Implemented a first version of the motion vector extrapolation error

concealment algorithm. Tested on foreman_cif.yuv only. Some special
cases are still not handled in a good way, for instance when receiving
intra blocks without coefficients.

Change-Id: Ie7bb41855860923b313645dacb3cf70f1e350549
This commit is contained in:
Stefan Holmer
2011-04-01 11:48:30 +02:00
parent 83a2b4e114
commit a2951d8deb
10 changed files with 644 additions and 47 deletions

View File

@@ -77,6 +77,11 @@ GEN_EXAMPLES-$(CONFIG_ENCODERS) += decode_with_drops.c
endif
decode_with_drops.GUID = CE5C53C4-8DDA-438A-86ED-0DDD3CDB8D26
decode_with_drops.DESCRIPTION = Drops frames while decoding
ifeq ($(CONFIG_DECODERS),yes)
GEN_EXAMPLES-$(CONFIG_ENCODERS) += decode_with_partial_drops.c
endif
decode_partial_with_drops.GUID = CE5C53C4-8DDA-438A-86ED-0DDD3CDB8D27
decode_partial_with_drops.DESCRIPTION = Drops parts of frames while decoding
GEN_EXAMPLES-$(CONFIG_ENCODERS) += error_resilient.c
error_resilient.GUID = DF5837B9-4145-4F92-A031-44E4F832E00C
error_resilient.DESCRIPTION = Error Resiliency Feature

