vpx/vp9/common/vp9_reconinter.c

510 lines
19 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include <assert.h>
2010-05-18 17:58:33 +02:00
#include "./vpx_config.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
2010-05-18 17:58:33 +02:00
static int scale_value_x_with_scaling(int val,
const struct scale_factors *scale) {
return val * scale->x_num / scale->x_den;
}
static int scale_value_y_with_scaling(int val,
const struct scale_factors *scale) {
return val * scale->y_num / scale->y_den;
}
static int unscaled_value(int val, const struct scale_factors *scale) {
(void) scale;
return val;
}
static int_mv32 mv_q3_to_q4_with_scaling(const int_mv *src_mv,
const struct scale_factors *scale) {
// returns mv * scale + offset
int_mv32 result;
const int32_t mv_row_q4 = src_mv->as_mv.row << 1;
const int32_t mv_col_q4 = src_mv->as_mv.col << 1;
/* TODO(jkoleszar): make fixed point, or as a second multiply? */
result.as_mv.row = mv_row_q4 * scale->y_num / scale->y_den
+ scale->y_offset_q4;
result.as_mv.col = mv_col_q4 * scale->x_num / scale->x_den
+ scale->x_offset_q4;
return result;
}
static int_mv32 mv_q3_to_q4_without_scaling(const int_mv *src_mv,
const struct scale_factors *scale) {
// returns mv * scale + offset
int_mv32 result;
result.as_mv.row = src_mv->as_mv.row << 1;
result.as_mv.col = src_mv->as_mv.col << 1;
return result;
}
static int32_t mv_component_q4_with_scaling(int mv_q4, int num, int den,
int offset_q4) {
// returns the scaled and offset value of the mv component.
/* TODO(jkoleszar): make fixed point, or as a second multiply? */
return mv_q4 * num / den + offset_q4;
}
static int32_t mv_component_q4_without_scaling(int mv_q4, int num, int den,
int offset_q4) {
// returns the scaled and offset value of the mv component.
(void)num;
(void)den;
(void)offset_q4;
return mv_q4;
}
static void set_offsets_with_scaling(struct scale_factors *scale,
int row, int col) {
const int x_q4 = 16 * col;
const int y_q4 = 16 * row;
scale->x_offset_q4 = (x_q4 * scale->x_num / scale->x_den) & 0xf;
scale->y_offset_q4 = (y_q4 * scale->y_num / scale->y_den) & 0xf;
}
static void set_offsets_without_scaling(struct scale_factors *scale,
int row, int col) {
scale->x_offset_q4 = 0;
scale->y_offset_q4 = 0;
}
void vp9_setup_scale_factors_for_frame(struct scale_factors *scale,
int other_w, int other_h,
int this_w, int this_h) {
scale->x_num = other_w;
scale->x_den = this_w;
scale->x_offset_q4 = 0; // calculated per-mb
scale->x_step_q4 = 16 * other_w / this_w;
scale->y_num = other_h;
scale->y_den = this_h;
scale->y_offset_q4 = 0; // calculated per-mb
scale->y_step_q4 = 16 * other_h / this_h;
if (scale->x_num == scale->x_den && scale->y_num == scale->y_den) {
scale->scale_value_x = unscaled_value;
scale->scale_value_y = unscaled_value;
scale->set_scaled_offsets = set_offsets_without_scaling;
scale->scale_motion_vector_q3_to_q4 = mv_q3_to_q4_without_scaling;
scale->scale_motion_vector_component_q4 = mv_component_q4_without_scaling;
} else {
scale->scale_value_x = scale_value_x_with_scaling;
scale->scale_value_y = scale_value_y_with_scaling;
scale->set_scaled_offsets = set_offsets_with_scaling;
scale->scale_motion_vector_q3_to_q4 = mv_q3_to_q4_with_scaling;
scale->scale_motion_vector_component_q4 = mv_component_q4_with_scaling;
}
// TODO(agrange): Investigate the best choice of functions to use here
// for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what
// to do at full-pel offsets. The current selection, where the filter is
// applied in one direction only, and not at all for 0,0, seems to give the
// best quality, but it may be worth trying an additional mode that does
// do the filtering on full-pel.
if (scale->x_step_q4 == 16) {
if (scale->y_step_q4 == 16) {
// No scaling in either direction.
scale->predict[0][0][0] = vp9_convolve_copy;
scale->predict[0][0][1] = vp9_convolve_avg;
scale->predict[0][1][0] = vp9_convolve8_vert;
scale->predict[0][1][1] = vp9_convolve8_avg_vert;
scale->predict[1][0][0] = vp9_convolve8_horiz;
scale->predict[1][0][1] = vp9_convolve8_avg_horiz;
} else {
// No scaling in x direction. Must always scale in the y direction.
