Rework 16x16 transform unit test

This commit refactors the 16x16 transform unit test. It enables the
test on all implemented versions of forward and inverse 16x16 transform
modules.

Change-Id: I0c7d5f3c5fdd5d789a25f73e287aeeaf463b9d69
This commit is contained in:
Jingning Han
2013-09-05 12:44:03 -07:00
parent d1268c5921
commit 8f92a7efdb

View File

@@ -13,15 +13,16 @@
#include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "vpx_ports/mem.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
extern "C" {
#include "vp9/common/vp9_entropy.h"
#include "./vp9_rtcd.h"
void vp9_short_idct16x16_add_c(int16_t *input, uint8_t *output, int pitch);
}
#include "test/acm_random.h"
#include "vpx/vpx_integer.h"
using libvpx_test::ACMRandom;
@@ -37,6 +38,7 @@ static int round(double x) {
}
#endif
const int kNumCoeffs = 256;
const double PI = 3.1415926535898;
void reference2_16x16_idct_2d(double *input, double *output) {
double x;
@@ -61,21 +63,21 @@ void reference2_16x16_idct_2d(double *input, double *output) {
}
static const double C1 = 0.995184726672197;
static const double C2 = 0.98078528040323;
static const double C3 = 0.956940335732209;
static const double C4 = 0.923879532511287;
static const double C5 = 0.881921264348355;
static const double C6 = 0.831469612302545;
static const double C7 = 0.773010453362737;
static const double C8 = 0.707106781186548;
static const double C9 = 0.634393284163646;
static const double C10 = 0.555570233019602;
static const double C11 = 0.471396736825998;
static const double C12 = 0.38268343236509;
static const double C13 = 0.290284677254462;
static const double C14 = 0.195090322016128;
static const double C15 = 0.098017140329561;
const double C1 = 0.995184726672197;
const double C2 = 0.98078528040323;
const double C3 = 0.956940335732209;
const double C4 = 0.923879532511287;
const double C5 = 0.881921264348355;
const double C6 = 0.831469612302545;
const double C7 = 0.773010453362737;
const double C8 = 0.707106781186548;
const double C9 = 0.634393284163646;
const double C10 = 0.555570233019602;
const double C11 = 0.471396736825998;
const double C12 = 0.38268343236509;
const double C13 = 0.290284677254462;
const double C14 = 0.195090322016128;
const double C15 = 0.098017140329561;
void butterfly_16x16_dct_1d(double input[16], double output[16]) {
double step[16];
@@ -110,36 +112,36 @@ void butterfly_16x16_dct_1d(double input[16], double output[16]) {
output[6] = step[1] - step[6];
output[7] = step[0] - step[7];
temp1 = step[ 8]*C7;
temp2 = step[15]*C9;
temp1 = step[ 8] * C7;
temp2 = step[15] * C9;
output[ 8] = temp1 + temp2;
temp1 = step[ 9]*C11;
temp2 = step[14]*C5;
temp1 = step[ 9] * C11;
temp2 = step[14] * C5;
output[ 9] = temp1 - temp2;
temp1 = step[10]*C3;
temp2 = step[13]*C13;
temp1 = step[10] * C3;
temp2 = step[13] * C13;
output[10] = temp1 + temp2;
temp1 = step[11]*C15;
temp2 = step[12]*C1;
temp1 = step[11] * C15;
temp2 = step[12] * C1;
output[11] = temp1 - temp2;
temp1 = step[11]*C1;
temp2 = step[12]*C15;
temp1 = step[11] * C1;
temp2 = step[12] * C15;
output[12] = temp2 + temp1;
temp1 = step[10]*C13;