View File

@@ -0,0 +1,213 @@
@TEMPLATE decoder_tmpl.c
Decode With Drops Example
=========================
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INTRODUCTION
This is an example utility which drops a series of frames, as specified
on the command line. This is useful for observing the error recovery
features of the codec.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INTRODUCTION
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ EXTRA_INCLUDES
#include <time.h>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ EXTRA_INCLUDES
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ HELPERS
struct parsed_header
{
char key_frame;
int version;
char show_frame;
int first_part_size;
};
int next_packet(struct parsed_header* hdr, int pos, int length, int mtu)
{
int size = 0;
int remaining = length - pos;
/* Uncompressed part is 3 bytes for P frames and 10 bytes for I frames */
int uncomp_part_size = (hdr->key_frame ? 10 : 3);
/* number of bytes yet to send from header and the first partition */
int remainFirst = uncomp_part_size + hdr->first_part_size - pos;
if (remainFirst > 0)
{
if (remainFirst <= mtu)
{
size = remainFirst;
}
else
{
size = mtu;
}
return size;
}
/* second partition; just slot it up according to MTU */
if (remaining <= mtu)
{
size = remaining;
return size;
}
return mtu;
}
void throw_packets(unsigned char* frame, int* size, int loss_rate, int* thrown, int* kept)
{
unsigned char loss_frame[256*1024];
int pkg_size = 1;
int count = 0;
int pos = 0;
int loss_pos = 0;
struct parsed_header hdr;
unsigned int tmp;
int mtu = 100;
if (*size < 3)
{
return;
}
putc('|', stdout);
/* parse uncompressed 3 bytes */
tmp = (frame[2] << 16) | (frame[1] << 8) | frame[0];
hdr.key_frame = !(tmp & 0x1); /* inverse logic */
hdr.version = (tmp >> 1) & 0x7;
hdr.show_frame = (tmp >> 4) & 0x1;
hdr.first_part_size = (tmp >> 5) & 0x7FFFF;
/* don't drop key frames */
if (hdr.key_frame)
{
int i;
*kept = *size/mtu + ((*size % mtu > 0) ? 1 : 0); /* approximate */
for (i=0; i < *kept; i++)
putc('.', stdout);
return;
}
while ((pkg_size = next_packet(&hdr, pos, *size, mtu)) > 0)
{
int loss_event = ((rand() + 1.0)/(RAND_MAX + 1.0) < loss_rate/100.0);
if (*thrown == 0 && !loss_event)
{
memcpy(loss_frame + loss_pos, frame + pos, pkg_size);
loss_pos += pkg_size;
(*kept)++;
putc('.', stdout);
}
else
{
(*thrown)++;
putc('X', stdout);
}
pos += pkg_size;
}
memcpy(frame, loss_frame, loss_pos);
memset(frame + loss_pos, 0, *size - loss_pos);
*size = loss_pos;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ HELPERS
Usage
-----
This example adds a single argument to the `simple_decoder` example,
which specifies the range or pattern of frames to drop. The parameter is
parsed as follows:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ USAGE
if(argc!=4 && argc != 5)
die("Usage: %s <infile> <outfile> <N-M|N/M|L,S>\n", argv[0]);
{
char *nptr;
n = strtol(argv[3], &nptr, 0);
mode = (*nptr == '\0' || *nptr == ',') ? 2 : (*nptr == '-') ? 1 : 0;
m = strtol(nptr+1, NULL, 0);
if((!n && !m) || (*nptr != '-' && *nptr != '/' &&
*nptr != '\0' && *nptr != ','))
die("Couldn't parse pattern %s\n", argv[3]);
}
seed = (m > 0) ? m : (unsigned int)time(NULL);
srand(seed);thrown_frame = 0;
printf("Seed: %u\n", seed);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ USAGE
Dropping A Range Of Frames
--------------------------
To drop a range of frames, specify the starting frame and the ending
frame to drop, separated by a dash. The following command will drop
frames 5 through 10 (base 1).
$ ./decode_with_drops in.ivf out.i420 5-10
Dropping A Pattern Of Frames
----------------------------
To drop a pattern of frames, specify the number of frames to drop and
the number of frames after which to repeat the pattern, separated by
a forward-slash. The following command will drop 3 of 7 frames.
Specifically, it will decode 4 frames, then drop 3 frames, and then
repeat.
$ ./decode_with_drops in.ivf out.i420 3/7
Extra Variables
---------------
This example maintains the pattern passed on the command line in the
`n`, `m`, and `is_range` variables:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ EXTRA_VARS
int n, m, mode; //
unsigned int seed;
int thrown=0, kept=0;
int thrown_frame=0, kept_frame=0;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ EXTRA_VARS
Making The Drop Decision
------------------------
The example decides whether to drop the frame based on the current
frame number, immediately before decoding the frame.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PRE_DECODE
/* Decide whether to throw parts of the frame or the whole frame
depending on the drop mode */
thrown_frame = 0;
kept_frame = 0;
switch (mode)
{
case 0:
if (m - (frame_cnt-1)%m <= n)
{
frame_sz = 0;
}
break;
case 1:
if (frame_cnt >= n && frame_cnt <= m)
{
frame_sz = 0;
}
break;
case 2:
throw_packets(frame, &frame_sz, n, &thrown_frame, &kept_frame);
break;
default: break;
}
if (mode < 2)
{
if (frame_sz == 0)
{
putc('X', stdout);
thrown_frame++;
}
else
{
putc('.', stdout);
kept_frame++;
}
}
thrown += thrown_frame;
kept += kept_frame;
fflush(stdout);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PRE_DECODE

View File

@@ -42,6 +42,8 @@ static void die(const char *fmt, ...) {
@DIE_CODEC
@HELPERS
int main(int argc, char **argv) {
FILE *infile, *outfile;
vpx_codec_ctx_t codec;

View File

@@ -12,6 +12,7 @@
#include "vpx_ports/config.h"
#include "blockd.h"
#include "vpx_mem/vpx_mem.h"
#include "error_concealment.h"
#include "onyxc_int.h"
#include "findnearmv.h"
#include "entropymode.h"
@@ -28,6 +29,9 @@ void vp8_update_mode_info_border(MODE_INFO *mi, int rows, int cols)
for (i = 0; i < rows; i++)
{
/* TODO(holmer): Bug? This updates the last element of each row
* rather than the border element!
*/
vpx_memset(&mi[i*cols-1], 0, sizeof(MODE_INFO));
}
}
@@ -124,7 +128,6 @@ int vp8_alloc_frame_buffers(VP8_COMMON *oci, int width, int height)
oci->prev_mi = oci->prev_mip + oci->mode_info_stride + 1;
oci->above_context = vpx_calloc(sizeof(ENTROPY_CONTEXT_PLANES) * oci->mb_cols, 1);
if (!oci->above_context)

