Added drop_frame support in multi-resolution encoder.
If one frame is dropped at a lower-resolution level, the next
upper-resolution level encoder needs to encode that frame
independently without any lower-resolution level motion
information.
Another issue is that if one frame is dropped at some but not all
resolution levels, a frame after that one may use different set
of reference frames at different resolution levels. This reference
frame asynchronization could degrade motion search precision in
upper-resolution level encoding, which uses lower-resolution level
motion result. This change compares the lower-resolution and upper-
resolution level's reference frames. If they are not the same, the
upper-resolution level encoder can not use lower-resolution level
motion result.
Change-Id: I61afa4f313630e75b7cbdd5742e230e8724a988a
Allows building the library with the gcc -pedantic option, for improved
portabilty. In particular, this commit removes usage of C99/C++ style
single-line comments and dynamic struct initializers. This is a
continuation of the work done in commit 97b766a46, which removed most
of these warnings for decode only builds.
Change-Id: Id453d9c1d9f44cc0381b10c3869fabb0184d5966
Change If4321cc5 fixed a bug caused by forward declarations not being
kept in sync across C files, resulting in a function call with the
wrong arguments. The commit moves the affected function declarations
into a header file, along with the other symbols from encodeframe.c
that were being sloppily shared.
Change-Id: I76a7b4c66d4fe175f9cbef7e52148655e4bb9ba1
These are warnings in most builds, but show up as compile errors on
some platforms when these headers are included from C++ code.
Change-Id: I6c523b4dbbc699075fe73830442b51922e5a61d5
These are warnings in most builds, but show up as compile errors on
some platforms when these headers are included from C++ code.
Change-Id: I6c523b4dbbc699075fe73830442b51922e5a61d5
RD costs were local to MACROBLOCK data and had to be copied all the
time to each thread's MACROBLOCK data. Tables moved to a common place
and only pointers are setup for each encoding thread.
vp8_cost_tokens() generates 'int' costs so changed all types to be
int (i.e. removed unsigned).
NOTE: Could do some more cleaning in vp8cx_init_mbrthread_data().
Change-Id: Ifa4de4c6286dffaca7ed3082041fe5af1345ddc0
Look for changes in the codec's configured w/h instead of its active
w/h when forcing keyframes. Otherwise calls to vp8_change_config()
will force a keyframe when spatial resampling is active.
Change-Id: Ie0d20e70507004e714ad40b640aa5b434251eb32
This change added a motion search skipping mechanism similar
to what we did in second pass. For a macroblock that is very
similar to the macroblock at same location on last frame,
we can set its mv to be zero, and skip motion search. This
improves first-pass performance for slide shows and video
conferencing clips with a slight PSNR loss.
Change-Id: Ic73f9ef5604270ddd6d433170091d20361dfe229
Produce the token partitions on-the-fly, while processing each MB.
Context is updated at the beginning of each frame based on the
previoud frame's counters. Optimally encoder outputs partitions in
separate buffers. For frame based output, partitions are concatenated
internally.
Limitations:
- enabled just in combination with realtime-only mode
- number of encoding threads has to be equal or less than the
number of token partitions. For this reason, by default the encoder
will do 8 token partitions.
- vpxenc supports partition output (-P) just in combination with
IVF output format (--ivf)
Performance:
- Realtime encoder can be up to 13% faster (ARM) depending on the number
of threads and bitrate settings. Constant gain over the 5-16 speed
range.
- Token buffer reduced from one frame to 8 MBs
Quality:
- quality is affected by the delayed context updates. This again
dependents on input material, speed and bitrate settings. For VC
style input the loss seen is up to 0.2dB. If error-resilient=2
mode is used than the effect of this change is negligible.
