Adding plane type check condition because it was always used outside of
get_tx_type_{4x4, 8x8, 16x16}.
Change-Id: I02f0bbfee8063474865bd903eb25b54d26e07230
The struct optimize_block_args is defined same as encode_b_args.
Remove this redundant definition, and use encode_b_args consistently.
Change-Id: I1703aeeb3bacf92e98a34f4355202712110173d9
The xform_quant() module is only used by inter modes, hence removing
the redundant switches therein conditioned on tx_type.
Change-Id: Ib87ce5b2f2e4cbf3ceb133a1108afa173c933a3f
When all the transform coefficients were quantized to zero, skip
the inverse transform operation. For bus_cif at 1000 kbps, the
runtime goes from 154967ms -> 149842ms, i.e., about 3% speed-up,
at speed 0.
Change-Id: Ic0a813fff5e28972d4888ee42d8747846a6c3cc6
many structures use bw and bh and they have different meanings. This cl attempts
to start this clean up and remove unneccessary 2 step look up log and then
shift operations...
also removed partition type multiple operation code in bitstream.c.
Change-Id: I7e03e552bdfc0939738e430862e3073d30fdd5db
Cycle times:
4x4: 151 to 131 cycles (15% faster)
8x8: 334 to 306 cycles (9% faster)
16x16: 1401 to 1368 cycles (2.5% faster)
32x32: 7403 to 7367 cycles (0.5% faster)
Total encode time of first 50 frames of bus @ 1500kbps (speed 0)
goes from 1min39.2 to 1min38.6, i.e. a 0.67% overall speedup.
Change-Id: I799a49460e5e3fcab01725564dd49c629bfe935f
Also inline some of the block calculations to assist the compiler to
not do silly things like calculating the same offset (or converting
between raster/transform block offset or block, mi and pixel unit)
many, many, many times.
Cycle times:
4x4: 584 -> 505 cycles (16% faster)
8x8: 1651 -> 1560 cycles (6% faster)
16x16: 7897 -> 7704 cycles (2.5% faster)
32x32: 16096 -> 15852 cycles (1.5% faster)
Overall, this saves about 0.5 seconds (1min49.8 -> 1min49.3) on the
first 50 frames of bus (speed 0) @ 1500kbps, i.e. 0.5% overall.
Change-Id: If3dd62453f8e2ab9d4ee616bc4ea956fb8874b80
Skip the inverse transform and reconstruction of inter-mode coded
blocks in the rate-distortion optimization loop, when skip_encode_sb
feature is turned on. This provides about 1% speed-up at speed 0,
and 1.5% speed-up at speed 1. No performance change in both settings.
Change-Id: I2932718bf4d007163702b61b16b6ff100cf9d007
This speed feature allows the encoder to largely remove the spatial
dependency between blocks inside a 64x64 superblock, thereby removing
the need to repeatedly encode superblocks per partition type in the
rate-distortion optimization loop.
A major challenge lies in the intra modes tested in the rate-distortion
optimization loop. The subsequent blocks do not have access to the
reconstructed boundary pixels without the intermediate coding steps.
This was resolved by using the original pixels for intra prediction
in the rd loop, followed by an appropriately designed distortion
modeling on the quantization parameters. Experiments also suggested
that the performance impact is more discernible at lower bit-rate/psnr
settings. Hence a quantizer dependent threshold is applied to deactivate
skip of block coding.
For bus_cif at 2000 kbps,
speed 0: runtime 269854ms -> 237774ms (12% speed-up) at 0.05dB
performance loss.
speed 1: runtime 65312ms -> 61536ms, (7% speed-up) at 0.04dB
performance loss.
This operation is currently turned on in settings of speed 1.
Change-Id: Ib689741dfff8dd38365d8c1b92860a3e176f56ec
The function encode_block is called only by inter-prediction modes,
hence removing the transform type branching there.
Change-Id: I34a3172e28ce2388835efd0f8781922211bff857
First 50 frames of bus @ 1500kbps (speed 0) goes from 2min12.6 to
2min11.6, i.e. 0.75% overall speedup.
Change-Id: I67054f8146e82a02b6457c51a1c8627a937e5e1e
Compute the rate-distortion cost per transformed block, and cumulate
the cost through all blocks inside a partition. This allows encoder
to detect if the cumulative rd cost is already above the best rd cost,
thereby enabling early termination in the rate-distortion optimization
search.
Change-Id: I0a856367a9a7b6dd0b466e7b767f54d5018d09ac
This should significantly speedup cost_coeffs(). Basically what the
patch does is to make the neighbour arrays padded by one item to
prevent an eob check in get_coef_context(), then it populates each
col/row scan and left/top edge coefficient with two times the same
neighbour - this prevents a single/double context branch in
get_coef_context(). Lastly, it populates neighbour arrays in pixel
order (rather than scan order), so we don't have to dereference the
scantable to get the correct neighbours.
Total encoding time of first 50 frames of bus (speed 0) at 1500kbps
goes from 2min10.1 to 2min5.3, i.e. a 2.6% overall speed increase.
Change-Id: I42bcd2210fd7bec03767ef0e2945a665b851df56
Total encoding time for first 50 frames of bus (speed 0) @ 1500kbps
goes 2min34.8 to 2min14.4, i.e. a 10.4% overall speedup. The code is
x86-64 only, it needs some minor modifications to be 32bit compatible,
because it uses 15 xmm registers, whereas 32bit only has 8.
Change-Id: I2df53770c2e850813ffa713e1a91b45b0082b904
Makes cost_coeffs() a lot faster:
4x4: 236 -> 181 cycles
8x8: 888 -> 588 cycles
16x16: 3550 -> 2483 cycles
32x32: 17392 -> 12010 cycles
Total encode time of first 50 frames of bus (speed 0) @ 1500kbps goes
from 2min51.6 to 2min43.9, i.e. 4.7% overall speedup.