View File

@@ -413,7 +413,7 @@ void vp8_read_mb_modes_mv(VP8D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi,
do {
mi->bmi[ *fill_offset] = bmi;
fill_offset++;
fill_offset++;
}while (--fill_count);
}

View File

@@ -227,8 +227,8 @@ void vp8_decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd, unsigned int mb_idx)
}
/* TODO(holmer): change when we have MB level error tracking */
if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME &&
(xd->corrupted || mb_idx >= pbi->mvs_corrupt_from_mb))
if (pbi->ec_enabled && xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME
&& (xd->corrupted || mb_idx >= pbi->mvs_corrupt_from_mb))
{
vp8_conceal_corrupt_block(xd);
return;
@@ -664,6 +664,11 @@ int vp8_decode_frame(VP8D_COMP *pbi)
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
if (vp8_alloc_overlap_lists(pbi))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate overlap lists for "
"error concealment");
#if CONFIG_MULTITHREAD
if (pbi->b_multithreaded_rd)
vp8mt_alloc_temp_buffers(pbi, pc->Width, prev_mb_rows);
@@ -890,7 +895,8 @@ int vp8_decode_frame(VP8D_COMP *pbi)
vp8_decode_mode_mvs(pbi);
if (pbi->ec_enabled && pbi->mvs_corrupt_from_mb < (unsigned int)pc->mb_cols * pc->mb_rows)
if (pbi->ec_enabled &&
pbi->mvs_corrupt_from_mb < (unsigned int)pc->mb_cols * pc->mb_rows)
{
vp8_estimate_missing_mvs(pbi);
}

