This commit changed the encoding and decoding of intra blocks to be
based on transform block. In each prediction block, the intra coding
iterates thorough each transform block based on raster scan order.
This commit also fixed a bug in D135 prediction code.
TODO next:
The RD mode/txfm_size selection should take this into account when
computing RD values.
Change-Id: I6d1be2faa4c4948a52e830b6a9a84a6b2b6850f6
This patch eliminates the intermediate diff buffer usage by
combining the short idct and the add residual into one function.
The encoder can use the same code as well.
Change-Id: I296604bf73579c45105de0dd1adbcc91bcc53c22
This is a mostly-working implementation of an extra channel in the
bitstream. Configure with --enable-alpha to test. Notable TODOs:
- Add extra channel to all mismatch tests, PSNR, SSIM, etc
- Configurable subsampling
- Variable number of planes (currently always uses all 4)
- Loop filtering
- Per-plane lossless quantizer
- ARNR support
This implementation just uses the same contents as the Y channel
for the A channel, due to lack of content and general pain in
playing back 4 channel content. A later patch will use the actual
alpha channel passed in from outside the codec.
Change-Id: Ibf81f023b1c570bd84b3064e9b4b8ae52e087592
This patch eliminates the intermediate diff buffer usage by
combining the short idct and the add residual into one function.
The encoder can use the same code as well.
Change-Id: Iacfd57324fbe2b7beca5d7f3dcae25c976e67f45
This patch eliminates the intermediate diff buffer usage by
combining the short idct and the add residual into one function.
The encoder can use the same code as well.
Change-Id: Iea7976b22b1927d24b8004d2a3fddae7ecca3ba1
This patch eliminates the intermediate diff buffer usage by
combining the short idct and the add residual into one function.
The encoder can use the same code as well.
Change-Id: I4ea09df0e162591e420d869b7431c2e7f89a8c1a
Change band calculation back to simpler model based
on the order in which coefficients are coded in scan order
not the absolute coefficient positions.
With the scatter scan experiment enabled the results were
appear broadly neutral on derf (-0.028) but up a little on std-hd +0.134).
Without the scatterscan experiment on the results were up derf as well.
Change-Id: Ie9ef03ce42a6b24b849a4bebe950d4a5dffa6791
This allows removing a large number of transform size specific functions,
as well as supporting 444/alpha by routing all code through the
subsampling-aware path.
Change-Id: Ieb085cebe9f37f24fc24de179898b22abfda08a4
Creates a common encode (subtract, transform, quantize, optimize,
inverse transform, reconstruct) function for all sb sizes, including
the old 16x16 path.
Change-Id: I964dff1ea7a0a5c378046a069ad83495f54df007
Work-in-progress, not yet ready for review. TODO items:
- bitstream writing (encoder) and reading (decoder)
- decoder reconstruction
Change-Id: I5afb7284e7e0480847b47cd0097cb469433c9081
Output changes slightly because of a minor bug in (at least) the sb32x16
block2above tx16x16 tables that previously existed in vp9_blockd.c.
Change-Id: I624af28ac200a8322d64454cf05c79e9502968cc
Basic assumption: when talking about transform units, use b_; when
talking about macroblock indices, use mb_.
Change-Id: Ifd163f595d4924ff892de4eb0401ccd56dc81884
All members can be referenced from their per-plane counterparts, and
removes assumptions about 24 blocks per macroblock.
Change-Id: I593fb0715e74cd84b48facd1c9b18c3ae1185d4b
This commit moves the coeff storage from the MACROBLOCK struct to its
per-plane part. The next commit will remove the coeff member from the
BLOCK structure so that it is consistently accessed per-plane.
Also refactors vp9_sb_block_error_c and vp9_sb_uv_block_error_c to be
variable subsampling aware.
Change-Id: I18c30f87f27c3a012119b6c1970d5fa499804455
First in a series of commits making certain MACROBLOCK members
addressable per-plane. This commit also refactors the block subtraction
functions vp9_subtract_b, vp9_subtract_sby_c, etc to be
loops-over-planes and variable subsampling aware.
Change-Id: I371d092b914ae0a495dfd852ea1a3d2467be6ec3
Adds an experiment that codes an end-of-orientation symbol
for every eligible zero encountered in scan order.
This cleans out various other sub-experiments that were part
of the origiinal patch, which will be later included if found
useful.
Results are slightly positive on all sets (0.1 - 0.2% range).
Change-Id: I57765c605fefc7fb9d1b57f1b356843602abefaf
Removes the redundant dst pointers from vp9_build_inter_predictors_sb{y,uv}
and the remaining mb specific functions.
