vpx/vp9/encoder/vp9_encodemb.c
Paul Wilkins c17672a33d Further changes to coefficient contexts.
This patch alters the balance of context between the
coefficient bands (reflecting the position of coefficients
within a transform blocks) and the energy of the previous
token (or tokens) within a block.

In this case the number of coefficient bands is reduced
but more previous token energy bands are supported.

Some initial rebalancing of the default tables has been
by running multiple derf clips at multiple data rates using
the ENTOPY_STATS macro. Further balancing needs to be
done using larger image formatsd especially in regard to
the bigger transform sizes which are not as well represented
in encodings of smaller image formats.

Change-Id: If9736e95c391e711b04aef6393d26f60f36e1f8a
2013-02-23 07:29:09 -08:00

739 lines
20 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vpx_config.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/common/vp9_reconintra.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9_rtcd.h"
void vp9_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch) {
uint8_t *src_ptr = (*(be->base_src) + be->src);
int16_t *diff_ptr = be->src_diff;
uint8_t *pred_ptr = bd->predictor;
int src_stride = be->src_stride;
int r, c;
for (r = 0; r < 4; r++) {
for (c = 0; c < 4; c++) {
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
}
diff_ptr += pitch;
pred_ptr += pitch;
src_ptr += src_stride;
}
}
void vp9_subtract_4b_c(BLOCK *be, BLOCKD *bd, int pitch) {
uint8_t *src_ptr = (*(be->base_src) + be->src);
int16_t *diff_ptr = be->src_diff;
uint8_t *pred_ptr = bd->predictor;
int src_stride = be->src_stride;
int r, c;
for (r = 0; r < 8; r++) {
for (c = 0; c < 8; c++) {
diff_ptr[c] = src_ptr[c] - pred_ptr[c];
}
diff_ptr += pitch;
pred_ptr += pitch;
src_ptr += src_stride;
}
}
void vp9_subtract_mbuv_s_c(int16_t *diff, const uint8_t *usrc,
const uint8_t *vsrc, int src_stride,
const uint8_t *upred,
const uint8_t *vpred, int dst_stride) {
int16_t *udiff = diff + 256;
int16_t *vdiff = diff + 320;
int r, c;
for (r = 0; r < 8; r++) {
for (c = 0; c < 8; c++) {
udiff[c] = usrc[c] - upred[c];
}
udiff += 8;
upred += dst_stride;
usrc += src_stride;
}
for (r = 0; r < 8; r++) {
for (c = 0; c < 8; c++) {
vdiff[c] = vsrc[c] - vpred[c];
}
vdiff += 8;
vpred += dst_stride;
vsrc += src_stride;
}
}
void vp9_subtract_mbuv_c(int16_t *diff, uint8_t *usrc,
uint8_t *vsrc, uint8_t *pred, int stride) {
uint8_t *upred = pred + 256;
uint8_t *vpred = pred + 320;
vp9_subtract_mbuv_s_c(diff, usrc, vsrc, stride, upred, vpred, 8);
}
void vp9_subtract_mby_s_c(int16_t *diff, const uint8_t *src, int src_stride,
const uint8_t *pred, int dst_stride) {
int r, c;
for (r = 0; r < 16; r++) {
for (c = 0; c < 16; c++) {
diff[c] = src[c] - pred[c];
}
diff += 16;
pred += dst_stride;
src += src_stride;
}
}
void vp9_subtract_sby_s_c(int16_t *diff, const uint8_t *src, int src_stride,
const uint8_t *pred, int dst_stride) {
int r, c;
for (r = 0; r < 32; r++) {
for (c = 0; c < 32; c++) {
diff[c] = src[c] - pred[c];
}
diff += 32;
pred += dst_stride;
src += src_stride;
}
}
void vp9_subtract_sbuv_s_c(int16_t *diff, const uint8_t *usrc,
const uint8_t *vsrc, int src_stride,
const uint8_t *upred,
const uint8_t *vpred, int dst_stride) {
int16_t *udiff = diff + 1024;
int16_t *vdiff = diff + 1024 + 256;
int r, c;
for (r = 0; r < 16; r++) {
for (c = 0; c < 16; c++) {
udiff[c] = usrc[c] - upred[c];
}
udiff += 16;
upred += dst_stride;
usrc += src_stride;
}
for (r = 0; r < 16; r++) {