View File

@@ -12,61 +12,384 @@
#include "onyxd_int.h"
#include "vpx_mem/vpx_mem.h"
#include <assert.h>
#define MIN(x,y) (((x)<(y))?(x):(y))
#define MAX(x,y) (((x)>(y))?(x):(y))
#define FLOOR(x,q) ((x) & -(1 << (q)))
int vp8_alloc_overlap_lists(VP8D_COMP *pbi)
{
if (pbi->overlaps != NULL)
{
vpx_free(pbi->overlaps);
pbi->overlaps = NULL;
}
pbi->overlaps = vpx_calloc(pbi->common.mb_rows * pbi->common.mb_cols,
sizeof(MB_OVERLAP));
vpx_memset(pbi->overlaps, 0,
sizeof(MB_OVERLAP) * pbi->common.mb_rows * pbi->common.mb_cols);
if (pbi->overlaps == NULL)
return -1;
return 0;
}
void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi)
{
if (pbi->overlaps != NULL)
{
vpx_free(pbi->overlaps);
pbi->overlaps = NULL;
}
}
void vp8_assign_overlap(OVERLAP_NODE* overlaps,
B_MODE_INFO *bmi,
MV_REFERENCE_FRAME ref_frame,
int overlap)
{
int i;
if (overlap <= 0)
return;
for (i = 0; i < MAX_OVERLAPS; i++)
{
if (overlaps[i].bmi == NULL)
{
overlaps[i].bmi = bmi;
overlaps[i].ref_frame = ref_frame;
overlaps[i].overlap = overlap;
break;
}
}
}
int vp8_block_overlap(int b1_row, int b1_col, int b2_row, int b2_col)
{
const int int_top = MAX(b1_row, b2_row); // top
const int int_left = MAX(b1_col, b2_col); // left
const int int_right = MIN(b1_col + (4<<3), b2_col + (4<<3)); // right
const int int_bottom = MIN(b1_row + (4<<3), b2_row + (4<<3)); // bottom
return (int_bottom - int_top) * (int_right - int_left);
}
void vp8_calculate_overlaps_mb(B_OVERLAP *b_overlaps, B_MODE_INFO *bmi,
MV_REFERENCE_FRAME ref_frame,
int new_row, int new_col,
int first_ol_mb_row, int first_ol_mb_col,
int first_ol_blk_row, int first_ol_blk_col)
{
/* find the blocks it's overlapping */
const int rel_ol_blk_row = first_ol_blk_row - first_ol_mb_row * 4;
const int rel_ol_blk_col = first_ol_blk_col - first_ol_mb_col * 4;
const int blk_idx = MAX(rel_ol_blk_row,0) * 4 + MAX(rel_ol_blk_col,0);
/* Upper left overlapping block */
B_OVERLAP *b_ol_ul = &(b_overlaps[blk_idx]);
/* Calculate and assign overlaps for all blocks in this MB
* which the motion compensated block overlaps
*/
int row, col;
int end_row = MIN(4 + first_ol_mb_row * 4 - first_ol_blk_row, 2);
int end_col = MIN(4 + first_ol_mb_col * 4 - first_ol_blk_col, 2);
/* Check if new_row and new_col are evenly divisible by 4 (Q3),
* and if so we shouldn't check neighboring blocks
*/
if (new_row >= 0 && (new_row & 0x1F) == 0)
end_row = 1;
if (new_col >= 0 && (new_col & 0x1F) == 0)
end_col = 1;
/* Avoid calculating overlap for blocks in the previous MB */
if (new_row < (first_ol_mb_row*16)<<3)
end_row = 1;
if (new_col < (first_ol_mb_col*16)<<3)
end_col = 1;
for (row = 0; row < end_row; ++row)
{
for (col = 0; col < end_col; ++col)
{
/* input in Q3, result in Q6 */
const int overlap = vp8_block_overlap(new_row, new_col,
(((first_ol_blk_row + row) *
4) << 3),
(((first_ol_blk_col + col) *
4) << 3));
vp8_assign_overlap(b_ol_ul[row * 4 + col].overlaps,
bmi,
ref_frame,
overlap);
}
}
}
void vp8_calculate_overlaps_submb(MB_OVERLAP *overlap_ul,
int mb_rows, int mb_cols,
B_MODE_INFO *bmi,
MV_REFERENCE_FRAME ref_frame,
int b_row, int b_col)
{
MB_OVERLAP *mb_overlap;
int row, col, rel_row, rel_col;
int new_row, new_col;
int new_row_pos, new_col_pos;
int end_row, end_col;
int overlap_b_row, overlap_b_col;
int overlap_mb_row, overlap_mb_col;
int i;
B_MODE_INFO *obmi;
int overlap;
if (ref_frame == INTRA_FRAME)
return;
/* mb subpixel position */
row = (4 * b_row) << 3; /* Q3 */
col = (4 * b_col) << 3; /* Q3 */
/* reverse compensate for motion */
new_row = row - bmi->mv.as_mv.row;
new_col = col - bmi->mv.as_mv.col;