scale->predict[0][0][0] = vp9_convolve8_vert;
scale->predict[0][0][1] = vp9_convolve8_avg_vert;
scale->predict[0][1][0] = vp9_convolve8_vert;
scale->predict[0][1][1] = vp9_convolve8_avg_vert;
scale->predict[1][0][0] = vp9_convolve8;
scale->predict[1][0][1] = vp9_convolve8_avg;
}
} else {
if (scale->y_step_q4 == 16) {
// No scaling in the y direction. Must always scale in the x direction.
scale->predict[0][0][0] = vp9_convolve8_horiz;
scale->predict[0][0][1] = vp9_convolve8_avg_horiz;
scale->predict[0][1][0] = vp9_convolve8;
scale->predict[0][1][1] = vp9_convolve8_avg;
scale->predict[1][0][0] = vp9_convolve8_horiz;
scale->predict[1][0][1] = vp9_convolve8_avg_horiz;
} else {
// Must always scale in both directions.
scale->predict[0][0][0] = vp9_convolve8;
scale->predict[0][0][1] = vp9_convolve8_avg;
scale->predict[0][1][0] = vp9_convolve8;
scale->predict[0][1][1] = vp9_convolve8_avg;
scale->predict[1][0][0] = vp9_convolve8;
scale->predict[1][0][1] = vp9_convolve8_avg;
}
}
// 2D subpel motion always gets filtered in both directions
scale->predict[1][1][0] = vp9_convolve8;
scale->predict[1][1][1] = vp9_convolve8_avg;
}
void vp9_setup_interp_filters(MACROBLOCKD *xd,
INTERPOLATIONFILTERTYPE mcomp_filter_type,
VP9_COMMON *cm) {
if (xd->mode_info_context) {
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
set_scale_factors(xd,
mbmi->ref_frame - 1,
mbmi->second_ref_frame - 1,
cm->active_ref_scale);
}
switch (mcomp_filter_type) {
case EIGHTTAP:
case SWITCHABLE:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8;
break;
case EIGHTTAP_SMOOTH:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8lp;
break;
case EIGHTTAP_SHARP:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8s;
break;
case BILINEAR:
xd->subpix.filter_x = xd->subpix.filter_y = vp9_bilinear_filters;
break;
}
assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0);
}
void vp9_copy_mem16x16_c(const uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
2010-05-18 17:58:33 +02:00
for (r = 0; r < 16; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
dst[8] = src[8];
dst[9] = src[9];
dst[10] = src[10];
dst[11] = src[11];
dst[12] = src[12];
dst[13] = src[13];
dst[14] = src[14];
dst[15] = src[15];
2010-05-18 17:58:33 +02:00
#else
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
((uint32_t *)dst)[2] = ((const uint32_t *)src)[2];
((uint32_t *)dst)[3] = ((const uint32_t *)src)[3];
2010-05-18 17:58:33 +02:00
#endif
src += src_stride;
dst += dst_stride;
}
2010-05-18 17:58:33 +02:00
}
void vp9_copy_mem8x8_c(const uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 8; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
2010-05-18 17:58:33 +02:00
#else
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
2010-05-18 17:58:33 +02:00
#endif
src += src_stride;
dst += dst_stride;
}
2010-05-18 17:58:33 +02:00
}
void vp9_copy_mem8x4_c(const uint8_t *src,
int src_stride,
uint8_t *dst,
int dst_stride) {
int r;
for (r = 0; r < 4; r++) {
#if !(CONFIG_FAST_UNALIGNED)
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
2010-05-18 17:58:33 +02:00
#else
((uint32_t *)dst)[0] = ((const uint32_t *)src)[0];
((uint32_t *)dst)[1] = ((const uint32_t *)src)[1];
2010-05-18 17:58:33 +02:00
#endif
src += src_stride;
dst += dst_stride;
}
2010-05-18 17:58:33 +02:00
}
void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const int_mv *mv_q3,
const struct scale_factors *scale,
int w, int h, int weight,
const struct subpix_fn_table *subpix) {
int_mv32 mv = scale->scale_motion_vector_q3_to_q4(mv_q3, scale);
src += (mv.as_mv.row >> 4) * src_stride + (mv.as_mv.col >> 4);
scale->predict[!!(mv.as_mv.col & 15)][!!(mv.as_mv.row & 15)][weight](
src, src_stride, dst, dst_stride,
subpix->filter_x[mv.as_mv.col & 15], scale->x_step_q4,
subpix->filter_y[mv.as_mv.row & 15], scale->y_step_q4,
w, h);
2010-05-18 17:58:33 +02:00
}
void vp9_build_inter_predictor_q4(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const int_mv *mv_q4,
const struct scale_factors *scale,
int w, int h, int weight,
const struct subpix_fn_table *subpix) {
const int scaled_mv_row_q4 =
scale->scale_motion_vector_component_q4(mv_q4->as_mv.row,
scale->y_num, scale->y_den,