Change-Id: I7b6bf439d9394b85ea79b4fe61a3ffc1025720da
First in a series of commits moving the framebuffers pointers to
per-plane data, so that they can be indexed numerically rather than
by name.
Change-Id: I6e0d60fd4d51e6375c384eb7321776564df21775
Use in-place buffers (dst of MACROBLOCKD) for macroblock prediction.
This makes the macroblock buffer handling consistent with those of
superblock. Remove predictor buffer MACROBLOCKD.
Change-Id: Id1bcd898961097b1e6230c10f0130753a59fc6df
More specifically, remove vp9_quantize_mb*, vp9_optimize_mb*,
vp9_inverse_transform_mb* and vp9_transform_mb*. Instead, use the
generic _sb* functions that take a size argument, and call them with
BLOCK_SIZE_MB16X16.
Change-Id: I33024afea95d3a23ffbc1df7da426e4645110f29
Merge sb32x32 and sb64x64 functions; allow for rectangular sizes. Code
gives identical encoder results before and after. There are a few
macros for rectangular block sizes under the sbsegment experiment; this
experiment is not yet functional and should not yet be used.
Change-Id: I71f93b5d2a1596e99a6f01f29c3f0a456694d728
Start grouping data per-plane, as part of refactoring to support
additional planes, and chroma planes with other-than 4:2:0
subsampling.
Change-Id: Idb76a0e23ab239180c818025bae1f36f1608bb23
The patch adds the flexibility to use standard EOB based coding
on smaller block sizes and nzc based coding on larger blocksizes.
The tx-sizes that use nzc based coding and those that use EOB based
coding are controlled by a function get_nzc_used().
By default, this function uses nzc based coding for 16x16 and 32x32
transform blocks, which seem to bridge the performance gap
substantially.
All sets are now lower by 0.5% to 0.7%, as opposed to ~1.8% before.
Change-Id: I06abed3df57b52d241ea1f51b0d571c71e38fd0b
These are mostly just for experimental purposes. I saw small gains (in
the 0.1% range) when playing with this on derf.
Change-Id: Ib21eed477bbb46bddcd73b21c5c708a5b46abedc
Now that the first AC coefficient in both directions use the same DC
as their context, there no longer is a purpose in letting both have
their own band. Merging these two bands allows us to split bands for
some of the very high-frequency AC bands.
In addition, I'm redoing the banding for the 1D-ADST col/row scans. I
don't think the old banding made any sense at all (it merged the last
coefficient of the first row/col in the same band as the first two of
the second row/col), which was clearly an oversight from the band being
applied in scan-order (rather than in their actual position). Now,
coefficients at the same position will be in the same band, regardless
what scan order is used. I think this makes most sense for the purpose
of banding, which is basically "predict energy for this coefficient
depending on the energy of context coefficients" (i.e. pt).
After full re-training, together with previous patch, derf gains about
1.2-1.3%, and hd/stdhd gain about 0.9-1.0%.
Change-Id: I7a0cc12ba724e88b278034113cb4adaaebf87e0c
Pearson correlation for above or left is significantly higher than for
previous-in-scan-order (absolute values depend on position in scan, but
in general, we gain about 0.1-0.2 by using either above or left; using
both basically just makes this even better). For eob branch skipping,
we continue to use the previous token in scan order.
This helps about 0.9% on derf after re-training on a limited data set.
Full re-training and results on larger-resolution clips are pending.
Note that this commit breaks trellis, so we can probably get further
gains out of it by fixing trellis at some later point.
Change-Id: Iead68e296fc3a105cca746b5e3da9555d6010cfe
This also changes the RD search to take account of the correct block
index when searching (this is required for ADST positioning to work
correctly in combination with tx_select).
Change-Id: Ie50d05b3a024a64ecd0b376887aa38ac5f7b6af6
This patch revamps the entropy coding of coefficients to code first
a non-zero count per coded block and correspondingly remove the EOB
token from the token set.
STATUS:
Main encode/decode code achieving encode/decode sync - done.
Forward and backward probability updates to the nzcs - done.
Rd costing updates for nzcs - done.
Note: The dynamic progrmaming apporach used in trellis quantization
is not exactly compatible with nzcs. A suboptimal approach has been
used instead where branch costs are updated to account for changes
in the nzcs.
TODO:
Training the default probs/counts for nzcs
Change-Id: I951bc1e22f47885077a7453a09b0493daa77883d
Split macroblock and superblock tokenization and detokenization
functions and coefficient-related data structs so that the bitstream
layout and related code of superblock coefficients looks less like it's
a hack to fit macroblocks in superblocks.