temp2 = step[13]*C3;
temp1 = step[10] * C13;
temp2 = step[13] * C3;
output[13] = temp2 - temp1;
temp1 = step[ 9]*C5;
temp2 = step[14]*C11;
temp1 = step[ 9] * C5;
temp2 = step[14] * C11;
output[14] = temp2 + temp1;
temp1 = step[ 8]*C9;
temp2 = step[15]*C7;
temp1 = step[ 8] * C9;
temp2 = step[15] * C7;
output[15] = temp2 - temp1;
// step 3
@@ -148,20 +150,20 @@ void butterfly_16x16_dct_1d(double input[16], double output[16]) {
step[ 2] = output[1] - output[2];
step[ 3] = output[0] - output[3];
temp1 = output[4]*C14;
temp2 = output[7]*C2;
temp1 = output[4] * C14;
temp2 = output[7] * C2;
step[ 4] = temp1 + temp2;
temp1 = output[5]*C10;
temp2 = output[6]*C6;
temp1 = output[5] * C10;
temp2 = output[6] * C6;
step[ 5] = temp1 + temp2;
temp1 = output[5]*C6;
temp2 = output[6]*C10;
temp1 = output[5] * C6;
temp2 = output[6] * C10;
step[ 6] = temp2 - temp1;
temp1 = output[4]*C2;
temp2 = output[7]*C14;
temp1 = output[4] * C2;
temp2 = output[7] * C14;
step[ 7] = temp2 - temp1;
step[ 8] = output[ 8] + output[11];
@@ -178,18 +180,18 @@ void butterfly_16x16_dct_1d(double input[16], double output[16]) {
output[ 0] = (step[ 0] + step[ 1]);
output[ 8] = (step[ 0] - step[ 1]);
temp1 = step[2]*C12;
temp2 = step[3]*C4;
temp1 = step[2] * C12;
temp2 = step[3] * C4;
temp1 = temp1 + temp2;
output[ 4] = 2*(temp1*C8);
output[ 4] = 2*(temp1 * C8);
temp1 = step[2]*C4;
temp2 = step[3]*C12;
temp1 = step[2] * C4;
temp2 = step[3] * C12;
temp1 = temp2 - temp1;
output[12] = 2*(temp1*C8);
output[12] = 2 * (temp1 * C8);
output[ 2] = 2*((step[4] + step[ 5])*C8);
output[14] = 2*((step[7] - step[ 6])*C8);
output[ 2] = 2 * ((step[4] + step[ 5]) * C8);
output[14] = 2 * ((step[7] - step[ 6]) * C8);
temp1 = step[4] - step[5];
temp2 = step[6] + step[7];
@@ -199,17 +201,17 @@ void butterfly_16x16_dct_1d(double input[16], double output[16]) {
intermediate[8] = step[8] + step[14];
intermediate[9] = step[9] + step[15];
temp1 = intermediate[8]*C12;
temp2 = intermediate[9]*C4;
temp1 = intermediate[8] * C12;
temp2 = intermediate[9] * C4;
temp1 = temp1 - temp2;
output[3] = 2*(temp1*C8);
output[3] = 2 * (temp1 * C8);
temp1 = intermediate[8]*C4;
temp2 = intermediate[9]*C12;
temp1 = intermediate[8] * C4;
temp2 = intermediate[9] * C12;
temp1 = temp2 + temp1;
output[13] = 2*(temp1*C8);
output[13] = 2 * (temp1 * C8);
output[ 9] = 2*((step[10] + step[11])*C8);
output[ 9] = 2 * ((step[10] + step[11]) * C8);
intermediate[11] = step[10] - step[11];
intermediate[12] = step[12] + step[13];
@@ -220,216 +222,263 @@ void butterfly_16x16_dct_1d(double input[16], double output[16]) {
output[15] = (intermediate[11] + intermediate[12]);
output[ 1] = -(intermediate[11] - intermediate[12]);
output[ 7] = 2*(intermediate[13]*C8);
output[ 7] = 2 * (intermediate[13] * C8);
temp1 = intermediate[14]*C12;
temp2 = intermediate[15]*C4;
temp1 = intermediate[14] * C12;
temp2 = intermediate[15] * C4;
temp1 = temp1 - temp2;
output[11] = -2*(temp1*C8);
output[11] = -2 * (temp1 * C8);
temp1 = intermediate[14]*C4;
temp2 = intermediate[15]*C12;
temp1 = intermediate[14] * C4;
temp2 = intermediate[15] * C12;
temp1 = temp2 + temp1;
