 8) | frame[0];
hdr.key_frame = !(tmp & 0x1); /* inverse logic */
hdr.version = (tmp >> 1) & 0x7;
hdr.show_frame = (tmp >> 4) & 0x1;
hdr.first_part_size = (tmp >> 5) & 0x7FFFF;
/* don't drop key frames */
if (hdr.key_frame)
{
int i;
*kept = *size/mtu + ((*size % mtu > 0) ? 1 : 0); /* approximate */
for (i=0; i < *kept; i++)
putc('.', stdout);
return;
}
while ((pkg_size = next_packet(&hdr, pos, *size, mtu)) > 0)
{
int loss_event = ((rand() + 1.0)/(RAND_MAX + 1.0) < loss_rate/100.0);
if (*thrown == 0 && !loss_event)
{
memcpy(loss_frame + loss_pos, frame + pos, pkg_size);
loss_pos += pkg_size;
(*kept)++;
putc('.', stdout);
}
else
{
(*thrown)++;
putc('X', stdout);
}
pos += pkg_size;
}
memcpy(frame, loss_frame, loss_pos);
memset(frame + loss_pos, 0, *size - loss_pos);
*size = loss_pos;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ HELPERS
Usage
-----
This example adds a single argument to the `simple_decoder` example,
which specifies the range or pattern of frames to drop. The parameter is
parsed as follows:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ USAGE
if(argc!=4 && argc != 5)
die("Usage: %s <infile> <outfile> <N-M|N/M|L,S>\n", argv[0]);
{
char *nptr;
n = strtol(argv[3], &nptr, 0);
mode = (*nptr == '\0' || *nptr == ',') ? 2 : (*nptr == '-') ? 1 : 0;
m = strtol(nptr+1, NULL, 0);
if((!n && !m) || (*nptr != '-' && *nptr != '/' &&
*nptr != '\0' && *nptr != ','))
die("Couldn't parse pattern %s\n", argv[3]);
}
seed = (m > 0) ? m : (unsigned int)time(NULL);
srand(seed);thrown_frame = 0;
printf("Seed: %u\n", seed);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ USAGE
Dropping A Range Of Frames
--------------------------
To drop a range of frames, specify the starting frame and the ending
frame to drop, separated by a dash. The following command will drop
frames 5 through 10 (base 1).
$ ./decode_with_drops in.ivf out.i420 5-10
Dropping A Pattern Of Frames
----------------------------
To drop a pattern of frames, specify the number of frames to drop and
the number of frames after which to repeat the pattern, separated by
a forward-slash. The following command will drop 3 of 7 frames.
Specifically, it will decode 4 frames, then drop 3 frames, and then
repeat.
$ ./decode_with_drops in.ivf out.i420 3/7
Extra Variables
---------------
This example maintains the pattern passed on the command line in the
`n`, `m`, and `is_range` variables:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ EXTRA_VARS
int n, m, mode; //
unsigned int seed;
int thrown=0, kept=0;
int thrown_frame=0, kept_frame=0;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ EXTRA_VARS
Making The Drop Decision
------------------------
The example decides whether to drop the frame based on the current
frame number, immediately before decoding the frame.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PRE_DECODE
/* Decide whether to throw parts of the frame or the whole frame
depending on the drop mode */
thrown_frame = 0;
kept_frame = 0;
switch (mode)
{
case 0:
if (m - (frame_cnt-1)%m <= n)
{
frame_sz = 0;
}
break;
case 1:
if (frame_cnt >= n && frame_cnt <= m)
{
frame_sz = 0;
}
break;
case 2:
throw_packets(frame, &frame_sz, n, &thrown_frame, &kept_frame);
break;
default: break;
}
if (mode < 2)
{
if (frame_sz == 0)
{
putc('X', stdout);
thrown_frame++;
}
else
{
putc('.', stdout);
kept_frame++;
}
}
thrown += thrown_frame;
kept += kept_frame;
fflush(stdout);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PRE_DECODE

View File

@ -42,6 +42,8 @@ static void die(const char *fmt, ...) {
@DIE_CODEC
@HELPERS
int main(int argc, char **argv) {
FILE *infile, *outfile;
vpx_codec_ctx_t codec;

View File

@ -12,6 +12,7 @@
#include "vpx_ports/config.h"
#include "blockd.h"
#include "vpx_mem/vpx_mem.h"
#include "error_concealment.h"
#include "onyxc_int.h"
#include "findnearmv.h"
#include "entropymode.h"
@ -28,6 +29,9 @@ void vp8_update_mode_info_border(MODE_INFO *mi, int rows, int cols)
for (i = 0; i < rows; i++)
{
/* TODO(holmer): Bug? This updates the last element of each row
* rather than the border element!
*/
vpx_memset(&mi[i*cols-1], 0, sizeof(MODE_INFO));
}
}
@ -44,9 +48,11 @@ void vp8_de_alloc_frame_buffers(VP8_COMMON *oci)
vpx_free(oci->above_context);
vpx_free(oci->mip);
vpx_free(oci->prev_mip);
oci->above_context = 0;
oci->mip = 0;
oci->prev_mip = 0;
}
@ -111,6 +117,16 @@ int vp8_alloc_frame_buffers(VP8_COMMON *oci, int width, int height)
oci->mi = oci->mip + oci->mode_info_stride + 1;
/* allocate memory for last frame MODE_INFO array */
oci->prev_mip = vpx_calloc((oci->mb_cols + 1) * (oci->mb_rows + 1), sizeof(MODE_INFO));
if (!oci->prev_mip)
{
vp8_de_alloc_frame_buffers(oci);
return ALLOC_FAILURE;
}
oci->prev_mi = oci->prev_mip + oci->mode_info_stride + 1;
oci->above_context = vpx_calloc(sizeof(ENTROPY_CONTEXT_PLANES) * oci->mb_cols, 1);