In addition, unify chroma transform size selection from luma transform
size (i.e. always use the same size, as long as it fits the predictor);
in practice, this means 32x32 and 64x64 superblocks using the 16x16 luma
transform will now use the 16x16 (instead of the 8x8) chroma transform,
and 64x64 superblocks using the 32x32 luma transform will now use the
32x32 (instead of the 16x16) chroma transform.
Lastly, add a trellis optimize function for 32x32 transform blocks.
HD gains about 0.3%, STDHD about 0.15% and derf about 0.1%. There's
a few negative points here and there that I might want to analyze
a little closer.
Change-Id: Ibad7c3ddfe1acfc52771dfc27c03e9783e054430
This patch allows coding frames using references of different
resolution, in ZEROMV mode. For compound prediction, either
reference may be scaled.
To test, I use the resize_test and enable WRITE_RECON_BUFFER
in vp9_onyxd_if.c. It's also useful to apply this patch to
test/i420_video_source.h:
--- a/test/i420_video_source.h
+++ b/test/i420_video_source.h
@@ -93,6 +93,7 @@ class I420VideoSource : public VideoSource {
virtual void FillFrame() {
// Read a frame from input_file.
+ if (frame_ != 3)
if (fread(img_->img_data, raw_sz_, 1, input_file_) == 0) {
limit_ = frame_;
}
This forces the frame that the resolution changes on to be coded
with no motion, only scaling, and improves the quality of the
result.
Change-Id: I1ee75d19a437ff801192f767fd02a36bcbd1d496
Ensure that all inter prediction goes through a common code path
that takes scaling into account. Removes a bunch of duplicate
1st/2nd predictor code. Also introduces a 16x8 mode for 8x8
MVs, similar to the 8x4 trick we were doing before. This has an
unexpected effect with EIGHTTAP_SMOOTH, so it's disabled in that
case for now.
Change-Id: Ia053e823a8bc616a988a0af30452e1e75a739cba
Rebased.
Remove the old matrix multiplication transform computation. The 16x16
ADST/DCT can be switched on/off and evaluated by setting ACTIVE_HT16
300/0 in vp9/common/vp9_blockd.h.
Change-Id: Icab2dbd18538987e1dc4e88c45abfc4cfc6e133f
This patch alters the balance of context between the
coefficient bands (reflecting the position of coefficients
within a transform blocks) and the energy of the previous
token (or tokens) within a block.
In this case the number of coefficient bands is reduced
but more previous token energy bands are supported.
Some initial rebalancing of the default tables has been
by running multiple derf clips at multiple data rates using
the ENTOPY_STATS macro. Further balancing needs to be
done using larger image formatsd especially in regard to
the bigger transform sizes which are not as well represented
in encodings of smaller image formats.
Change-Id: If9736e95c391e711b04aef6393d26f60f36e1f8a
This patch includes 4x4, 8x8, and 16x16 forward butterfly ADST/DCT
hybrid transform. The kernel of 4x4 ADST is sin((2k+1)*(n+1)/(2N+1)).
The kernel of 8x8/16x16 ADST is of the form sin((2k+1)*(2n+1)/4N).
Change-Id: I8f1ab3843ce32eb287ab766f92e0611e1c5cb4c1
This patch abstracts the selection of the coefficient band
context into a function as a precursor to further experiments
with the coefficient context.
It also removes the large per TX size coefficient band structures
and uses a single matrix for all block sizes within the test function.
This may have an impact on quality (results to follow) but is only an
intermediate step in the process of redefining the context. Also the
quality impact will be larger initially because the default tables will
be out of step with the new banding.
In particular the 4x4 will in this case only use 7 bands. If needed we
can add back block size dependency localized within the function, but
this can follow on after the other changes to the definition of the
context.
Change-Id: Id7009c2f4f9bb1d02b861af85fd8223d4285bde5
This is an initial step to facilitate experimentation
with changes to the prior token context used to code
coefficients to take better account of the energy of
preceding tokens.
This patch merely abstracts the selection of context into
two functions and does not alter the output.
Change-Id: I117fff0b49c61da83aed641e36620442f86def86
1. Added a bit in frame header to to indicate if a frame is encoded
in lossless mode, so decoder does not make the decision based on Q0
2. Minor changes to make sure that lossy coding works same as when
the lossless experiment is not enabled.
3. Renamed function pointers for transforms to be consistent, using
prefix fwd_txm and inv_txm for forward and inverse respectively
To encode in lossless mode, using "--lossless=1 --min-q=0 --max-q=0"
with vpxenc.
Change-Id: Ifae53b26d2ffbe378d707e29d96817b8a5e6c068
Removal of the NEWCOEFCONTEXT experiment to
reduce code clutter and make it easier to experiment with
some other changes to the coefficient coding context.
