significantly speeds up file generation.
the goal of this change is to convert rtcd.sh to perl as directly as
possible to allow for simple comparison. future changes can make it more
perl-like.
---
Linux
[CREATE] vpx_scale_rtcd.h
real 0m0.485s -> 0m0.022s
[CREATE] vp8_rtcd.h
real 0m4.619s -> 0m0.060s
[CREATE] vp9_rtcd.h
real 0m10.102s -> 0m0.087s
Windows
[CREATE] vpx_scale_rtcd.h
real 0m8.360s -> 0m0.080s
[CREATE] vp8_rtcd.h
real 1m8.083s -> 0m0.160s
[CREATE] vp9_rtcd.h
real 2m6.489s -> 0m0.233s
Change-Id: Idfb71188206c91237d6a3c3a81dfe00d103f11ee
previously the scale functions would always be include regardless of the
CONFIG_SPATIAL_RESAMPLING setting.
Change-Id: Ifbccf47b20689b5dd61bb3ddccd5c013297b4e05
This CL changes libvpx to call a function when a frame buffer
is needed for decode. Libvpx will call a release callback when
no other frames reference the frame buffer. This CL adds a
default implementation of the frame buffer callbacks. Currently
only VP9 is supported. A future CL will add support for
applications to supply their own frame buffer callbacks.
Change-Id: I1405a320118f1cdd95f80c670d52b085a62cb10d
Encoder's boarder is still 160, while decoder's boarder will be 32.
With on demand and separate boarder buffer for boarder extension.
The decoder's boarder does not need to to 160 anymore.
Change-Id: I93d5aaff15a33a2213e9761eaa37c5f2870747db
This fixes issue 667.
In the case where the frame was an odd number of pixels
wide or high, the border was being extended by one col
or row too far.
The calculation of color plane dimensions was modified
to use those already computed at the time the frame
buffer was allocated.
Also freed the temporary scaling buffer in vpxdec to
prevent a memory leak.
Change-Id: Ied04bdcdfd77469731408c05da205db1a6f89bf5
- s|source -> src
- dest -> dst
- use verbose names in extend_plane dropping the redundant comments
+ light cosmetics:
- join a few lines / assignments
- drop some unnecessary comments & includes
Change-Id: I6d979a85a0223a0a79a22f79a6d9c7512fd04532
This is a short term optimization till we work out a decoder
implementation requiring no frame border extension.
Change-Id: I02d15bfde4d926b50a4e58b393d8c4062d1be70f
This is required because upon downscaling, if a motion vector points
partially into the UMV (e.g. all minus 1 of 64+7 pixels, i.e. 70),
then we can point up to 140 pixels into the larger-resolution (2x)
reference buffer UMV, which means the UMV for reference buffers in
downscaling needs to be 140 rounded up to the nearest multiple of 32,
i.e. 160.
Longer-term, we should probably handle the UMV differently by detecting
edge coverage on-the-fly and using a temporary buffer for edge extensions
instead of adding 160 pixels on all sides of the image (which means a
CIF image uses 3x its own area size for borders).
Change-Id: I5184443e6731cd6721fc6a5d430a53e7d91b4f7e
this was never fleshed out in the context of VP8, for which it was
added. for VP9 it has no meaning.
Change-Id: Iba2ecc026d9e947067b96690245d337e51e26eff
The part where we align it by 8 or 16 is an implementation detail that
shouldn't matter to the outside world.
Change-Id: I9edd6f08b51b31c839c0ea91f767640bccb08d53
This is a mostly-working implementation of an extra channel in the
bitstream. Configure with --enable-alpha to test. Notable TODOs:
- Add extra channel to all mismatch tests, PSNR, SSIM, etc
- Configurable subsampling
- Variable number of planes (currently always uses all 4)
- Loop filtering
- Per-plane lossless quantizer
- ARNR support
This implementation just uses the same contents as the Y channel
for the A channel, due to lack of content and general pain in
playing back 4 channel content. A later patch will use the actual
alpha channel passed in from outside the codec.
Change-Id: Ibf81f023b1c570bd84b3064e9b4b8ae52e087592
Adds a subsampling aware border extension function. This may be reworked
soon to support more than 3 planes.
Change-Id: I76b81901ad10bb1e678dd4f0d22740ca6c76c43b
Make framebuffer allocations according to the chroma subsamping
factors in use. A bit is placed in the raw part of the frame header for
each of the two subsampling factors. This will be moved in a future
commit to make them part of the TBD feature set bits, probably only set
on keyframes, etc.