View File

@ -140,6 +140,8 @@ typedef struct VP8Common
MODE_INFO *mip; /* Base of allocated array */
MODE_INFO *mi; /* Corresponds to upper left visible macroblock */
MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */
MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */
INTERPOLATIONFILTERTYPE mcomp_filter_type;

View File

@ -126,7 +126,7 @@ static void vp8dx_bool_decoder_fill(BOOL_DECODER *br) {
for(shift = VP8_BD_VALUE_SIZE - 8 - ((_count) + 8); shift >= 0; ) \
{ \
if((_bufptr) >= (_bufend)) { \
(_count) = VP8_LOTS_OF_BITS; \
(_count) += VP8_LOTS_OF_BITS; \
break; \
} \
(_count) += 8; \
@ -209,18 +209,19 @@ static int vp8_decode_value(BOOL_DECODER *br, int bits)
static int vp8dx_bool_error(BOOL_DECODER *br)
{
/* Check if we have reached the end of the buffer.
*
* Variable 'count' stores the number of bits in the 'value' buffer,
* minus 8. So if count == 8, there are 16 bits available to be read.
* Normally, count is filled with 8 and one byte is filled into the
* value buffer. When we reach the end of the buffer, count is instead
* filled with VP8_LOTS_OF_BITS, 8 of which represent the last 8 real
* bits from the bitstream. So the last bit in the bitstream will be
* represented by count == VP8_LOTS_OF_BITS - 16.
*/
if ((br->count > VP8_BD_VALUE_SIZE)
&& (br->count <= VP8_LOTS_OF_BITS - 16))
/* Check if we have reached the end of the buffer.
*
* Variable 'count' stores the number of bits in the 'value' buffer, minus
* 8. The top byte is part of the algorithm, and the remainder is buffered
* to be shifted into it. So if count == 8, the top 16 bits of 'value' are
* occupied, 8 for the algorithm and 8 in the buffer.
*
* When reading a byte from the user's buffer, count is filled with 8 and
* one byte is filled into the value buffer. When we reach the end of the
* data, count is additionally filled with VP8_LOTS_OF_BITS. So when
* count == VP8_LOTS_OF_BITS - 1, the user's data has been exhausted.
*/
if ((br->count > VP8_BD_VALUE_SIZE) && (br->count < VP8_LOTS_OF_BITS))
{
/* We have tried to decode bits after the end of
* stream was encountered.

View File

@ -251,6 +251,7 @@ void vp8_mb_mode_mv_init(VP8D_COMP *pbi)
vp8_reader *const bc = & pbi->bc;
MV_CONTEXT *const mvc = pbi->common.fc.mvc;
pbi->mvs_corrupt_from_mb = -1;
pbi->prob_skip_false = 0;
if (pbi->common.mb_no_coeff_skip)
pbi->prob_skip_false = (vp8_prob)vp8_read_literal(bc, 8);
@ -412,7 +413,7 @@ void vp8_read_mb_modes_mv(VP8D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi,
do {
mi->bmi[ *fill_offset] = bmi;
fill_offset++;
fill_offset++;
}while (--fill_count);
}
@ -543,12 +544,18 @@ void vp8_decode_mode_mvs(VP8D_COMP *pbi)
while (++mb_col < pbi->common.mb_cols)
{
int mb_num = mb_row * pbi->common.mb_cols + mb_col;
/*vp8_read_mb_modes_mv(pbi, xd->mode_info_context, &xd->mode_info_context->mbmi, mb_row, mb_col);*/
if(pbi->common.frame_type == KEY_FRAME)
vp8_kfread_modes(pbi, mi, mb_row, mb_col);
else
vp8_read_mb_modes_mv(pbi, mi, &mi->mbmi, mb_row, mb_col);
/* look for corruption */
if (vp8dx_bool_error(&pbi->bc) && mb_num < pbi->mvs_corrupt_from_mb)
pbi->mvs_corrupt_from_mb = mb_num;
mi++; /* next macroblock */
}