Example:
./configure --enable-realtime-only --enable-onthefly-bitpacking
./vpxenc --rt --end-usage=1 --fps=30000/1000 -w 640 -h 480
--target-bitrate=1000 --token-parts=3 --static-thresh=2000
--ivf -P -t 4 -o strm.ivf tanya_640x480.yuv
Change-Id: I127295cb85b835fc287e1c0201a67e378d025d76
mode_info_context->mbmi.mb_skip_coeff has to always reflect the
existence or not of coeffs for a certain MB. The loopfilter needs this
info.
mb_skip_coeff is either set by the vp8_tokenize_mb or has to be set to
1 when the MB is skipped by mode selection. This has to be done
regardless of the mb_no_coeff_skip value.
prob_skip_false is needed just when mb_no_coeff_skip is 1. No need to
keep count of both skip_false and skip_true as they are complementary
(skip_true+skip_false = total_mbs)
Change-Id: I3c74c9a0ee37bec10de7bb796e408f3e77006813
Second shot at this...
Sync with loopfilter thread as late as possible, usually just at the
beginning of next frame encoding. This returns control to application
faster and allows a better multicore scaling.
When PSNR packets are generated the final filtered frame is needed
imediatly so we cannot delay the sync. Same has to be done when
internal frame is previewed.
Change-Id: I64e110c8b224dd967faefffd9c93dd8dbad4a5b5
This commit continues the process of converting to the new RTCD
system. It removes the last of the VP8_ENCODER_RTCD struct references.
Change-Id: I2a44f52d7cccf5177e1ca98a028ead570d045395
When running multi-layer (ML) encodes and dynamically
changing coding parameters on the fly (e.g. frame
duration/rate, bandwidths allocated to each layer)
the encoder would not produce sensible output.
In certain cases the rate targeting would be
hideously inaccurate.
These fixes make it possible to change these coding
parameters correctly and to maintain accurate control
of the rate targeting.
I also added the specification of the input timebase
into the test program, vp8_scalable_patterns.c.
Patch 2: Moved declaration to appease MS compiler)
Change-Id: Ic8bb5a16daa924bb64974e740696e040d07ae363
The total_stats, this_frame_stats, and total_left_stats structures
were previously create by a heap allocation, despite being of fixed
size. These structures were allocated and deallocated during
{de,}allocate_compressor_data, which is reinvoked whenever the frame
size changes. Unfortunately, this clobbers the total_stats and
total_left_stats data.
Historically, these were variable size at one time, due to the first
pass motion map, which necessitated their being created by a unique
heap allocation. However, this bug with the total_stats being
clobbered has probably been present since that initial implementation.
These structures are instead moved to be stored within the struct
twopass_rc directly, rather than being heap allocated separately.
Change-Id: I7f9e519e25c58b92969071f0e99fa80307e0682b
Do the test filtering in the existing backup frame buffer instead of
the original. Copy the original data into extra buffer before doing
the filtering. This way there is no need to restore the original
unfiltered frame at the end of level picking process.
This came up in some discussions with Johann. Thanks!
Change-Id: I495f4301d983854673276c34ec0ddf9a9d622122
The example encoder down-samples the input video frames a number of
times with a down-sampling factor, and then encodes and outputs
bitstreams with different resolutions.
Support arbitrary down-sampling factor, and down-sampling factor
can be different for each encoding level.
For example, the encoder can be tested as follows.
1. Configure with multi-resolution encoding enabled:
../libvpx/configure --target=x86-linux-gcc --disable-codecs
--enable-vp8 --enable-runtime_cpu_detect --enable-debug
--disable-install-docs --enable-error-concealment
--enable-multi-res-encoding
2. Run make
3. Encode:
If input video is 1280x720, run:
./vp8_multi_resolution_encoder 1280 720 input.yuv 1.ivf 2.ivf 3.ivf 1
(output: 1.ivf(1280x720); 2.ivf(640x360); 3.ivf(320x180).
The last parameter is set to 1/0 to show/not show PSNR.)