output[ 5] = 2*(temp1*C8);
output[ 5] = 2 * (temp1 * C8);
}
static void reference_16x16_dct_1d(double in[16], double out[16]) {
const double kPi = 3.141592653589793238462643383279502884;
const double kInvSqrt2 = 0.707106781186547524400844362104;
for (int k = 0; k < 16; k++) {
out[k] = 0.0;
for (int n = 0; n < 16; n++)
out[k] += in[n]*cos(kPi*(2*n+1)*k/32.0);
if (k == 0)
out[k] = out[k]*kInvSqrt2;
}
}
void reference_16x16_dct_2d(int16_t input[16*16], double output[16*16]) {
void reference_16x16_dct_2d(int16_t input[256], double output[256]) {
// First transform columns
for (int i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (int j = 0; j < 16; ++j)
temp_in[j] = input[j*16 + i];
temp_in[j] = input[j * 16 + i];
butterfly_16x16_dct_1d(temp_in, temp_out);
for (int j = 0; j < 16; ++j)
output[j*16 + i] = temp_out[j];
output[j * 16 + i] = temp_out[j];
}
// Then transform rows
for (int i = 0; i < 16; ++i) {
double temp_in[16], temp_out[16];
for (int j = 0; j < 16; ++j)
temp_in[j] = output[j + i*16];
temp_in[j] = output[j + i * 16];
butterfly_16x16_dct_1d(temp_in, temp_out);
// Scale by some magic number
for (int j = 0; j < 16; ++j)
output[j + i*16] = temp_out[j]/2;
output[j + i * 16] = temp_out[j]/2;
}
}
void fdct16x16(int16_t *in, int16_t *out, uint8_t* /*dst*/,
int stride, int /*tx_type*/) {
vp9_short_fdct16x16_c(in, out, stride);
}
void idct16x16_add(int16_t* /*in*/, int16_t *out, uint8_t *dst,
int stride, int /*tx_type*/) {
vp9_short_idct16x16_add_c(out, dst, stride >> 1);
}
void fht16x16(int16_t *in, int16_t *out, uint8_t* /*dst*/,
int stride, int tx_type) {
// FIXME(jingning): need to test both SSE2 and c
#if HAVE_SSE2
vp9_short_fht16x16_sse2(in, out, stride >> 1, tx_type);
#else
vp9_short_fht16x16_c(in, out, stride >> 1, tx_type);
#endif
}
void iht16x16_add(int16_t* /*in*/, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
vp9_short_iht16x16_add_c(out, dst, stride >> 1, tx_type);
}
typedef void (*fdct_t)(int16_t *in, int16_t *out, int stride);
typedef void (*idct_t)(int16_t *in, uint8_t *out, int stride);
typedef void (*fht_t) (int16_t *in, int16_t *out, int stride, int tx_type);
typedef void (*iht_t) (int16_t *in, uint8_t *dst, int stride, int tx_type);
class Trans16x16Test : public ::testing::TestWithParam<int> {
class Trans16x16TestBase {
public:
virtual ~Trans16x16Test() {}
virtual ~Trans16x16TestBase() {}
virtual void SetUp() {
tx_type_ = GetParam();
if (tx_type_ == 0) {
fwd_txfm_ = fdct16x16;
inv_txfm_ = idct16x16_add;
} else {
fwd_txfm_ = fht16x16;
inv_txfm_ = iht16x16_add;
protected:
virtual void RunFwdTxfm(int16_t *in, int16_t *out,
uint8_t *dst, int stride) = 0;
virtual void RunInvTxfm(int16_t *in, int16_t *out,
uint8_t *dst, int stride) = 0;
void RunAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int max_error = 0;
int total_error = 0;
const int count_test_block = 10000;
for (int i = 0; i < count_test_block; ++i) {
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
for (int j = 0; j < kNumCoeffs; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
// Initialize a test block with input range [-255, 255].