View File

@ -27,6 +27,7 @@
#include "decodemv.h"
#include "extend.h"
#include "error_concealment.h"
#include "vpx_mem/vpx_mem.h"
#include "idct.h"
#include "dequantize.h"
@ -176,11 +177,21 @@ void clamp_mvs(MACROBLOCKD *xd)
}
void vp8_decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd)
void vp8_decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd, unsigned int mb_idx)
{
int eobtotal = 0;
int i, do_clamp = xd->mode_info_context->mbmi.need_to_clamp_mvs;
/* TODO(holmer): change when we have MB level error tracking
* The residuals may not match the predicted signal when a macroblock is
* corrupted due to previous losses. Should we try to add the residual
* anyway, or just throw it away? Should test this on a couple of files.
*/
if (pbi->ec_enabled && mb_idx >= pbi->mvs_corrupt_from_mb)
{
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
}
if (xd->mode_info_context->mbmi.mb_skip_coeff)
{
vp8_reset_mb_tokens_context(xd);
@ -333,6 +344,7 @@ void vp8_decode_mb_row(VP8D_COMP *pbi,
int dst_fb_idx = pc->new_fb_idx;
int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride;
int corrupt_partition = 0;
vpx_memset(&pc->left_context, 0, sizeof(pc->left_context));
recon_yoffset = mb_row * recon_y_stride * 16;
@ -347,6 +359,28 @@ void vp8_decode_mb_row(VP8D_COMP *pbi,
for (mb_col = 0; mb_col < pc->mb_cols; mb_col++)
{
/* Distance of Mb to the various image edges.
* These are specified to 8th pel as they are always compared to values that are in 1/8th pel units
*/
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME &&
corrupt_partition)
{
/* We have an intra block with corrupt coefficients,
* better to conceal with an inter block. Interpolate MVs
* from neighboring MBs.
*/
/* TODO(holmer): We will fail to conceal an intra block with missing
* coefficients if it's the first block with missing coefficients,
* since the bool dec error detection is done after reconstruction.
*/
vp8_interpolate_motion(xd,
mb_row, mb_col,
pc->mb_rows, pc->mb_cols,
pc->mode_info_stride);
}
if (xd->mode_info_context->mbmi.mode == SPLITMV || xd->mode_info_context->mbmi.mode == B_PRED)
{
@ -357,12 +391,6 @@ void vp8_decode_mb_row(VP8D_COMP *pbi,
}
}
/* Distance of Mb to the various image edges.
* These are specified to 8th pel as they are always compared to values that are in 1/8th pel units
*/
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
@ -395,10 +423,11 @@ void vp8_decode_mb_row(VP8D_COMP *pbi,
else
pbi->debugoutput =0;
*/
vp8_decode_macroblock(pbi, xd);
vp8_decode_macroblock(pbi, xd, mb_row * pc->mb_cols + mb_col);
/* check if the boolean decoder has suffered an error */
xd->corrupted |= vp8dx_bool_error(xd->current_bc);
corrupt_partition = vp8dx_bool_error(xd->current_bc);
xd->corrupted |= corrupt_partition;
recon_yoffset += 16;
recon_uvoffset += 8;
@ -469,8 +498,8 @@ static void setup_token_decoder(VP8D_COMP *pbi,
partition_size = user_data_end - partition;
}
if (partition + partition_size > user_data_end
|| partition + partition_size < partition)
if (!pbi->ec_enabled && (partition + partition_size > user_data_end
|| partition + partition_size < partition))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", i + 1);
@ -584,63 +613,87 @@ int vp8_decode_frame(VP8D_COMP *pbi)
pc->yv12_fb[pc->new_fb_idx].corrupted = 0;
if (data_end - data < 3)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet");
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
first_partition_length_in_bytes =
(data[0] | (data[1] << 8) | (data[2] << 16)) >> 5;
data += 3;
if (data + first_partition_length_in_bytes > data_end
|| data + first_partition_length_in_bytes < data)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
vp8_setup_version(pc);
if (pc->frame_type == KEY_FRAME)
{
const int Width = pc->Width;
const int Height = pc->Height;
/* vet via sync code */
if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
pc->Width = (data[3] | (data[4] << 8)) & 0x3fff;
pc->horiz_scale = data[4] >> 6;
pc->Height = (data[5] | (data[6] << 8)) & 0x3fff;
pc->vert_scale = data[6] >> 6;
data += 7;
if (Width != pc->Width || Height != pc->Height)
if (pbi->ec_enabled)
{
int prev_mb_rows = pc->mb_rows;
/* Declare the missing frame as an inter frame since it will
be handled as an inter frame when we have estimated its
motion vectors. */
pc->frame_type = INTER_FRAME;
pc->version = 0;
pc->show_frame = 1;
first_partition_length_in_bytes = 0;
}
else
{
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet");
}
}
else
{
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
first_partition_length_in_bytes =
(data[0] | (data[1] << 8) | (data[2] << 16)) >> 5;
data += 3;
if (pc->Width <= 0)
if (!pbi->ec_enabled && (data + first_partition_length_in_bytes > data_end
|| data + first_partition_length_in_bytes < data))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
vp8_setup_version(pc);
if (pc->frame_type == KEY_FRAME)
{
const int Width = pc->Width;
const int Height = pc->Height;
/* vet via sync code */
if (!pbi->ec_enabled &&
(data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a))
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
pc->Width = (data[3] | (data[4] << 8)) & 0x3fff;
pc->horiz_scale = data[4] >> 6;
pc->Height = (data[5] | (data[6] << 8)) & 0x3fff;
pc->vert_scale = data[6] >> 6;
data += 7;
if (Width != pc->Width || Height != pc->Height)
{
pc->Width = Width;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
}
int prev_mb_rows = pc->mb_rows;
if (pc->Height <= 0)
{
pc->Height = Height;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
}
if (pc->Width <= 0)
{
pc->Width = Width;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
}
if (vp8_alloc_frame_buffers(pc, pc->Width, pc->Height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
if (pc->Height <= 0)
{
pc->Height = Height;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
}
if (vp8_alloc_frame_buffers(pc, pc->Width, pc->Height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
if (vp8_alloc_overlap_lists(pbi))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate overlap lists for "
"error concealment");
#if CONFIG_MULTITHREAD
if (pbi->b_multithreaded_rd)
vp8mt_alloc_temp_buffers(pbi, pc->Width, prev_mb_rows);
if (pbi->b_multithreaded_rd)
vp8mt_alloc_temp_buffers(pbi, pc->Width, prev_mb_rows);
#endif
}
}
}
@ -862,6 +915,12 @@ int vp8_decode_frame(VP8D_COMP *pbi)
vp8_decode_mode_mvs(pbi);
if (pbi->ec_enabled &&
pbi->mvs_corrupt_from_mb < (unsigned int)pc->mb_cols * pc->mb_rows)
{
vp8_estimate_missing_mvs(pbi);
}
vpx_memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols);
vpx_memcpy(&xd->block[0].bmi, &xd->mode_info_context->bmi[0], sizeof(B_MODE_INFO));

40
vp8/decoder/ec_types.h Normal file
View File

@ -0,0 +1,40 @@
/*
* Copyright (c) 2011 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef VP8_DEC_EC_TYPES_H
#define VP8_DEC_EC_TYPES_H
#define MAX_OVERLAPS 16
typedef struct
{
int overlap;
B_MODE_INFO *bmi;
MV_REFERENCE_FRAME ref_frame;
} OVERLAP_NODE;
typedef struct
{
/* TODO(holmer): This array should be exchanged for a linked list */
OVERLAP_NODE overlaps[MAX_OVERLAPS];
} B_OVERLAP;
typedef struct
{
B_OVERLAP overlaps[16];
} MB_OVERLAP;
typedef struct
{
MV mv;
MV_REFERENCE_FRAME ref_frame;
} EC_BLOCK;
#endif /* VP8_DEC_EC_TYPES_H */