Change-Id: I59ed38d3a3c0d4af3c7c277617de28d04a001853
Ensures that the full 64 pixel border is available for prediction (need a minimum of
64+INTERP_EXTEND on all sides, and 32+INTERP_EXTEND on UV). Value also must be a
multiple of 32 to keep UV stride alignment. The smaller border was causing the prediction
to read outside the frame, which can cause a mismatch.
TODO: Get rid of this explicit border and use edge emulation instead.
Change-Id: I3f68453a088ec0ab4349d0f5cc02b573be06d7c4
Updates the YV12_BUFFER_CONFIG structure to be crop-aware. The
exiting width/height parameters are left unchanged, storing the
width and height algined to a 16 byte boundary. The cropped
dimensions are added as new fields.
This fixes a nasty visual pulse when switching between scaled and
unscaled frame dimensions due to a mismatch between the scaling
ratio and the 16-byte aligned sizes.
Change-Id: Id4a3f6aea6b9b9ae38bdfa1b87b7eb2cfcdd57b6
As long as the new frame is smaller than the size that was originally
allocated, we don't need to free and reallocate the memory allocated.
Instead, do the allocation on the size of the first frame. We could
make this passed in from the application instead, if we wanted to
support external upscaling.
Change-Id: I204d17a130728bbd91155bb4bd863a99bb99b038
Various fixups to resolve issues when building vp9-preview under the more stringent
checks placed on the experimental branch.
Change-Id: I21749de83552e1e75c799003f849e6a0f1a35b07
For coefficients, use int16_t (instead of short); for pixel values in
16-bit intermediates, use uint16_t (instead of unsigned short); for all
others, use uint8_t (instead of unsigned char).
Change-Id: I3619cd9abf106c3742eccc2e2f5e89a62774f7da
Only declare the functions in vpx_scale RTCD and include the relevant
header.
Remove unused files and functions in vpx_scale to avoid wasting time
renaming. vpx_scale/win32/scaleopt.c contains functions which have not
been called in a long time but are potentially optimized.
The 'vp8' functions have not been renamed yet. That is for after the
cleanup.
Change-Id: I2c325a101d60fa9d27e7dfcd5b52a864b4a1e09c
Only declare the functions in vpx_scale RTCD and include the relevant
header.
Remove unused files and functions in vpx_scale to avoid wasting time
renaming. vpx_scale/win32/scaleopt.c contains functions which have not
been called in a long time but are potentially optimized.
The 'vp8' functions have not been renamed yet. That is for after the
cleanup.
Change-Id: I2c325a101d60fa9d27e7dfcd5b52a864b4a1e09c
Merged the enhanced_interp experiment.
Found and fixed a bug in the include files framework, whereby
certain encoder files were still using the old INTERP_EXTEND
value of 3 instead of 4. The thresholds for mv range mcomp.c
need a small adjustment to prevent crashes.
The results are more or less unchanged.
Change-Id: Iac5008390f1efc97ce1102fbb5f8989c847fb579
This is a code snapshot of experimental work currently ongoing for a
next-generation codec.
The codebase has been cut down considerably from the libvpx baseline.
For example, we are currently only supporting VBR 2-pass rate control
and have removed most of the code relating to coding speed, threading,
error resilience, partitions and various other features. This is in
part to make the codebase easier to work on and experiment with, but
also because we want to have an open discussion about how the bitstream
will be structured and partitioned and not have that conversation
constrained by past work.
Our basic working pattern has been to initially encapsulate experiments
using configure options linked to #IF CONFIG_XXX statements in the
code. Once experiments have matured and we are reasonably happy that
they give benefit and can be merged without breaking other experiments,
we remove the conditional compile statements and merge them in.
Current changes include:
* Temporal coding experiment for segments (though still only 4 max, it
will likely be increased).
* Segment feature experiment - to allow various bits of information to
be coded at the segment level. Features tested so far include mode
and reference frame information, limiting end of block offset and
transform size, alongside Q and loop filter parameters, but this set
is very fluid.
* Support for 8x8 transform - 8x8 dct with 2nd order 2x2 haar is used
in MBs using 16x16 prediction modes within inter frames.
* Compound prediction (combination of signals from existing predictors
to create a new predictor).
* 8 tap interpolation filters and 1/8th pel motion vectors.
* Loop filter modifications.
* Various entropy modifications and changes to how entropy contexts and
updates are handled.
* Extended quantizer range matched to transform precision improvements.