scale->y_offset_q4);
const int scaled_mv_col_q4 =
scale->scale_motion_vector_component_q4(mv_q4->as_mv.col,
scale->x_num, scale->x_den,
scale->x_offset_q4);
const int subpel_x = scaled_mv_col_q4 & 15;
const int subpel_y = scaled_mv_row_q4 & 15;
src += (scaled_mv_row_q4 >> 4) * src_stride + (scaled_mv_col_q4 >> 4);
scale->predict[!!subpel_x][!!subpel_y][weight](
src, src_stride, dst, dst_stride,
subpix->filter_x[subpel_x], scale->x_step_q4,
subpix->filter_y[subpel_y], scale->y_step_q4,
w, h);
}
static INLINE int round_mv_comp_q4(int value) {
return (value < 0 ? value - 2 : value + 2) / 4;
2010-05-18 17:58:33 +02:00
}
static int mi_mv_pred_row_q4(MACROBLOCKD *mb, int idx) {
const int temp = mb->mode_info_context->bmi[0].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[1].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[2].as_mv[idx].as_mv.row +
mb->mode_info_context->bmi[3].as_mv[idx].as_mv.row;
return round_mv_comp_q4(temp);
}
static int mi_mv_pred_col_q4(MACROBLOCKD *mb, int idx) {
const int temp = mb->mode_info_context->bmi[0].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[1].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[2].as_mv[idx].as_mv.col +
mb->mode_info_context->bmi[3].as_mv[idx].as_mv.col;
return round_mv_comp_q4(temp);
}
// TODO(jkoleszar): yet another mv clamping function :-(
MV clamp_mv_to_umv_border_sb(const MV *src_mv,
int bwl, int bhl, int ss_x, int ss_y,
int mb_to_left_edge, int mb_to_top_edge,
int mb_to_right_edge, int mb_to_bottom_edge) {
/* If the MV points so far into the UMV border that no visible pixels
* are used for reconstruction, the subpel part of the MV can be
* discarded and the MV limited to 16 pixels with equivalent results.
*/
const int spel_left = (VP9_INTERP_EXTEND + (4 << bwl)) << 4;
const int spel_right = spel_left - (1 << 4);
const int spel_top = (VP9_INTERP_EXTEND + (4 << bhl)) << 4;
const int spel_bottom = spel_top - (1 << 4);
MV clamped_mv;
assert(ss_x <= 1);
assert(ss_y <= 1);
clamped_mv.col = clamp(src_mv->col << (1 - ss_x),
(mb_to_left_edge << (1 - ss_x)) - spel_left,
(mb_to_right_edge << (1 - ss_x)) + spel_right);
clamped_mv.row = clamp(src_mv->row << (1 - ss_y),
(mb_to_top_edge << (1 - ss_y)) - spel_top,
(mb_to_bottom_edge << (1 - ss_y)) + spel_bottom);
return clamped_mv;
}
struct build_inter_predictors_args {
MACROBLOCKD *xd;
int x;
int y;
uint8_t* dst[MAX_MB_PLANE];
int dst_stride[MAX_MB_PLANE];
uint8_t* pre[2][MAX_MB_PLANE];
int pre_stride[2][MAX_MB_PLANE];
};
static void build_inter_predictors(int plane, int block,
BLOCK_SIZE_TYPE bsize,
int pred_w, int pred_h,
void *argv) {
const struct build_inter_predictors_args* const arg = argv;
MACROBLOCKD * const xd = arg->xd;
const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x;
const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
const int bh = 4 << bhl, bw = 4 << bwl;
const int x_idx = block & ((1 << bwl) - 1), y_idx = block >> bwl;
const int x = x_idx * 4, y = y_idx * 4;
const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0;
int which_mv;
assert(x < bw);
assert(y < bh);
assert(xd->mode_info_context->mbmi.mode == SPLITMV || 4 << pred_w == bw);
assert(xd->mode_info_context->mbmi.mode == SPLITMV || 4 << pred_h == bh);
for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) {
// source
const uint8_t * const base_pre = arg->pre[which_mv][plane];
const int pre_stride = arg->pre_stride[which_mv][plane];
const uint8_t *const pre = base_pre +
scaled_buffer_offset(x, y, pre_stride, &xd->scale_factor[which_mv]);
struct scale_factors * const scale =
plane == 0 ? &xd->scale_factor[which_mv] : &xd->scale_factor_uv[which_mv];
// dest
uint8_t *const dst = arg->dst[plane] + arg->dst_stride[plane] * y + x;
// motion vector
const MV *mv;
MV split_chroma_mv;
int_mv clamped_mv;
if (xd->mode_info_context->mbmi.mode == SPLITMV) {
if (plane == 0) {
mv = &xd->mode_info_context->bmi[block].as_mv[which_mv].as_mv;
} else {
// TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the
// same MV (the average of the 4 luma MVs) but we could do something
// smarter for non-4:2:0. Just punt for now, pending the changes to get
// rid of SPLITMV mode entirely.