View File

@ -0,0 +1,612 @@
/*
* Copyright (c) 2011 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "error_concealment.h"
#include "onyxd_int.h"
#include "vpx_mem/vpx_mem.h"
#include <assert.h>
#define MIN(x,y) (((x)<(y))?(x):(y))
#define MAX(x,y) (((x)>(y))?(x):(y))
#define FLOOR(x,q) ((x) & -(1 << (q)))
#define NUM_NEIGHBORS 20
typedef struct ec_position
{
int row;
int col;
} EC_POS;
/*
* Regenerate the table in Matlab with:
* x = meshgrid((1:4), (1:4));
* y = meshgrid((1:4), (1:4))';
* W = round((1./(sqrt(x.^2 + y.^2))*2^7));
* W(1,1) = 0;
*/
static const int weights_q7[5][5] = {
{ 0, 128, 64, 43, 32 },
{128, 91, 57, 40, 31 },
{ 64, 57, 45, 36, 29 },
{ 43, 40, 36, 30, 26 },
{ 32, 31, 29, 26, 23 }
};
static int vp8_need_to_clamp_mv(MV *mv,
int mb_to_left_edge,
int mb_to_right_edge,
int mb_to_top_edge,
int mb_to_bottom_edge)
{
return (mv->col < mb_to_left_edge) ||
(mv->col > mb_to_right_edge) ||
(mv->row < mb_to_top_edge) ||
(mv->row > mb_to_bottom_edge);
}
int vp8_alloc_overlap_lists(VP8D_COMP *pbi)
{
if (pbi->overlaps != NULL)
{
vpx_free(pbi->overlaps);
pbi->overlaps = NULL;
}
pbi->overlaps = vpx_calloc(pbi->common.mb_rows * pbi->common.mb_cols,
sizeof(MB_OVERLAP));
vpx_memset(pbi->overlaps, 0,
sizeof(MB_OVERLAP) * pbi->common.mb_rows * pbi->common.mb_cols);
if (pbi->overlaps == NULL)
return -1;
return 0;
}
void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi)
{
if (pbi->overlaps != NULL)
{
vpx_free(pbi->overlaps);
pbi->overlaps = NULL;
}
}
void vp8_assign_overlap(OVERLAP_NODE* overlaps,
B_MODE_INFO *bmi,
MV_REFERENCE_FRAME ref_frame,
int overlap)
{
int i;
if (overlap <= 0)
return;
for (i = 0; i < MAX_OVERLAPS; i++)
{
if (overlaps[i].bmi == NULL)
{
overlaps[i].bmi = bmi;
overlaps[i].ref_frame = ref_frame;
overlaps[i].overlap = overlap;
break;
}
}
}
int vp8_block_overlap(int b1_row, int b1_col, int b2_row, int b2_col)
{
const int int_top = MAX(b1_row, b2_row); // top
const int int_left = MAX(b1_col, b2_col); // left
const int int_right = MIN(b1_col + (4<<3), b2_col + (4<<3)); // right
const int int_bottom = MIN(b1_row + (4<<3), b2_row + (4<<3)); // bottom
return (int_bottom - int_top) * (int_right - int_left);
}
void vp8_calculate_overlaps_mb(B_OVERLAP *b_overlaps, B_MODE_INFO *bmi,
MV_REFERENCE_FRAME ref_frame,
int new_row, int new_col,
int mb_row, int mb_col,
int first_blk_row, int first_blk_col)
{
/* Find the blocks within this MB which are overlapped by bmi and
* calculate and assign overlap for each of those blocks. */
/* Block coordinates relative the upper-left block */
const int rel_ol_blk_row = first_blk_row - mb_row * 4;
const int rel_ol_blk_col = first_blk_col - mb_col * 4;
/* If the block partly overlaps any previous MB, these coordinates
* can be < 0. We don't want to access blocks in previous MBs.
*/
const int blk_idx = MAX(rel_ol_blk_row,0) * 4 + MAX(rel_ol_blk_col,0);
/* Upper left overlapping block */
B_OVERLAP *b_ol_ul = &(b_overlaps[blk_idx]);
/* Calculate and assign overlaps for all blocks in this MB
* which the motion compensated block overlaps
*/
/* Avoid calculating overlaps for blocks in later MBs */
int end_row = MIN(4 + mb_row * 4 - first_blk_row, 2);
int end_col = MIN(4 + mb_col * 4 - first_blk_col, 2);
int row, col;
/* Check if new_row and new_col are evenly divisible by 4 (Q3),
* and if so we shouldn't check neighboring blocks
*/
if (new_row >= 0 && (new_row & 0x1F) == 0)
end_row = 1;
if (new_col >= 0 && (new_col & 0x1F) == 0)
end_col = 1;
/* Check if the overlapping block partly overlaps a previous MB
* and if so, we're overlapping fewer blocks in this MB.
*/
if (new_row < (mb_row*16)<<3)
end_row = 1;
if (new_col < (mb_col*16)<<3)