for (c = 0; c < 16; c++) {
vdiff[c] = vsrc[c] - vpred[c];
}
vdiff += 16;
vpred += dst_stride;
vsrc += src_stride;
}
}
void vp9_subtract_mby_c(int16_t *diff, uint8_t *src,
uint8_t *pred, int stride) {
vp9_subtract_mby_s_c(diff, src, stride, pred, 16);
}
static void subtract_mb(MACROBLOCK *x) {
BLOCK *b = &x->block[0];
vp9_subtract_mby(x->src_diff, *(b->base_src), x->e_mbd.predictor,
b->src_stride);
vp9_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer,
x->e_mbd.predictor, x->src.uv_stride);
}
void vp9_transform_mby_4x4(MACROBLOCK *x) {
int i;
MACROBLOCKD *xd = &x->e_mbd;
for (i = 0; i < 16; i++) {
BLOCK *b = &x->block[i];
TX_TYPE tx_type = get_tx_type_4x4(xd, &xd->block[i]);
if (tx_type != DCT_DCT) {
#if CONFIG_INTHT4X4
vp9_short_fht4x4(b->src_diff, b->coeff, 32, tx_type);
#else
vp9_fht_c(b->src_diff, 32, b->coeff, tx_type, 4);
#endif
} else if (!(i & 1) && get_tx_type_4x4(xd, &xd->block[i + 1]) == DCT_DCT) {
x->fwd_txm8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
i++;
} else {
x->fwd_txm4x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
}
}
void vp9_transform_mbuv_4x4(MACROBLOCK *x) {
int i;
for (i = 16; i < 24; i += 2) {
x->fwd_txm8x4(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 16);
}
}
static void transform_mb_4x4(MACROBLOCK *x) {
vp9_transform_mby_4x4(x);
vp9_transform_mbuv_4x4(x);
}
void vp9_transform_mby_8x8(MACROBLOCK *x) {
int i;
MACROBLOCKD *xd = &x->e_mbd;
TX_TYPE tx_type;
for (i = 0; i < 9; i += 8) {
BLOCK *b = &x->block[i];
tx_type = get_tx_type_8x8(xd, &xd->block[i]);
if (tx_type != DCT_DCT) {
#if CONFIG_INTHT
vp9_short_fht8x8(b->src_diff, b->coeff, 32, tx_type);
#else
vp9_fht_c(b->src_diff, 32, b->coeff, tx_type, 8);
#endif
} else {
x->fwd_txm8x8(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 32);
}
}
for (i = 2; i < 11; i += 8) {
BLOCK *b = &x->block[i];
tx_type = get_tx_type_8x8(xd, &xd->block[i]);
if (tx_type != DCT_DCT) {
#if CONFIG_INTHT
vp9_short_fht8x8(b->src_diff, (b + 2)->coeff, 32, tx_type);
#else
vp9_fht_c(b->src_diff, 32, (b + 2)->coeff, tx_type, 8);
#endif
} else {
x->fwd_txm8x8(&x->block[i].src_diff[0],
&x->block[i + 2].coeff[0], 32);
}
}
}
void vp9_transform_mbuv_8x8(MACROBLOCK *x) {
int i;
for (i = 16; i < 24; i += 4) {
x->fwd_txm8x8(&x->block[i].src_diff[0],
&x->block[i].coeff[0], 16);
}
}
void vp9_transform_mb_8x8(MACROBLOCK *x) {
vp9_transform_mby_8x8(x);
vp9_transform_mbuv_8x8(x);
}
void vp9_transform_mby_16x16(MACROBLOCK *x) {
MACROBLOCKD *xd = &x->e_mbd;
BLOCK *b = &x->block[0];
TX_TYPE tx_type = get_tx_type_16x16(xd, &xd->block[0]);
vp9_clear_system_state();
if (tx_type != DCT_DCT) {
#if CONFIG_INTHT16X16
vp9_short_fht16x16(b->src_diff, b->coeff, 32, tx_type);
#else
vp9_fht_c(b->src_diff, 32, b->coeff, tx_type, 16);
#endif
} else {
x->fwd_txm16x16(&x->block[0].src_diff[0],
&x->block[0].coeff[0], 32);
}
}
void vp9_transform_mb_16x16(MACROBLOCK *x) {
vp9_transform_mby_16x16(x);
vp9_transform_mbuv_8x8(x);
}
void vp9_transform_sby_32x32(MACROBLOCK *x) {
SUPERBLOCK * const x_sb = &x->sb_coeff_data;
vp9_short_fdct32x32(x_sb->src_diff, x_sb->coeff, 64);
}
void vp9_transform_sbuv_16x16(MACROBLOCK *x) {
SUPERBLOCK * const x_sb = &x->sb_coeff_data;
vp9_clear_system_state();
x->fwd_txm16x16(x_sb->src_diff + 1024,
x_sb->coeff + 1024, 32);
x->fwd_txm16x16(x_sb->src_diff + 1280,
x_sb->coeff + 1280, 32);
}
#define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
#define RDTRUNC_8x8(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF )
typedef struct vp9_token_state vp9_token_state;
struct vp9_token_state {
int rate;
int error;
int next;
signed char token;
short qc;
};
// TODO: experiments to find optimal multiple numbers
#define Y1_RD_MULT 4
#define UV_RD_MULT 2
static const int plane_rd_mult[4] = {
Y1_RD_MULT,
UV_RD_MULT,
};
#define UPDATE_RD_COST()\
{\
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\
if (rd_cost0 == rd_cost1) {\
rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\
rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\
}\
}
// This function is a place holder for now but may ultimately need
// to scan previous tokens to work out the correct context.
static int trellis_get_coeff_context(int token) {
int recent_energy = 0;
return vp9_get_coef_context(&recent_energy, token);
}
static void optimize_b(MACROBLOCK *mb, int i, PLANE_TYPE type,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l,
int tx_size) {
BLOCK *b = &mb->block[i];
BLOCKD *d = &mb->e_mbd.block[i];
vp9_token_state tokens[257][2];
unsigned best_index[257][2];
const int16_t *dequant_ptr = d->dequant, *coeff_ptr = b->coeff;
int16_t *qcoeff_ptr = d->qcoeff;
int16_t *dqcoeff_ptr = d->dqcoeff;
int eob = d->eob, final_eob, sz = 0;
const int i0 = 0;
int rc, x, next;
int64_t rdmult, rddiv, rd_cost0, rd_cost1;
int rate0, rate1, error0, error1, t0, t1;
int best, band, pt;
int err_mult = plane_rd_mult[type];
int default_eob;
int const *scan;
switch (tx_size) {
default:
case TX_4X4:
scan = vp9_default_zig_zag1d_4x4;
default_eob = 16;
// TODO: this isn't called (for intra4x4 modes), but will be left in
// since it could be used later
{
TX_TYPE tx_type = get_tx_type_4x4(&mb->e_mbd, d);
if (tx_type != DCT_DCT) {
switch (tx_type) {
case ADST_DCT:
scan = vp9_row_scan_4x4;
break;
case DCT_ADST:
scan = vp9_col_scan_4x4;
break;
default:
scan = vp9_default_zig_zag1d_4x4;
break;
}
} else {
scan = vp9_default_zig_zag1d_4x4;
}
}
break;
case TX_8X8:
scan = vp9_default_zig_zag1d_8x8;
default_eob = 64;
break;
case TX_16X16:
scan = vp9_default_zig_zag1d_16x16;
default_eob = 256;
break;
}
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
rdmult = mb->rdmult * err_mult;
if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME)
rdmult = (rdmult * 9) >> 4;
rddiv = mb->rddiv;
memset(best_index, 0, sizeof(best_index));
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = DCT_EOB_TOKEN;
tokens[eob][0].qc = 0;
*(tokens[eob] + 1) = *(tokens[eob] + 0);
next = eob;
for (i = eob; i-- > i0;) {
int base_bits, d2, dx;
rc = scan[i];
x = qcoeff_ptr[rc];
/* Only add a trellis state for non-zero coefficients. */
if (x) {
int shortcut = 0;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
t0 = (vp9_dct_value_tokens_ptr + x)->Token;
/* Consider both possible successor states. */
if (next < default_eob) {
band = get_coef_band(tx_size, i + 1);
pt = trellis_get_coeff_context(t0);
rate0 +=
mb->token_costs[tx_size][type][band][pt][tokens[next][0].token];
rate1 +=
mb->token_costs[tx_size][type][band][pt][tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp9_dct_value_cost_ptr + x);
dx = dqcoeff_ptr[rc] - coeff_ptr[rc];
d2 = dx * dx;
tokens[i][0].rate = base_bits + (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].token = t0;
tokens[i][0].qc = x;
best_index[i][0] = best;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc])) &&
(abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) + dequant_ptr[rc != 0]))
shortcut = 1;
else
shortcut = 0;
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == DCT_EOB_TOKEN ?