There are also ongoing further experiments that we hope to merge in the
near future: For example, coding of motion and other aspects of the
prediction signal to better support larger image formats, use of larger
block sizes (e.g. 32x32 and up) and lossless non-transform based coding
options (especially for key frames). It is our hope that we will be
able to make regular updates and we will warmly welcome community
contributions.
Please be warned that, at this stage, the codebase is currently slower
than VP8 stable branch as most new code has not been optimized, and
even the 'C' has been deliberately written to be simple and obvious,
not fast.
The following graphs have the initial test results, numbers in the
tables measure the compression improvement in terms of percentage. The
build has the following optional experiments configured:
--enable-experimental --enable-enhanced_interp --enable-uvintra
--enable-high_precision_mv --enable-sixteenth_subpel_uv
CIF Size clips:
http://getwebm.org/tmp/cif/
HD size clips:
http://getwebm.org/tmp/hd/
(stable_20120309 represents encoding results of WebM master branch
build as of commit#7a15907)
They were encoded using the following encode parameters:
--good --cpu-used=0 -t 0 --lag-in-frames=25 --min-q=0 --max-q=63
--end-usage=0 --auto-alt-ref=1 -p 2 --pass=2 --kf-max-dist=9999
--kf-min-dist=0 --drop-frame=0 --static-thresh=0 --bias-pct=50
--minsection-pct=0 --maxsection-pct=800 --sharpness=0
--arnr-maxframes=7 --arnr-strength=3(for HD,6 for CIF)
--arnr-type=3
Change-Id: I5c62ed09cfff5815a2bb34e7820d6a810c23183c
the neon code made several assumptions which were broken by a recent
change: https://review.webmproject.org/2676
update the code with new assumptions and guard them with a compile time
assert
Change-Id: I32a8378030759966068f34618d7b4b1b02e101a0
This is done by expanding luma row to 32-byte alignment, since
there is currently a bunch of code that assumes that
uv_stride == y_stride/2 (see, for example, vp8/common/postproc.c,
common/reconinter.c, common/arm/neon/recon16x16mb_neon.asm,
encoder/temporal_filter.c, and possibly others; I haven't done a
full audit).
It also uses replaces the hardcoded border of 16 in a number of
encoder buffers with VP8BORDERINPIXELS (currently 32), as the
chroma rows start at an offset of border/2.
Together, these two changes have the nice advantage that simply
dumping the frame memory as a contiguous blob produces a valid,
if padded, image.
Change-Id: Iaf5ea722ae5c82d5daa50f6e2dade9de753f1003
Previously allocated more memory than necessary for yuv buffers.
This makes it harder to track bugs with reading uninitialized
data.
Change-Id: I510f7b298d3c647c869be6e5d51608becc63cce9
Golden and ALT reference buffers were refreshed by copying from
the new buffer. Replaced this by index manipulation.
Also moved all the reference frame updates to one function for
easier tracking.
Change-Id: Icd3e534e7e2c8c5567168d222e6a64a96aae24a1
A large number of functions were defined with external linkage, even
though they were only used from within one file. This patch changes
their linkage to static and removes the vp8_ prefix from their names,
which should make it more obvious to the reader that the function is
contained within the current translation unit. Functions that were
not referenced were removed.
These symbols were identified by:
$ nm -A libvpx.a | sort -k3 | uniq -c -f2 | grep ' [A-Z] ' \
| sort | grep '^ *1 '
Change-Id: I59609f58ab65312012c047036ae1e0634f795779
it's difficult to mux the *_offsets.c files because of header conflicts.
make three instead, name them consistently and partititon the contents
to allow building them as required.
Change-Id: I8f9768c09279f934f44b6c5b0ec363f7943bb796
common/arm/vpx_asm_offsets moves up a level. prepare for muxing with
encoder/arm/vpx_vp8_enc_asm_offsets
Change-Id: I89a04a5235447e66571995c9d9b4b6edcb038e24
A new vpx_codec_control called VP8D_GET_FRAME_CORRUPTED. The output
from the function is non-zero if the last decoded frame contains
corruption due to packet losses.
The decoder is also modified to accept encoded frames of zero length.
A zero length frame indicates to the decoder that one or more frames
have been completely lost. This will mark the last decoded reference
buffer as corrupted. The data pointer can be NULL if the length is
zero.
Change-Id: Ic5902c785a281c6e05329deea958554b7a6c75ce
This eliminates a large set of warnings exposed by the Mozilla build
system (Use of C++ comments in ISO C90 source, commas at the end of
enum lists, a couple incomplete initializers, and signed/unsigned
comparisons).