end_col = 1;
for (row = 0; row < end_row; ++row)
{
for (col = 0; col < end_col; ++col)
{
/* input in Q3, result in Q6 */
const int overlap = vp8_block_overlap(new_row, new_col,
(((first_blk_row + row) *
4) << 3),
(((first_blk_col + col) *
4) << 3));
vp8_assign_overlap(b_ol_ul[row * 4 + col].overlaps,
bmi,
ref_frame,
overlap);
}
}
}
void vp8_calculate_overlaps(MB_OVERLAP *overlap_ul,
int mb_rows, int mb_cols,
B_MODE_INFO *bmi,
MV_REFERENCE_FRAME ref_frame,
int b_row, int b_col)
{
MB_OVERLAP *mb_overlap;
int row, col, rel_row, rel_col;
int new_row, new_col;
int new_row_pos, new_col_pos;
int end_row, end_col;
int overlap_b_row, overlap_b_col;
int overlap_mb_row, overlap_mb_col;
int i;
B_MODE_INFO *obmi;
int overlap;
if (ref_frame == INTRA_FRAME)
return;
/* mb subpixel position */
row = (4 * b_row) << 3; /* Q3 */
col = (4 * b_col) << 3; /* Q3 */
/* reverse compensate for motion */
new_row = row - bmi->mv.as_mv.row;
new_col = col - bmi->mv.as_mv.col;
if (new_row >= ((16*mb_rows) << 3) || new_col >= ((16*mb_cols) << 3))
{
/* the new block ended up outside the frame */
return;
}
if (new_row <= (-4 << 3) || new_col <= (-4 << 3))
{
/* outside the frame */
return;
}
/* overlapping block's position in blocks */
overlap_b_row = FLOOR(new_row / 4, 3) >> 3;
overlap_b_col = FLOOR(new_col / 4, 3) >> 3;
/* overlapping block's MB position in MBs
* operations are done in Q3
*/
overlap_mb_row = FLOOR((overlap_b_row << 3) / 4, 3) >> 3;
overlap_mb_col = FLOOR((overlap_b_col << 3) / 4, 3) >> 3;
end_row = MIN(mb_rows - overlap_mb_row, 2);
end_col = MIN(mb_cols - overlap_mb_col, 2);
/* Don't calculate overlap for MBs we don't overlap */
/* Check if the new block row starts at the last block row of the MB */
if (abs(new_row - ((16*overlap_mb_row) << 3)) < ((3*4) << 3))
end_row = 1;
/* Check if the new block col starts at the last block col of the MB */
if (abs(new_col - ((16*overlap_mb_col) << 3)) < ((3*4) << 3))
end_col = 1;
/* find the MB(s) this block is overlapping */
for (rel_row = 0; rel_row < end_row; ++rel_row)
{
for (rel_col = 0; rel_col < end_col; ++rel_col)
{
if (overlap_mb_row + rel_row < 0 ||
overlap_mb_col + rel_col < 0)
continue;
mb_overlap = overlap_ul + (overlap_mb_row + rel_row) * mb_cols +
overlap_mb_col + rel_col;
vp8_calculate_overlaps_mb(mb_overlap->overlaps, bmi, ref_frame,
new_row, new_col,
overlap_mb_row + rel_row,
overlap_mb_col + rel_col,
overlap_b_row + rel_row,
overlap_b_col + rel_col);
}
}
}
MV_REFERENCE_FRAME vp8_largest_overlap_type(const B_OVERLAP *block_overlaps)
{
int i, j;
int overlap_per_type[MAX_REF_FRAMES] = {0};
int largest_overlap = 0;
MV_REFERENCE_FRAME largest_overlap_type = LAST_FRAME;
for (i=0; i < 16; ++i)
{
const OVERLAP_NODE *overlaps = block_overlaps->overlaps;
for (j=0; j < MAX_OVERLAPS; ++j)
{
if (overlaps[j].bmi != NULL)
{
overlap_per_type[overlaps[j].ref_frame] += overlaps[j].overlap;
if (overlap_per_type[overlaps[j].ref_frame] > largest_overlap)
{
largest_overlap = overlap_per_type[overlaps[j].ref_frame];
largest_overlap_type = overlaps[j].ref_frame;
}
assert(overlaps[j].overlap < (16*16)<<6);
}
}
++block_overlaps;
}
return largest_overlap_type;
}
void vp8_estimate_mv(const OVERLAP_NODE *overlaps, B_MODE_INFO *bmi,
MV_REFERENCE_FRAME type)
{
int i;
int overlap_sum = 0;
int row_acc = 0;
int col_acc = 0;
bmi->mv.as_int = 0;
for (i=0; i < MAX_OVERLAPS; ++i)
{
if (overlaps[i].bmi != NULL &&
overlaps[i].ref_frame == type)
{
col_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.col;
row_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.row;
overlap_sum += overlaps[i].overlap;
}
}
if (overlap_sum > 0)
{
/* Q9 / Q6 = Q3 */