DCT_EOB_TOKEN : ZERO_TOKEN;
} else {
t0 = t1 = (vp9_dct_value_tokens_ptr + x)->Token;
}
if (next < default_eob) {
band = get_coef_band(tx_size, i + 1);
if (t0 != DCT_EOB_TOKEN) {
pt = trellis_get_coeff_context(t0);
rate0 += mb->token_costs[tx_size][type][band][pt][
tokens[next][0].token];
}
if (t1 != DCT_EOB_TOKEN) {
pt = trellis_get_coeff_context(t1);
rate1 += mb->token_costs[tx_size][type][band][pt][
tokens[next][1].token];
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
base_bits = *(vp9_dct_value_cost_ptr + x);
if (shortcut) {
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
d2 = dx * dx;
}
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
best_index[i][1] = best;
/* Finally, make this the new head of the trellis. */
next = i;
}
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
else {
band = get_coef_band(tx_size, i + 1);
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
/* Update the cost of each path if we're past the EOB token. */
if (t0 != DCT_EOB_TOKEN) {
tokens[next][0].rate += mb->token_costs[tx_size][type][band][0][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != DCT_EOB_TOKEN) {
tokens[next][1].rate += mb->token_costs[tx_size][type][band][0][t1];
tokens[next][1].token = ZERO_TOKEN;
}
/* Don't update next, because we didn't add a new node. */
}
}
/* Now pick the best path through the whole trellis. */
band = get_coef_band(tx_size, i + 1);
VP9_COMBINEENTROPYCONTEXTS(pt, *a, *l);
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += mb->token_costs[tx_size][type][band][pt][t0];
rate1 += mb->token_costs[tx_size][type][band][pt][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = i0 - 1;
for (i = next; i < eob; i = next) {
x = tokens[i][best].qc;
if (x)
final_eob = i;
rc = scan[i];
qcoeff_ptr[rc] = x;
dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]);
next = tokens[i][best].next;
best = best_index[i][best];
}
final_eob++;
d->eob = final_eob;
*a = *l = (d->eob > 0);
}
void vp9_optimize_mby_4x4(MACROBLOCK *x) {
int b;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 0; b < 16; b++) {
optimize_b(x, b, PLANE_TYPE_Y_WITH_DC,
ta + vp9_block2above[TX_4X4][b],
tl + vp9_block2left[TX_4X4][b], TX_4X4);
}
}
void vp9_optimize_mbuv_4x4(MACROBLOCK *x) {
int b;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 24; b++) {
optimize_b(x, b, PLANE_TYPE_UV,
ta + vp9_block2above[TX_4X4][b],
tl + vp9_block2left[TX_4X4][b], TX_4X4);
}
}
static void optimize_mb_4x4(MACROBLOCK *x) {
vp9_optimize_mby_4x4(x);
vp9_optimize_mbuv_4x4(x);
}
void vp9_optimize_mby_8x8(MACROBLOCK *x) {
int b;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
if (!x->e_mbd.above_context || !x->e_mbd.left_context)
return;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 0; b < 16; b += 4) {
ENTROPY_CONTEXT *const a = ta + vp9_block2above[TX_8X8][b];
ENTROPY_CONTEXT *const l = tl + vp9_block2left[TX_8X8][b];
#if CONFIG_CNVCONTEXT
ENTROPY_CONTEXT above_ec = (a[0] + a[1]) != 0;
ENTROPY_CONTEXT left_ec = (l[0] + l[1]) != 0;
#else
ENTROPY_CONTEXT above_ec = a[0];