if (new_row >= ((16*mb_rows) << 3) || new_col >= ((16*mb_cols) << 3))
{
/* the new block ended up outside the frame */
return;
}
if (new_row <= (-4 << 3) || new_col <= (-4 << 3))
{
/* outside the frame */
return;
}
/* overlapping block's position in blocks */
overlap_b_row = FLOOR(new_row / 4, 3) >> 3;
overlap_b_col = FLOOR(new_col / 4, 3) >> 3;
/* overlapping block's MB position in MBs
* operations are done in Q3
*/
overlap_mb_row = FLOOR((overlap_b_row << 3) / 4, 3) >> 3;
overlap_mb_col = FLOOR((overlap_b_col << 3) / 4, 3) >> 3;
end_row = MIN(mb_rows - overlap_mb_row, 2);
end_col = MIN(mb_cols - overlap_mb_col, 2);
/* Don't calculate overlap for MBs we don't overlap */
/* Check if the new block row starts at the last block row of the MB */
if (abs(new_row - ((16*overlap_mb_row) << 3)) < ((3*4) << 3))
end_row = 1;
/* Check if the new block col starts at the last block col of the MB */
if (abs(new_col - ((16*overlap_mb_col) << 3)) < ((3*4) << 3))
end_col = 1;
/* Check if our MV is even (only overlapping one block) */
// if (abs(bmi->mv.as_mv.row) % (4 << 3) == 0)
// end_row = 1;
// if (abs(bmi->mv.as_mv.col) % (4 << 3) == 0)
// end_col = 1;
/* find the MB(s) this block is overlapping */
for (rel_row = 0; rel_row < end_row; ++rel_row)
{
for (rel_col = 0; rel_col < end_col; ++rel_col)
{
if (overlap_mb_row + rel_row < 0 ||
overlap_mb_col + rel_col < 0)
continue;
mb_overlap = overlap_ul + (overlap_mb_row + rel_row) * mb_cols +
overlap_mb_col + rel_col;
vp8_calculate_overlaps_mb(mb_overlap->overlaps, bmi, ref_frame,
new_row, new_col,
overlap_mb_row + rel_row,
overlap_mb_col + rel_col,
overlap_b_row + rel_row,
overlap_b_col + rel_col);
}
}
}
MV_REFERENCE_FRAME vp8_largest_overlap_type(const B_OVERLAP *block_overlaps)
{
int i, j;
int overlap_per_type[MAX_REF_FRAMES] = {0};
int largest_overlap = 0;
MV_REFERENCE_FRAME largest_overlap_type = LAST_FRAME;
for (i=0; i < 16; ++i)
{
const OVERLAP_NODE *overlaps = block_overlaps->overlaps;
for (j=0; j < MAX_OVERLAPS; ++j)
{
if (overlaps[j].bmi != NULL)
{
overlap_per_type[overlaps[j].ref_frame] += overlaps[j].overlap;
if (overlap_per_type[overlaps[j].ref_frame] > largest_overlap)
{
largest_overlap = overlap_per_type[overlaps[j].ref_frame];
largest_overlap_type = overlaps[j].ref_frame;
}
assert(overlaps[j].overlap < (16*16)<<6);
}
}
++block_overlaps;
}
return largest_overlap_type;
}
void vp8_estimate_mv(const OVERLAP_NODE *overlaps, B_MODE_INFO *bmi,
MV_REFERENCE_FRAME type)
{
int i;
int overlap_sum = 0;
int row_acc = 0;
int col_acc = 0;
bmi->mv.as_int = 0;
for (i=0; i < MAX_OVERLAPS; ++i)
{
if (overlaps[i].bmi != NULL &&
overlaps[i].ref_frame == type)
{
col_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.col;
row_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.row;
overlap_sum += overlaps[i].overlap;
}
}
if (overlap_sum > 0)
{
/* Q9 / Q6 = Q3 */
bmi->mv.as_mv.col = col_acc / overlap_sum;
bmi->mv.as_mv.row = row_acc / overlap_sum;
/* TODO(holmer): Get the mode from the most overlapping block?
* Or is the mode only used when decoding the MVs?
*/
bmi->mode = NEW4X4;
}
else
{
bmi->mv.as_mv.col = 0;
bmi->mv.as_mv.row = 0;
bmi->mode = NEW4X4;
}
}
void vp8_estimate_mb_mvs(const B_OVERLAP *block_overlaps,
B_MODE_INFO *bmi,
MV_REFERENCE_FRAME type,
MV* filtered_mv)
{
int i;
int non_zero_count = 0;
filtered_mv->col = 0;
filtered_mv->row = 0;
for (i = 0; i < 16; ++i)
{
/* TODO(holmer): How can we be certain that all blocks refer
* to the same frame buffer? We can't
*/
/* Estimate vectors for all blocks which are overlapped by this
* type
*/