4. Decode:
./simple_decoder 1.ivf 1.yuv
./simple_decoder 2.ivf 2.yuv
./simple_decoder 3.ivf 3.yuv
5. View video:
mplayer 1.yuv -demuxer rawvideo -rawvideo w=1280:h=720 -loop 0 -fps 30
mplayer 2.yuv -demuxer rawvideo -rawvideo w=640:h=360 -loop 0 -fps 30
mplayer 3.yuv -demuxer rawvideo -rawvideo w=320:h=180 -loop 0 -fps 30
The encoding parameters can be modified in vp8_multi_resolution_encoder.c,
for example, target bitrate, frame rate...
Modified API. John helped a lot with that. Thanks!
Change-Id: I03be9a51167eddf94399f92d269599fb3f3d54f5
API was not returning correct partition sizes on arm targets.
The armv5 token packing functions were not storing the information to the
partition size table.
As a fix, have one boolcoder instance allocated for each partition so
that partition sizes are internally available after all partitions
were encoded. This will also allow more flexibility in producing
several partitions in parallel.
Use buffer validation (overflow check) in all ARM bitpacking
functions.
Change-Id: I31c8a11d8a7613676f0ff50928cb2a2ab14fd169
There was an implicit reference frame test order (typically LAST,
GOLD, ARF) in the mode selection logic, but this doesn't provide the
expected results when some reference frames are disabled. For
instance, in real-time mode, the speed selection logic often disables
the ARF modes. So if the user disables the LAST and GOLD frames, the
encoder was always choosing INTRA, when in reality searching the ARF
in this case has the same speed penalty as searching LAST would have
had.
Instead, introduce the notion of a reference frame search order. This
patch preserves the former priorities, so if a frame is disabled, the
other frames bump up a slot to take its place. This patch lays the
groundwork for doing something smarter in the frame test order, for
example considering temporal distance or looking at the frames used by
nearby blocks.
Change-Id: I1199149f8662a408537c653d2c021c7f1d29a700
The calculated frame_rate is a state variable in the codec, and
shouldn't be maintained in the configuration struct. Move it to the
main part of cpi so that it isn't clobbered when the configuration
struct is updated. The initial framerate estimate is moved from the
vp8_cx_iface.c wrapper into the body of init_config() in onyx_if.c, so
that it is only called once and not reset on every call to
vp8_change_config().
Change-Id: I8d9a3d1283330d1ee297d07e9d78d1f2875f2465
In some situations (f.g. error-resilient is turned on), vp8cx_mb
_init_quantizer() was called once per macroblock. Added checks
to avoid calculations when there is no change.
Change-Id: Ie4f0a5ade2202041254990a4e9d5b03bd1ac5aea
check to make sure that cx_data buffer has enough room before
writting to it, prior behavior did not which could result in a crash.
Change-Id: I3fab6f2bc4a96d7c675ea81acd39ece121738b28
Added the ability to create rate-targeted, temporally
scalable, VP8 compatible bitstreams.
The application vp8_scalable_patterns.c demonstrates how
to use this capability. Users can create output bitstreams
containing upto 5 temporally separable streams encoded
as a single VP8 bitstream.
(previously abandoned as:
I92d1483e887adb274d07ce9e567e4d0314881b0a)
Change-Id: I156250a3fe930be57c069d508c41b6a7a4ea8d6a
buffer_level in VP8_COMP and starting_buffer_level, optimal_buffer_level
and maximum_buffer_size in VP8_CONFIG changed from int to int64_t
to avoid potential crash issues for larger target bit rates.
Change-Id: I0d5ab6c8a44c2fef51f30cd8df4bb4b739c5df26
Changes to the selection of Q limits for two pass
and two pass CQ mode.
Allowance made for Mode and motion vector costs.
Some refactoring of common code.
For Derf and YT sets CQ mode average improvement
circa 1% (SSIM and Global PSNR).
Some increased tendency to undershoot even when
user CQ not reached.
Patch2: Removed some test code accidentally merged.
Change-Id: Icf74d13af77437c08602571dc7a97e747cce5066