bmi->mv.as_mv.col = col_acc / overlap_sum;
bmi->mv.as_mv.row = row_acc / overlap_sum;
bmi->mode = NEW4X4;
}
else
{
bmi->mv.as_mv.col = 0;
bmi->mv.as_mv.row = 0;
bmi->mode = NEW4X4;
}
}
void vp8_estimate_mb_mvs(const B_OVERLAP *block_overlaps,
MODE_INFO *mi,
int mb_to_left_edge,
int mb_to_right_edge,
int mb_to_top_edge,
int mb_to_bottom_edge)
{
int i;
int non_zero_count = 0;
MV * const filtered_mv = &(mi->mbmi.mv.as_mv);
B_MODE_INFO * const bmi = mi->bmi;
filtered_mv->col = 0;
filtered_mv->row = 0;
for (i = 0; i < 16; ++i)
{
/* Estimate vectors for all blocks which are overlapped by this
* type
*/
/* Interpolate/extrapolate the rest of the block's MVs */
vp8_estimate_mv(block_overlaps[i].overlaps, bmi + i,
mi->mbmi.ref_frame);
mi->mbmi.need_to_clamp_mvs = vp8_need_to_clamp_mv(&(bmi[i].mv.as_mv),
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (bmi[i].mv.as_int != 0)
{
++non_zero_count;
filtered_mv->col += bmi[i].mv.as_mv.col;
filtered_mv->row += bmi[i].mv.as_mv.row;
}
}
if (non_zero_count > 0)
{
filtered_mv->col /= non_zero_count;
filtered_mv->row /= non_zero_count;
}
}
void vp8_estimate_missing_mvs(VP8D_COMP *pbi)
{
VP8_COMMON * const pc = &pbi->common;
vp8_estimate_missing_mvs_ex(pbi->overlaps,
pc->mi, pc->prev_mi,
pc->mb_rows, pc->mb_cols,
pbi->mvs_corrupt_from_mb);
}
void vp8_estimate_missing_mvs_ex(MB_OVERLAP *overlaps,
MODE_INFO *mi, MODE_INFO *prev_mi,
int mb_rows, int mb_cols,
unsigned int first_corrupt)
{
const unsigned int num_mbs = mb_rows * mb_cols;
int mb_row, mb_col;
vpx_memset(overlaps, 0, sizeof(MB_OVERLAP) * mb_rows * mb_cols);
/* First calculate the overlaps for all blocks */
for (mb_row = 0; mb_row < mb_rows; ++mb_row)
{
for (mb_col = 0; mb_col < mb_cols; ++mb_col)
{
int sub_row;
int sub_col;
for (sub_row = 0; sub_row < 4; ++sub_row)
{
for (sub_col = 0; sub_col < 4; ++sub_col)
{
vp8_calculate_overlaps(
overlaps, mb_rows, mb_cols,
&(prev_mi->bmi[sub_row * 4 + sub_col]),
prev_mi->mbmi.ref_frame,
4 * mb_row + sub_row,
4 * mb_col + sub_col);
}
}
++prev_mi;
}
++prev_mi;
}
mb_row = first_corrupt / mb_cols;
mb_col = first_corrupt - mb_row * mb_cols;
mi += mb_row*(mb_cols + 1) + mb_col;
/* Go through all macroblocks in the current image with missing MVs
* and calculate new MVs using the overlaps.
*/
for (; mb_row < mb_rows; ++mb_row)
{
int mb_to_top_edge = -((mb_row * 16)) << 3;
int mb_to_bottom_edge = ((mb_rows - 1 - mb_row) * 16) << 3;
for (; mb_col < mb_cols; ++mb_col)
{
int mb_to_left_edge = -((mb_col * 16) << 3);
int mb_to_right_edge = ((mb_cols - 1 - mb_col) * 16) << 3;
int i;
MV_REFERENCE_FRAME type = LAST_FRAME;
int largest_overlap = 0;
const B_OVERLAP *block_overlaps =
overlaps[mb_row*mb_cols + mb_col].overlaps;
/* Find largest overlap and its type */
mi->mbmi.ref_frame = vp8_largest_overlap_type(block_overlaps);
vp8_estimate_mb_mvs(block_overlaps,
mi,
mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
mi->mbmi.mode = SPLITMV;
mi->mbmi.uv_mode = DC_PRED;
mi->mbmi.partitioning = 3;
++mi;
}
mb_col = 0;
++mi;
}
}
static void assign_neighbor(EC_BLOCK *neighbor, MODE_INFO *mi, int block_idx)
{
assert(mi->mbmi.ref_frame < MAX_REF_FRAMES);
neighbor->ref_frame = mi->mbmi.ref_frame;
neighbor->mv = mi->bmi[block_idx].mv.as_mv;
}
void vp8_find_neighboring_blocks(MODE_INFO *mi,
EC_BLOCK *neighbors,
int mb_row, int mb_col,
int mb_rows, int mb_cols,
int mi_stride)
{
int i = 0;
int j;
if (mb_row > 0)
{
/* upper left */
if (mb_col > 0)
assign_neighbor(&neighbors[i], mi - mi_stride - 1, 15);
++i;
/* above */
for (j = 12; j < 16; ++j, ++i)
assign_neighbor(&neighbors[i], mi - mi_stride, j);
}
else
i += 5;
if (mb_col < mb_cols - 1)
{
/* upper right */
if (mb_row > 0)