test_input_block[j] = src[j] - dst[j];
}
const int pitch = 32;
REGISTER_STATE_CHECK(RunFwdTxfm(test_input_block, test_temp_block,
dst, pitch));
REGISTER_STATE_CHECK(RunInvTxfm(test_input_block, test_temp_block,
dst, pitch));
for (int j = 0; j < kNumCoeffs; ++j) {
const int diff = dst[j] - src[j];
const int error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
}
EXPECT_GE(1, max_error)
<< "Error: 16x16 FHT/IHT has an individual round trip error > 1";
EXPECT_GE(count_test_block , total_error)
<< "Error: 16x16 FHT/IHT has average round trip error > 1 per block";
}
void RunCoeffSizeCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
for (int i = 0; i < count_test_block; ++i) {
DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_extreme_block, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
input_block[j] = rnd.Rand8() - rnd.Rand8();
input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
}
if (i == 0)
for (int j = 0; j < kNumCoeffs; ++j)
input_extreme_block[j] = 255;
const int pitch = 32;
REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, dst, pitch));
REGISTER_STATE_CHECK(RunFwdTxfm(input_extreme_block,
output_extreme_block, dst, pitch));
// The minimum quant value is 4.
for (int j = 0; j < kNumCoeffs; ++j) {
EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j]))
<< "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_extreme_block[j]))
<< "Error: 16x16 FDCT extreme has coefficient larger "
<< "than 4*DCT_MAX_VALUE";
}
}
}
protected:
void RunFwdTxfm(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
(*fwd_txfm_)(in, out, dst, stride, tx_type);
void RunInvAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
for (int i = 0; i < count_test_block; ++i) {
DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs);
double out_r[kNumCoeffs];
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
in[j] = src[j] - dst[j];
}
reference_16x16_dct_2d(in, out_r);
for (int j = 0; j < kNumCoeffs; ++j)
coeff[j] = round(out_r[j]);
const int pitch = 32;
REGISTER_STATE_CHECK(RunInvTxfm(coeff, coeff, dst, pitch));
for (int j = 0; j < kNumCoeffs; ++j) {
const int diff = dst[j] - src[j];
const int error = diff * diff;
EXPECT_GE(1, error)
<< "Error: 16x16 IDCT has error " << error
<< " at index " << j;
}
}
}
void RunInvTxfm(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
(*inv_txfm_)(in, out, dst, stride, tx_type);
};
class Trans16x16DCT : public Trans16x16TestBase,
public PARAMS(fdct_t, idct_t, int) {
public:
virtual ~Trans16x16DCT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
tx_type_ = GET_PARAM(2);
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t *in, int16_t *out, uint8_t *dst, int stride) {
fwd_txfm_(in, out, stride);
}
void RunInvTxfm(int16_t *in, int16_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride >> 1);
}
int tx_type_;
void (*fwd_txfm_)(int16_t*, int16_t*, uint8_t*, int, int);
void (*inv_txfm_)(int16_t*, int16_t*, uint8_t*, int, int);
fdct_t fwd_txfm_;
idct_t inv_txfm_;
};
TEST_P(Trans16x16Test, AccuracyCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int max_error = 0;
int total_error = 0;
const int count_test_block = 10000;
for (int i = 0; i < count_test_block; ++i) {
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 256);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, 256);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 256);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 256);
for (int j = 0; j < 256; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
// Initialize a test block with input range [-255, 255].
test_input_block[j] = src[j] - dst[j];
}
const int pitch = 32;
RunFwdTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_);
RunInvTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_);
for (int j = 0; j < 256; ++j) {
const int diff = dst[j] - src[j];
const int error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
}
EXPECT_GE(1, max_error)
<< "Error: 16x16 FHT/IHT has an individual round trip error > 1";
EXPECT_GE(count_test_block , total_error)
<< "Error: 16x16 FHT/IHT has average round trip error > 1 per block";
TEST_P(Trans16x16DCT, AccuracyCheck) {
RunAccuracyCheck();
}
TEST_P(Trans16x16Test, CoeffSizeCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
for (int i = 0; i < count_test_block; ++i) {
DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, 256);
DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, 256);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, 256);
DECLARE_ALIGNED_ARRAY(16, int16_t, output_extreme_block, 256);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 256);
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 256; ++j) {
input_block[j] = rnd.Rand8() - rnd.Rand8();
input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
}
if (i == 0)
for (int j = 0; j < 256; ++j)
input_extreme_block[j] = 255;
const int pitch = 32;
RunFwdTxfm(input_block, output_block, dst, pitch, tx_type_);
RunFwdTxfm(input_extreme_block, output_extreme_block, dst, pitch, tx_type_);
// The minimum quant value is 4.