ENTROPY_CONTEXT left_ec = l[0];
#endif
optimize_b(x, b, PLANE_TYPE_Y_WITH_DC, &above_ec, &left_ec, TX_8X8);
a[1] = a[0] = above_ec;
l[1] = l[0] = left_ec;
}
}
void vp9_optimize_mbuv_8x8(MACROBLOCK *x) {
int b;
ENTROPY_CONTEXT *const ta = (ENTROPY_CONTEXT *)x->e_mbd.above_context;
ENTROPY_CONTEXT *const tl = (ENTROPY_CONTEXT *)x->e_mbd.left_context;
if (!ta || !tl)
return;
for (b = 16; b < 24; b += 4) {
ENTROPY_CONTEXT *const a = ta + vp9_block2above[TX_8X8][b];
ENTROPY_CONTEXT *const l = tl + vp9_block2left[TX_8X8][b];
#if CONFIG_CNVCONTEXT
ENTROPY_CONTEXT above_ec = (a[0] + a[1]) != 0;
ENTROPY_CONTEXT left_ec = (l[0] + l[1]) != 0;
#else
ENTROPY_CONTEXT above_ec = a[0];
ENTROPY_CONTEXT left_ec = l[0];
#endif
optimize_b(x, b, PLANE_TYPE_UV, &above_ec, &left_ec, TX_8X8);
}
}
static void optimize_mb_8x8(MACROBLOCK *x) {
vp9_optimize_mby_8x8(x);
vp9_optimize_mbuv_8x8(x);
}
void vp9_optimize_mby_16x16(MACROBLOCK *x) {
ENTROPY_CONTEXT_PLANES *const t_above = x->e_mbd.above_context;
ENTROPY_CONTEXT_PLANES *const t_left = x->e_mbd.left_context;
ENTROPY_CONTEXT ta, tl;
if (!t_above || !t_left)
return;
#if CONFIG_CNVCONTEXT
ta = (t_above->y1[0] + t_above->y1[1] + t_above->y1[2] + t_above->y1[3]) != 0;
tl = (t_left->y1[0] + t_left->y1[1] + t_left->y1[2] + t_left->y1[3]) != 0;
#else
ta = t_above->y1[0];
tl = t_left->y1[0];
#endif
optimize_b(x, 0, PLANE_TYPE_Y_WITH_DC, &ta, &tl, TX_16X16);
}
static void optimize_mb_16x16(MACROBLOCK *x) {
vp9_optimize_mby_16x16(x);
vp9_optimize_mbuv_8x8(x);
}
void vp9_fidct_mb(MACROBLOCK *x) {
MACROBLOCKD *const xd = &x->e_mbd;
TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size;
if (tx_size == TX_16X16) {
vp9_transform_mb_16x16(x);
vp9_quantize_mb_16x16(x);
if (x->optimize)
optimize_mb_16x16(x);
vp9_inverse_transform_mb_16x16(xd);
} else if (tx_size == TX_8X8) {
if (xd->mode_info_context->mbmi.mode == SPLITMV) {
assert(xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4);
vp9_transform_mby_8x8(x);
vp9_transform_mbuv_4x4(x);
vp9_quantize_mby_8x8(x);
vp9_quantize_mbuv_4x4(x);
if (x->optimize) {
vp9_optimize_mby_8x8(x);
vp9_optimize_mbuv_4x4(x);
}
vp9_inverse_transform_mby_8x8(xd);
vp9_inverse_transform_mbuv_4x4(xd);
} else {
vp9_transform_mb_8x8(x);
vp9_quantize_mb_8x8(x);
if (x->optimize)
optimize_mb_8x8(x);
vp9_inverse_transform_mb_8x8(xd);
}
} else {
transform_mb_4x4(x);
vp9_quantize_mb_4x4(x);
if (x->optimize)
optimize_mb_4x4(x);
vp9_inverse_transform_mb_4x4(xd);
}
}
void vp9_encode_inter16x16(MACROBLOCK *x) {
MACROBLOCKD *const xd = &x->e_mbd;
vp9_build_inter_predictors_mb(xd);
subtract_mb(x);
vp9_fidct_mb(x);
vp9_recon_mb(xd);
}
/* this function is used by first pass only */
void vp9_encode_inter16x16y(MACROBLOCK *x) {
MACROBLOCKD *xd = &x->e_mbd;
BLOCK *b = &x->block[0];
vp9_build_1st_inter16x16_predictors_mby(xd, xd->predictor, 16, 0);
vp9_subtract_mby(x->src_diff, *(b->base_src), xd->predictor, b->src_stride);
vp9_transform_mby_4x4(x);
vp9_quantize_mby_4x4(x);
vp9_inverse_transform_mby_4x4(xd);
vp9_recon_mby(xd);
}