assign_neighbor(&neighbors[i], mi - mi_stride + 1, 12);
++i;
/* right */
for (j = 0; j <= 12; j += 4, ++i)
assign_neighbor(&neighbors[i], mi + 1, j);
}
else
i += 5;
if (mb_row < mb_rows - 1)
{
/* lower right */
if (mb_col < mb_cols - 1)
assign_neighbor(&neighbors[i], mi + mi_stride + 1, 0);
++i;
/* below */
for (j = 0; j < 4; ++j, ++i)
assign_neighbor(&neighbors[i], mi + mi_stride, j);
}
else
i += 5;
if (mb_col > 0)
{
/* lower left */
if (mb_row < mb_rows - 1)
assign_neighbor(&neighbors[i], mi + mi_stride - 1, 4);
++i;
/* left */
for (j = 3; j < 16; j += 4, ++i)
{
assign_neighbor(&neighbors[i], mi - 1, j);
}
}
else
i += 5;
assert(i == 20);
}
MV_REFERENCE_FRAME vp8_dominant_ref_frame(EC_BLOCK *neighbors)
{
/* Default to referring to "skip" */
MV_REFERENCE_FRAME dom_ref_frame = LAST_FRAME;
int max_ref_frame_cnt = 0;
int ref_frame_cnt[MAX_REF_FRAMES] = {0};
int i;
/* Count neighboring reference frames */
for (i = 0; i < NUM_NEIGHBORS; ++i)
{
if (neighbors[i].ref_frame < MAX_REF_FRAMES)
++ref_frame_cnt[neighbors[i].ref_frame];
}
/* Find maximum */
for (i = 0; i < MAX_REF_FRAMES; ++i)
{
if (ref_frame_cnt[i] > max_ref_frame_cnt)
{
dom_ref_frame = i;
max_ref_frame_cnt = ref_frame_cnt[i];
}
}
return dom_ref_frame;
}
void vp8_interpolate_mvs(MACROBLOCKD *mb,
EC_BLOCK *neighbors,
MV_REFERENCE_FRAME dom_ref_frame)
{
int row, col, i;
MODE_INFO * const mi = mb->mode_info_context;
/* Table with the position of the neighboring blocks relative the position
* of the upper left block of the current MB. Starting with the upper left
* neighbor and going to the right.
*/
const EC_POS neigh_pos[NUM_NEIGHBORS] = {
{-1,-1}, {-1,0}, {-1,1}, {-1,2}, {-1,3},
{-1,4}, {0,4}, {1,4}, {2,4}, {3,4},
{4,4}, {4,3}, {4,2}, {4,1}, {4,0},
{4,-1}, {3,-1}, {2,-1}, {1,-1}, {0,-1}
};
for (row = 0; row < 4; ++row)
{
for (col = 0; col < 4; ++col)
{
int w_sum = 0;
int mv_row_sum = 0;
int mv_col_sum = 0;
MV * const mv = &(mi->bmi[row*4 + col].mv.as_mv);
for (i = 0; i < NUM_NEIGHBORS; ++i)
{
/* Calculate the weighted sum of neighboring MVs referring
* to the dominant frame type.
*/
const int w = weights_q7[abs(row - neigh_pos[i].row)]
[abs(col - neigh_pos[i].col)];
if (neighbors[i].ref_frame != dom_ref_frame)
continue;
w_sum += w;
/* Q7 * Q3 = Q10 */
mv_row_sum += w*neighbors[i].mv.row;
mv_col_sum += w*neighbors[i].mv.col;
}
if (w_sum > 0)
{
/* Avoid division by zero.
* Normalize with the sum of the coefficients
* Q3 = Q10 / Q7
*/
mv->row = mv_row_sum / w_sum;
mv->col = mv_col_sum / w_sum;
mi->bmi[row*4 + col].mode = NEW4X4;
mi->mbmi.need_to_clamp_mvs = vp8_need_to_clamp_mv(mv,
mb->mb_to_left_edge,
mb->mb_to_right_edge,
mb->mb_to_top_edge,
mb->mb_to_bottom_edge);
}
}
}
}
void vp8_interpolate_motion(MACROBLOCKD *mb,
int mb_row, int mb_col,
int mb_rows, int mb_cols,
int mi_stride)
{
/* Find relevant neighboring blocks */
EC_BLOCK neighbors[NUM_NEIGHBORS];
MV_REFERENCE_FRAME dom_ref_frame;
int i;
/* Initialize the array. MAX_REF_FRAMES is interpreted as "doesn't exist" */
for (i = 0; i < NUM_NEIGHBORS; ++i)
{
neighbors[i].ref_frame = MAX_REF_FRAMES;
neighbors[i].mv.row = neighbors[i].mv.col = 0;
}
vp8_find_neighboring_blocks(mb->mode_info_context,
neighbors,
mb_row, mb_col,
mb_rows, mb_cols,
mb->mode_info_stride);
/* Determine the dominant block type */
dom_ref_frame = vp8_dominant_ref_frame(neighbors);
/* Interpolate MVs for the missing blocks
* from the dominating MVs */
vp8_interpolate_mvs(mb, neighbors, dom_ref_frame);
mb->mode_info_context->mbmi.ref_frame = dom_ref_frame;
mb->mode_info_context->mbmi.mode = SPLITMV;
mb->mode_info_context->mbmi.uv_mode = DC_PRED;
mb->mode_info_context->mbmi.partitioning = 3;
}