for (int j = 0; j < 256; ++j) {
EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j]))
<< "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_extreme_block[j]))
<< "Error: 16x16 FDCT extreme has coefficient larger "
<< "than 4*DCT_MAX_VALUE";
}
}
TEST_P(Trans16x16DCT, CoeffSizeCheck) {
RunCoeffSizeCheck();
}
TEST_P(Trans16x16Test, InvAccuracyCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
// TODO(jingning): is this unit test necessary? if so, need to add
// check sets for inverse hybrid transforms too.
if (tx_type_ != DCT_DCT)
return;
for (int i = 0; i < count_test_block; ++i) {
DECLARE_ALIGNED_ARRAY(16, int16_t, in, 256);
DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, 256);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 256);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 256);
double out_r[256];
for (int j = 0; j < 256; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
}
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 256; ++j)
in[j] = src[j] - dst[j];
reference_16x16_dct_2d(in, out_r);
for (int j = 0; j < 256; j++)
coeff[j] = round(out_r[j]);
const int pitch = 32;
RunInvTxfm(coeff, coeff, dst, pitch, tx_type_);
for (int j = 0; j < 256; ++j) {
const int diff = dst[j] - src[j];
const int error = diff * diff;
EXPECT_GE(1, error)
<< "Error: 16x16 IDCT has error " << error
<< " at index " << j;
}
}
TEST_P(Trans16x16DCT, InvAccuracyCheck) {
RunInvAccuracyCheck();
}
INSTANTIATE_TEST_CASE_P(VP9, Trans16x16Test, ::testing::Range(0, 4));
class Trans16x16HT : public Trans16x16TestBase,
public PARAMS(fht_t, iht_t, int) {
public:
virtual ~Trans16x16HT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
tx_type_ = GET_PARAM(2);
}
virtual void TearDown() { libvpx_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t *in, int16_t *out, uint8_t *dst, int stride) {
fwd_txfm_(in, out, stride >> 1, tx_type_);
}
void RunInvTxfm(int16_t *in, int16_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride >> 1, tx_type_);
}
int tx_type_;
fht_t fwd_txfm_;
iht_t inv_txfm_;
};
TEST_P(Trans16x16HT, AccuracyCheck) {
RunAccuracyCheck();
}
TEST_P(Trans16x16HT, CoeffSizeCheck) {
RunCoeffSizeCheck();
}
using std::tr1::make_tuple;
INSTANTIATE_TEST_CASE_P(
C, Trans16x16DCT,
::testing::Values(
make_tuple(&vp9_short_fdct16x16_c, &vp9_short_idct16x16_add_c, 0)));
INSTANTIATE_TEST_CASE_P(
C, Trans16x16HT,
::testing::Values(
make_tuple(&vp9_short_fht16x16_c, &vp9_short_iht16x16_add_c, 0),
make_tuple(&vp9_short_fht16x16_c, &vp9_short_iht16x16_add_c, 1),
make_tuple(&vp9_short_fht16x16_c, &vp9_short_iht16x16_add_c, 2),
make_tuple(&vp9_short_fht16x16_c, &vp9_short_iht16x16_add_c, 3)));
#if HAVE_SSE2
INSTANTIATE_TEST_CASE_P(
SSE2, Trans16x16DCT,
::testing::Values(
make_tuple(&vp9_short_fdct16x16_sse2, &vp9_short_idct16x16_add_c, 0)));
INSTANTIATE_TEST_CASE_P(
SSE2, Trans16x16HT,
::testing::Values(
make_tuple(&vp9_short_fht16x16_sse2, &vp9_short_iht16x16_add_sse2, 0),
make_tuple(&vp9_short_fht16x16_sse2, &vp9_short_iht16x16_add_sse2, 1),
make_tuple(&vp9_short_fht16x16_sse2, &vp9_short_iht16x16_add_sse2, 2),
make_tuple(&vp9_short_fht16x16_sse2, &vp9_short_iht16x16_add_sse2, 3)));
#endif
} // namespace