Change-Id: I16b8d595946393c8dc661599550b3f37f5718896
Cycle timings for first 3 frames of bus (speed 0) at 1500kbps:
4x4: 298 -> 234 cycles
8x8: 1227 -> 878 cycles
16x16: 23426 -> 18134 cycles
32x32: 4906 -> 3664 cycles
Total encode time of first 50 frames of bus @ 1500kbps (speed 0) goes
from 3min0.7 to 2min51.6 seconds, i.e. 5.3% faster.
Change-Id: I68a0e1b530b0563b84a67342cca4b45146077e95
This commit enables configurable reference buffer pointer for intra
predictor. This allows later removal of spatial dependency between
blocks inside a 64x64 superblock in the rate-distortion optimization
loop.
Change-Id: I02418c2077efe19adc86e046a6b49364a980f5b1
This commit makes use of dual fdct32x32 versions for rate-distortion
optimization loop and encoding process, respectively. The one for
rd loop requires only 16 bits precision for intermediate steps.
The original fdct32x32 that allows higher intermediate precision (18
bits) was retained for the encoding process only.
This allows speed-up for fdct32x32 in the rd loop. No performance
loss observed.
Change-Id: I3237770e39a8f87ed17ae5513c87228533397cc3
Change the argument of get_uv_tx_size() to be an MBMI pointer, so that the
correct column's MBMI can be passed to the function.
Change-Id: Ied6b8ec33b77cdd353119e8fd2d157811815fc98
Code intra/inter, then comp/single, then the ref frame selection.
Use contextualization for all steps. Don't code two past frames
in comp pred mode.
Change-Id: I4639a78cd5cccb283023265dbcc07898c3e7cf95
This avoids encoding tokens for blocks that are entirely
in the UMV border. This changes the bitstream.
Change-Id: I32b4df46ac8a990d0c37cee92fd34f8ddd4fb6c9
Migrates costing changes/fixes from the rebalance expt to the head
without the expt on.
Rebased.
Change-Id: I51677d62f77ed08aca8d21a4c9a13103eb8de93f
Results:
derfraw300: +0.126%
This patch changes the coefficient tree to move the EOB to below
the ZERO node in order to save number of bool decodes.
The advantages of moving EOB one step down as opposed to two steps down
in the other parallel patch are: 1. The coef modeling based on
the One-node becomes independent of the tree structure above it, and
2. Fewer conext/counter increases are needed.
The drawback is that the potential savings in bool decodes will be
less, but assuming that 0s are much more predominant than 1's the
potential savings is still likely to be substantial.
Results on derf300: -0.237%
Change-Id: Ie784be13dc98291306b338e8228703a4c2ea2242
Proposal for tuning the residual coding by changing how the context
from previous tokens is calculated. Storing the energy class of previous
tokens instead of the token itself eases the critical path of
HW implementations.
Change-Id: I6d71d856b84518f6c88de771ddd818436f794bab
Removed one 4x4 prediction step that was unnessary in the rd loop.
Removed a unused modecosts estimate from encoder side.
Change-Id: I65221a52719d6876492996955ef04142d2752d86
1. remove prediction mode conversion
2. unified bmode, same for key and non-key frame
3. set I4X4_PRED count for pdf to 0, as I4X4_PRED is no longer
coded ever. It is determined by ref_frame and block partition
Change-Id: If5b282957c24339b241acdb9f2afef85658fe47d
This commit changed the encoding and decoding of intra blocks to be
based on transform block. In each prediction block, the intra coding
iterates thorough each transform block based on raster scan order.
This commit also fixed a bug in D135 prediction code.
TODO next:
The RD mode/txfm_size selection should take this into account when
computing RD values.
Change-Id: I6d1be2faa4c4948a52e830b6a9a84a6b2b6850f6
This patch eliminates the intermediate diff buffer usage by
combining the short idct and the add residual into one function.
The encoder can use the same code as well.
Change-Id: I296604bf73579c45105de0dd1adbcc91bcc53c22
This is a mostly-working implementation of an extra channel in the
bitstream. Configure with --enable-alpha to test. Notable TODOs:
- Add extra channel to all mismatch tests, PSNR, SSIM, etc
- Configurable subsampling
- Variable number of planes (currently always uses all 4)
- Loop filtering
- Per-plane lossless quantizer
- ARNR support
This implementation just uses the same contents as the Y channel
for the A channel, due to lack of content and general pain in
playing back 4 channel content. A later patch will use the actual
alpha channel passed in from outside the codec.
Change-Id: Ibf81f023b1c570bd84b3064e9b4b8ae52e087592
This patch eliminates the intermediate diff buffer usage by
combining the short idct and the add residual into one function.
The encoder can use the same code as well.
Change-Id: Iacfd57324fbe2b7beca5d7f3dcae25c976e67f45
This patch eliminates the intermediate diff buffer usage by
combining the short idct and the add residual into one function.
The encoder can use the same code as well.
Change-Id: Iea7976b22b1927d24b8004d2a3fddae7ecca3ba1
This patch eliminates the intermediate diff buffer usage by
combining the short idct and the add residual into one function.
The encoder can use the same code as well.
Change-Id: I4ea09df0e162591e420d869b7431c2e7f89a8c1a
Change band calculation back to simpler model based
on the order in which coefficients are coded in scan order
not the absolute coefficient positions.
With the scatter scan experiment enabled the results were
appear broadly neutral on derf (-0.028) but up a little on std-hd +0.134).
Without the scatterscan experiment on the results were up derf as well.
Change-Id: Ie9ef03ce42a6b24b849a4bebe950d4a5dffa6791