/* Interpolate/extrapolate the rest of the block's MVs */
vp8_estimate_mv(block_overlaps[i].overlaps, bmi + i, type);
if (bmi[i].mv.as_int != 0)
{
++non_zero_count;
filtered_mv->col += bmi[i].mv.as_mv.col;
filtered_mv->row += bmi[i].mv.as_mv.row;
}
}
if (non_zero_count > 0)
{
filtered_mv->col /= non_zero_count;
filtered_mv->row /= non_zero_count;
}
}
void vp8_estimate_missing_mvs(VP8D_COMP *pbi)
{
VP8_COMMON *const pc = &pbi->common;
unsigned int first_corrupt = pbi->mvs_corrupt_from_mb;
const unsigned int num_mbs = pc->mb_rows * pc->mb_cols;
if (first_corrupt < num_mbs)
VP8_COMMON * const pc = &pbi->common;
vp8_estimate_missing_mvs_ex(pbi->overlaps,
pc->mi, pc->prev_mi,
pc->mb_rows, pc->mb_cols,
pbi->mvs_corrupt_from_mb);
}
void vp8_estimate_missing_mvs_ex(MB_OVERLAP *overlaps,
MODE_INFO *mi, MODE_INFO *prev_mi,
int mb_rows, int mb_cols,
unsigned int first_corrupt)
{
const unsigned int num_mbs = mb_rows * mb_cols;
int mb_row, mb_col;
vpx_memset(overlaps, 0, sizeof(MB_OVERLAP) * mb_rows * mb_cols);
for (mb_row = 0; mb_row < mb_rows; ++mb_row)
{
MODE_INFO *mi = pc->mi;
MODE_INFO *correct_mi;
const int num_corrupt = num_mbs - first_corrupt;
int i;
int mb_row, mb_col;
if (first_corrupt == 0)
for (mb_col = 0; mb_col < mb_cols; ++mb_col)
{
/* if the first MB is corrupt we just copy from it
the previous frame */
mi[0].mbmi.mv.as_int = 0;
mi[0].mbmi.mode = ZEROMV;
mi[0].mbmi.uv_mode = ZEROMV;
mi[0].mbmi.ref_frame = LAST_FRAME;
first_corrupt = 1;
correct_mi = mi + 1;
}
for (mb_row = 0; mb_row < pc->mb_rows; ++mb_row)
{
for (mb_col = 0; mb_col < pc->mb_cols; ++mb_col)
int sub_row;
int sub_col;
for (sub_row = 0; sub_row < 4; ++sub_row)
{
int mb_idx = mb_row * pc->mb_cols + mb_col;
if (mb_idx >= first_corrupt)
for (sub_col = 0; sub_col < 4; ++sub_col)
{
*mi = *correct_mi;
vp8_calculate_overlaps_submb(
overlaps, mb_rows, mb_cols,
&(prev_mi->bmi[sub_row * 4 + sub_col]),
prev_mi->mbmi.ref_frame,
4 * mb_row + sub_row,
4 * mb_col + sub_col);
}
else if (mb_idx == first_corrupt - 1)
{
correct_mi = mi;
}
++mi;
}
++prev_mi;
}
++prev_mi;
}
mb_row = first_corrupt / mb_cols;
mb_col = first_corrupt - mb_row * mb_cols;
mi += mb_row*(mb_cols + 1) + mb_col;
for (; mb_row < mb_rows; ++mb_row)
{
for (; mb_col < mb_cols; ++mb_col)
{
int i;
MV_REFERENCE_FRAME type = LAST_FRAME;
int largest_overlap = 0;
const B_OVERLAP *block_overlaps =
overlaps[mb_row*mb_cols + mb_col].overlaps;
/* Find largest overlap and its type */
mi->mbmi.ref_frame = vp8_largest_overlap_type(block_overlaps);
vp8_estimate_mb_mvs(block_overlaps,
mi->bmi,
mi->mbmi.ref_frame,
&mi->mbmi.mv.as_mv);
mi->mbmi.uv_mode = SPLITMV;
mi->mbmi.mb_skip_coeff = 1;
/* TODO(holmer): should this be enabled, when? */
mi->mbmi.need_to_clamp_mvs = 1;
++mi;
}
mb_col = 0;
++mi;
}
}
void vp8_conceal_corrupt_block(MACROBLOCKD *xd)
{
/* this macroblock has corrupt residual, use the motion compensated
image for concealment */
image for concealment */
int i;
for (i=0; i < 16; i++)
vpx_memcpy(xd->dst.y_buffer + i*xd->dst.y_stride,
xd->predictor + i*16, 16);
for (i=0; i < 8; i++)
vpx_memcpy(xd->dst.u_buffer + i*xd->dst.uv_stride,
xd->predictor + 256 + i*8, 8);
for (i=0; i < 8; i++)
vpx_memcpy(xd->dst.v_buffer + i*xd->dst.uv_stride,
xd->predictor + 320 + i*8, 8);
for (i = 0; i < 16; i++)
vpx_memcpy(xd->dst.y_buffer + i * xd->dst.y_stride,
xd->predictor + i * 16, 16);
for (i = 0; i < 8; i++)
vpx_memcpy(xd->dst.u_buffer + i * xd->dst.uv_stride,
xd->predictor + 256 + i * 8, 8);
for (i = 0; i < 8; i++)
vpx_memcpy(xd->dst.v_buffer + i * xd->dst.uv_stride,
xd->predictor + 320 + i * 8, 8);
}