split_chroma_mv.row = mi_mv_pred_row_q4(xd, which_mv);
split_chroma_mv.col = mi_mv_pred_col_q4(xd, which_mv);
mv = &split_chroma_mv;
}
} else {
mv = &xd->mode_info_context->mbmi.mv[which_mv].as_mv;
}
/* TODO(jkoleszar): This clamping is done in the incorrect place for the
* scaling case. It needs to be done on the scaled MV, not the pre-scaling
* MV. Note however that it performs the subsampling aware scaling so
* that the result is always q4.
*/
clamped_mv.as_mv = clamp_mv_to_umv_border_sb(mv, bwl, bhl,
xd->plane[plane].subsampling_x,
xd->plane[plane].subsampling_y,
xd->mb_to_left_edge,
xd->mb_to_top_edge,
xd->mb_to_right_edge,
xd->mb_to_bottom_edge);
scale->set_scaled_offsets(scale, arg->y + y, arg->x + x);
vp9_build_inter_predictor_q4(pre, pre_stride,
dst, arg->dst_stride[plane],
&clamped_mv, &xd->scale_factor[which_mv],
4 << pred_w, 4 << pred_h, which_mv,
&xd->subpix);
}
}
void vp9_build_inter_predictors_sby(MACROBLOCKD *xd,
int mi_row,
int mi_col,
BLOCK_SIZE_TYPE bsize) {
struct build_inter_predictors_args args = {
xd, mi_col * MI_SIZE, mi_row * MI_SIZE,
{xd->plane[0].dst.buf, NULL, NULL}, {xd->plane[0].dst.stride, 0, 0},
{{xd->plane[0].pre[0].buf, NULL, NULL},
{xd->plane[0].pre[1].buf, NULL, NULL}},
{{xd->plane[0].pre[0].stride, 0, 0}, {xd->plane[0].pre[1].stride, 0, 0}},
};
foreach_predicted_block_in_plane(xd, bsize, 0, build_inter_predictors, &args);
}
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd,
int mi_row,
int mi_col,
BLOCK_SIZE_TYPE bsize) {
struct build_inter_predictors_args args = {
xd, mi_col * MI_SIZE, mi_row * MI_SIZE,
{NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf},
{0, xd->plane[1].dst.stride, xd->plane[1].dst.stride},
{{NULL, xd->plane[1].pre[0].buf, xd->plane[2].pre[0].buf},
{NULL, xd->plane[1].pre[1].buf, xd->plane[2].pre[1].buf}},
{{0, xd->plane[1].pre[0].stride, xd->plane[1].pre[0].stride},
{0, xd->plane[1].pre[1].stride, xd->plane[1].pre[1].stride}},
};
foreach_predicted_block_uv(xd, bsize, build_inter_predictors, &args);
}
void vp9_build_inter_predictors_sb(MACROBLOCKD *xd,
int mi_row, int mi_col,
BLOCK_SIZE_TYPE bsize) {
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize);
}
/*encoder only*/
void vp9_build_inter4x4_predictors_mbuv(MACROBLOCKD *xd,
int mb_row, int mb_col) {
vp9_build_inter_predictors_sbuv(xd, mb_row, mb_col,
BLOCK_SIZE_MB16X16);
}
// TODO(dkovalev: find better place for this function)
void vp9_setup_scale_factors(VP9_COMMON *cm, int i) {
const int ref = cm->active_ref_idx[i];
struct scale_factors *const sf = &cm->active_ref_scale[i];
if (ref >= NUM_YV12_BUFFERS) {
memset(sf, 0, sizeof(*sf));
} else {
YV12_BUFFER_CONFIG *const fb = &cm->yv12_fb[ref];
vp9_setup_scale_factors_for_frame(sf,
fb->y_crop_width, fb->y_crop_height,
cm->width, cm->height);
}
}