View File

@ -0,0 +1,112 @@
/*
* Copyright (c) 2011 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef ERROR_CONCEALMENT_H
#define ERROR_CONCEALMENT_H
#include "onyxd_int.h"
#include "ec_types.h"
/* Allocate memory for the overlap lists */
int vp8_alloc_overlap_lists(VP8D_COMP *pbi);
/* Deallocate the overlap lists */
void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi);
/* Inserts a new overlap area value to the list of overlaps of a block */
void vp8_assign_overlap(OVERLAP_NODE* overlaps,
B_MODE_INFO *bmi,
MV_REFERENCE_FRAME ref_frame,
int overlap);
/* Calculates the overlap area between two 4x4 squares, where the first
* square has its upper-left corner at (b1_row, b1_col) and the second
* square has its upper-left corner at (b2_row, b2_col). Doesn't
* properly handle squares which doesn't overlap.
*/
int vp8_block_overlap(int b1_row, int b1_col, int b2_row, int b2_col);
/* Finds the reference frame type which has the largest overlapping area. */
MV_REFERENCE_FRAME vp8_largest_overlap_type(const B_OVERLAP *block_overlaps);
/* Calculates the overlap area for all blocks in a macroblock at position
* (mb_row, mb_col) in macroblocks, which are being overlapped by a given
* overlapping block at position (new_row, new_col) (in pixels, Q3). The
* first block being overlapped in the macroblock has position (first_blk_row,
* first_blk_col) in blocks relative the upper-left corner of the image.
*/
void vp8_calculate_overlaps_mb(B_OVERLAP *b_overlaps, B_MODE_INFO *bmi,
MV_REFERENCE_FRAME ref_frame,
int new_row, int new_col,
int mb_row, int mb_col,
int first_blk_row, int first_blk_col);
/* Estimates a motion vector given the overlapping blocks' motion vectors.
* Filters out all overlapping blocks which doesn't refer to the correct
* reference frame type.
*/
void vp8_estimate_mv(const OVERLAP_NODE *overlaps, B_MODE_INFO *bmi,
MV_REFERENCE_FRAME type);
/* Estimates all motion vectors for a macroblock given the lists of
* overlaps for each block. Decides whether or not the MVs must be clamped.
*/
void vp8_estimate_mb_mvs(const B_OVERLAP *block_overlaps,
MODE_INFO *mi,
int mb_to_left_edge,
int mb_to_right_edge,
int mb_to_top_edge,
int mb_to_bottom_edge);
/* Estimate all missing motion vectors.
*/
void vp8_estimate_missing_mvs(VP8D_COMP *pbi);
/* Estimate all missing motion vectors */
void vp8_estimate_missing_mvs_ex(MB_OVERLAP *overlaps,
MODE_INFO *mi, MODE_INFO *prev_mi,
int mb_rows, int mb_cols,
unsigned int first_corrupt);
/* Functions for spatial MV interpolation */
/* Finds the neighboring blocks of a macroblocks. In the general case
* 20 blocks are found. If a fewer number of blocks are found due to
* image boundaries, those positions in the EC_BLOCK array are left "empty".
* The neighbors are enumerated with the upper-left neighbor as the first
* element, the second element refers to the neighbor to right of the previous
* neighbor, and so on. The last element refers to the neighbor below the first
* neighbor.
*/
void vp8_find_neighboring_blocks(MODE_INFO *mi,
EC_BLOCK *neighbors,
int mb_row, int mb_col,
int mb_rows, int mb_cols,
int mi_stride);
/* Calculates which reference frame type is dominating among the neighbors */
MV_REFERENCE_FRAME vp8_dominant_ref_frame(EC_BLOCK *neighbors);
/* Interpolates all motion vectors for a macroblock from the neighboring blocks'
* motion vectors.
*/
void vp8_interpolate_mvs(MACROBLOCKD *mb,
EC_BLOCK *neighbors,
MV_REFERENCE_FRAME dom_ref_frame);
/* Interpolates all motion vectors for a macroblock mb at position
* (mb_row, mb_col). */
void vp8_interpolate_motion(MACROBLOCKD *mb,
int mb_row, int mb_col,
int mb_rows, int mb_cols,
int mi_stride);
#endif

View File

@ -135,6 +135,13 @@ VP8D_PTR vp8dx_create_decompressor(VP8D_CONFIG *oxcf)
vp8_init_detokenizer(pbi);
#endif
pbi->common.error.setjmp = 0;
#if CONFIG_ERROR_CONCEALMENT
pbi->ec_enabled = 1;
#else
pbi->ec_enabled = 0;
#endif
return (VP8D_PTR) pbi;
}
@ -150,6 +157,7 @@ void vp8dx_remove_decompressor(VP8D_PTR ptr)
if (pbi->b_multithreaded_rd)
vp8mt_de_alloc_temp_buffers(pbi, pbi->common.mb_rows);
#endif
vp8_de_alloc_overlap_lists(pbi);
vp8_decoder_remove_threads(pbi);
vp8_remove_common(&pbi->common);
vpx_free(pbi);
@ -338,11 +346,14 @@ int vp8dx_receive_compressed_data(VP8D_PTR ptr, unsigned long size, const unsign
*/
cm->yv12_fb[cm->lst_fb_idx].corrupted = 1;
/* Signal that we have no frame to show. */
cm->show_frame = 0;
if (!pbi->ec_enabled)
{
/* Signal that we have no frame to show. */
cm->show_frame = 0;
/* Nothing more to do. */
return 0;
/* Nothing more to do. */
return 0;
}
}
@ -407,6 +418,16 @@ int vp8dx_receive_compressed_data(VP8D_PTR ptr, unsigned long size, const unsign
return retcode;
}
/* copy mode info to storage for future error concealment */
if (pbi->common.prev_mip)
{
/* size allocated in vp8_alloc_frame_buffers() */
int size_of_mip = (pbi->common.mb_cols + 1) * (pbi->common.mb_rows + 1)
* sizeof(MODE_INFO);
memcpy(pbi->common.prev_mip, pbi->common.mip, size_of_mip);
}
if (pbi->b_multithreaded_rd && cm->multi_token_partition != ONE_PARTITION)
{
if (swap_frame_buffers (cm))

View File

@ -17,6 +17,7 @@
#include "onyxc_int.h"
#include "threading.h"
#include "dequantize.h"
#include "ec_types.h"
typedef struct
{
@ -134,6 +135,10 @@ typedef struct VP8Decompressor
vp8_prob prob_gf;
vp8_prob prob_skip_false;
MB_OVERLAP *overlaps;
unsigned int mvs_corrupt_from_mb;
int ec_enabled;
} VP8D_COMP;
int vp8_decode_frame(VP8D_COMP *cpi);

View File

@ -56,12 +56,14 @@ VP8_DX_SRCS-yes += decoder/decodemv.c
VP8_DX_SRCS-yes += decoder/decodframe.c
VP8_DX_SRCS-yes += decoder/dequantize.c
VP8_DX_SRCS-yes += decoder/detokenize.c
VP8_DX_SRCS-yes += decoder/error_concealment.c
VP8_DX_SRCS-yes += decoder/generic/dsystemdependent.c
VP8_DX_SRCS-yes += decoder/dboolhuff.h
VP8_DX_SRCS-yes += decoder/decodemv.h
VP8_DX_SRCS-yes += decoder/decoderthreading.h
VP8_DX_SRCS-yes += decoder/dequantize.h
VP8_DX_SRCS-yes += decoder/detokenize.h
VP8_DX_SRCS-yes += decoder/error_concealment.h
VP8_DX_SRCS-yes += decoder/onyxd_int.h
VP8_DX_SRCS-yes += decoder/treereader.h
VP8_DX_SRCS-yes += decoder/onyxd_if.c