It also eliminates many (but not all) of the warnings expose by newer
GCC versions and _FORTIFY_SOURCE (e.g., calling fread and fwrite
without checking the return values).
There are a few spurious warnings left on my system:
../vp8/encoder/encodemb.c:274:9: warning: 'sz' may be used
uninitialized in this function
gcc seems to be unable to figure out that the value shortcut doesn't
change between the two if blocks that test it here.
../vp8/encoder/onyx_if.c:5314:5: warning: comparison of unsigned
expression >= 0 is always true
../vp8/encoder/onyx_if.c:5319:5: warning: comparison of unsigned
expression >= 0 is always true
This is true, so far as it goes, but it's comparing against an enum, and the C
standard does not mandate that enums be unsigned, so the checks can't be
removed.
Change-Id: Iaf689ae3e3d0ddc5ade00faa474debe73b8d3395
The primary goal is to allow a binary to be built which supports
NEON, but can fall back to non-NEON routines, since some Android
devices do not have NEON, even if they are otherwise ARMv7 (e.g.,
Tegra).
The configure-generated flags HAVE_ARMV7, etc., are used to decide
which versions of each function to build, and when
CONFIG_RUNTIME_CPU_DETECT is enabled, the correct version is chosen
at run time.
In order for this to work, the CFLAGS must be set to something
appropriate (e.g., without -mfpu=neon for ARMv7, and with
appropriate -march and -mcpu for even earlier configurations), or
the native C code will not be able to run.
The ASFLAGS must remain set for the most advanced instruction set
required at build time, since the ARM assembler will refuse to emit
them otherwise.
I have not attempted to make any changes to configure to do this
automatically.
Doing so will probably require the addition of new configure options.
Many of the hooks for RTCD on ARM were already there, but a lot of
the code had bit-rotted, and a good deal of the ARM-specific code
is not integrated into the RTCD structs at all.
I did not try to resolve the latter, merely to add the minimal amount
of protection around them to allow RTCD to work.
Those functions that were called based on an ifdef at the calling
site were expanded to check the RTCD flags at that site, but they
should be added to an RTCD struct somewhere in the future.
The functions invoked with global function pointers still are, but
these should be moved into an RTCD struct for thread safety (I
believe every platform currently supported has atomic pointer
stores, but this is not guaranteed).
The encoder's boolhuff functions did not even have _c and armv7
suffixes, and the correct version was resolved at link time.
The token packing functions did have appropriate suffixes, but the
version was selected with a define, with no associated RTCD struct.
However, for both of these, the only armv7 instruction they actually
used was rbit, and this was completely superfluous, so I reworked
them to avoid it.
The only non-ARMv4 instruction remaining in them is clz, which is
ARMv5 (not even ARMv5TE is required).
Considering that there are no ARM-specific configs which are not at
least ARMv5TE, I did not try to detect these at runtime, and simply
enable them for ARMv5 and above.
Finally, the NEON register saving code was completely non-reentrant,
since it saved the registers to a global, static variable.
I moved the storage for this onto the stack.
A single binary built with this code was tested on an ARM11 (ARMv6)
and a Cortex A8 (ARMv7 w/NEON), for both the encoder and decoder,
and produced identical output, while using the correct accelerated
functions on each.
I did not test on any earlier processors.
Change-Id: I45cbd63a614f4554c3b325c45d46c0806f009eaa
Changes 'The VP8 project' to 'The WebM project', for consistency
with other webmproject.org repositories.
Fixes issue #97.
Change-Id: I37c13ed5fbdb9d334ceef71c6350e9febed9bbba
These are mostly vestigial, it's up to the compiler to decide what
should be inlined, and this collided with certain Windows platform SDKs.
Change-Id: I80dd35de25eda7773156e355b5aef8f7e44e179b
When the license headers were updated, they accidentally contained
trailing whitespace, so unfortunately we have to touch all the files
again.
Change-Id: I236c05fade06589e417179c0444cb39b09e4200d
i needs to be treated as signed to get the proper indexing on 64-bit
platforms. This behavior was accidentally reverted when fixing an
unsigned/signed comparison warning.
Change-Id: Ic306d609bdc8de94c8f8ba29c6e45c736101a82e
This doesn't play well with autotools, and the preprocessor magic is
confusing and unhelpful in the vp8-only context.
Change-Id: I2fcb57e6eb7876ecb58509da608dc21f26077ff1