View File

@@ -14,7 +14,31 @@
#include "onyxd_int.h"
void vp8_estimate_missing_mvs(VP8D_COMP *);
int vp8_alloc_overlap_lists(VP8D_COMP *pbi);
void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi);
void vp8_assign_overlap(OVERLAP_NODE* overlaps,
B_MODE_INFO *bmi,
MV_REFERENCE_FRAME ref_frame,
int overlap);
int vp8_block_overlap(int b1_row, int b1_col, int b2_row, int b2_col);
void vp8_calculate_overlaps_mb(B_OVERLAP *b_overlaps, B_MODE_INFO *bmi,
MV_REFERENCE_FRAME ref_frame,
int new_row, int new_col,
int first_ol_mb_row, int first_ol_mb_col,
int first_ol_blk_row, int first_ol_blk_col);
MV_REFERENCE_FRAME vp8_largest_overlap_type(const B_OVERLAP *block_overlaps);
void vp8_estimate_mv(const OVERLAP_NODE *overlaps, B_MODE_INFO *bmi,
MV_REFERENCE_FRAME type);
void vp8_estimate_mb_mvs(const B_OVERLAP *block_overlaps,
B_MODE_INFO *bmi,
MV_REFERENCE_FRAME type,
MV* filtered_mv);
void vp8_estimate_missing_mvs(VP8D_COMP *pbi);
void vp8_estimate_missing_mvs_ex(MB_OVERLAP *overlaps,
MODE_INFO *mi, MODE_INFO *prev_mi,
int mb_rows, int mb_cols,
unsigned int first_corrupt);
void vp8_conceal_corrupt_block(MACROBLOCKD *);
#endif

View File

@@ -150,6 +150,7 @@ void vp8dx_remove_decompressor(VP8D_PTR ptr)
if (pbi->b_multithreaded_rd)
vp8mt_de_alloc_temp_buffers(pbi, pbi->common.mb_rows);
#endif
vp8_de_alloc_overlap_lists(pbi);
vp8_decoder_remove_threads(pbi);
vp8_remove_common(&pbi->common);
vpx_free(pbi);
@@ -318,7 +319,7 @@ int vp8dx_receive_compressed_data(VP8D_PTR ptr, unsigned long size, const unsign
VP8_COMMON *cm = &pbi->common;
int retcode = 0;
struct vpx_usec_timer timer;
pbi->ec_enabled = 1;
/*if(pbi->ready_for_new_data == 0)

View File

@@ -18,6 +18,25 @@
#include "threading.h"
#include "dequantize.h"
#define MAX_OVERLAPS 16
typedef struct overlap_node
{
int overlap;
B_MODE_INFO *bmi;
MV_REFERENCE_FRAME ref_frame;
} OVERLAP_NODE;
typedef struct
{
OVERLAP_NODE overlaps[MAX_OVERLAPS];
} B_OVERLAP;
typedef struct
{
B_OVERLAP overlaps[16];
} MB_OVERLAP;
typedef struct
{
int ithread;
@@ -134,6 +153,7 @@ typedef struct VP8Decompressor
vp8_prob prob_gf;
vp8_prob prob_skip_false;
MB_OVERLAP *overlaps;
unsigned int mvs_corrupt_from_mb;
int ec_enabled;