Change-Id: Icd17b421384c354df6117cc714747647c5eb7e98
This patch removes the old pred-filter experiment and replaces it
with one that is implemented using the switchable filter framework.
If the pred-filter experiment is enabled, three interopolation
filters are tested during mode selection; the standard 8-tap
interpolation filter, a sharp 8-tap filter and a (new) 8-tap
smoothing filter.
The 6-tap filter code has been preserved for now and if the
enable-6tap experiment is enabled (in addition to the pred-filter
experiment) the original 6-tap filter replaces the new 8-tap smooth
filter in the switchable mode.
The new experiment applies the prediction filter in cases of a
fractional-pel motion vector. Future patches will apply the filter
where the mv is pel-aligned and also to intra predicted blocks.
Change-Id: I08e8cba978f2bbf3019f8413f376b8e2cd85eba4
Various fixups to resolve issues when building vp9-preview under the more stringent
checks placed on the experimental branch.
Change-Id: I21749de83552e1e75c799003f849e6a0f1a35b07
Adds an experiment to derive the previous context of a coefficient
not just from the previous coefficient in the scan order but from a
combination of several neighboring coefficients previously encountered
in scan order. A precomputed table of neighbors for each location
for each scan type and block size is used. Currently 5 neighbors are
used.
Results are about 0.2% positive using a strategy where the max coef
magnitude from the 5 neigbors is used to derive the context.
Change-Id: Ie708b54d8e1898af742846ce2d1e2b0d89fd4ad5
For coefficients, use int16_t (instead of short); for pixel values in
16-bit intermediates, use uint16_t (instead of unsigned short); for all
others, use uint8_t (instead of unsigned char).
Change-Id: I3619cd9abf106c3742eccc2e2f5e89a62774f7da
This commit changed the ENTROPY_CONTEXT conversion between MBs that
have different transform sizes.
In additioin, this commit also did a number of cleanup/bug fix:
1. removed duplicate function vp9_fix_contexts() and changed to use
vp8_reset_mb_token_contexts() for both encoder and decoder
2. fixed a bug in stuff_mb_16x16 where wrong context was used for
the UV.
3. changed reset all context to 0 if a MB is skipped to simplify the
logic.
Change-Id: I7bc57a5fb6dbf1f85eac1543daaeb3a61633275c
This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds
code all over the place to wrap that in the bitstream/encoder/decoder/RD.
Some implementation notes (these probably need careful review):
- token range is extended by 1 bit, since the value range out of this
transform is [-16384,16383].
- the coefficients coming out of the FDCT are manually scaled back by
1 bit, or else they won't fit in int16_t (they are 17 bits). Because
of this, the RD error scoring does not right-shift the MSE score by
two (unlike for 4x4/8x8/16x16).
- to compensate for this loss in precision, the quantizer is halved
also. This is currently a little hacky.
- FDCT and IDCT is double-only right now. Needs a fixed-point impl.
- There are no default probabilities for the 32x32 transform yet; I'm
simply using the 16x16 luma ones. A future commit will add newly
generated probabilities for all transforms.
- No ADST version. I don't think we'll add one for this level; if an
ADST is desired, transform-size selection can scale back to 16x16
or lower, and use an ADST at that level.
Additional notes specific to Debargha's DWT/DCT hybrid:
- coefficient scale is different for the top/left 16x16 (DCT-over-DWT)
block than for the rest (DWT pixel differences) of the block. Therefore,
RD error scoring isn't easily scalable between coefficient and pixel
domain. Thus, unfortunately, we need to compute the RD distortion in
the pixel domain until we figure out how to scale these appropriately.
Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
The commit changed the trellis quantization function optimize_b() to
work for MBs using all transform sizes, and eliminated the function
for MB using 16x16 transform only, optimize_b_16x16.
Change-Id: I3fa650587ab5198ed16315b38754783a72b33ba2
Previously, the "!=" check is logically incorrect when eob is at 0 and
effective coefficient starting position is 1. This commit should have
no effect on bitstream.
Change-Id: I6ce3a847c7e72bfbe4f7c74f88e3310c6b9b6d30
This patch allows use of 8x8 and 4x4 ADST correctly for Intra
16x16 modes and Intra 8x8 modes when the block size selected
is smaller than the prediction mode. Also includes some cleanups
and refactoring.
Rebase.
Change-Id: Ie3257bdf07bdb9c6e9476915e3a80183c8fa005a
Support for gyp which doesn't support multiple objects in the same
static library having the same basename.
Change-Id: Ib947eefbaf68f8b177a796d23f875ccdfa6bc9dc