vpx/vp9/encoder/vp9_dct.c

2004 lines
72 KiB
C
Raw Normal View History

2010-05-18 17:58:33 +02:00
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include <assert.h>
2010-05-18 17:58:33 +02:00
#include <math.h>
#include "./vpx_config.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_idct.h"
// TODO: these transforms can be converted into integer forms to reduce
// the complexity
static const float dct_4[16] = {
0.500000000000000, 0.500000000000000, 0.500000000000000, 0.500000000000000,
0.653281482438188, 0.270598050073099, -0.270598050073099, -0.653281482438188,
0.500000000000000, -0.500000000000000, -0.500000000000000, 0.500000000000000,
0.270598050073099, -0.653281482438188, 0.653281482438188, -0.270598050073099
};
static const float adst_4[16] = {
0.228013428883779, 0.428525073124360, 0.577350269189626, 0.656538502008139,
0.577350269189626, 0.577350269189626, 0.000000000000000, -0.577350269189626,
0.656538502008139, -0.228013428883779, -0.577350269189626, 0.428525073124359,
0.428525073124360, -0.656538502008139, 0.577350269189626, -0.228013428883779
};
static const float dct_8[64] = {
0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274,
0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274,
0.490392640201615, 0.415734806151273, 0.277785116509801, 0.097545161008064,
-0.097545161008064, -0.277785116509801, -0.415734806151273, -0.490392640201615,
0.461939766255643, 0.191341716182545, -0.191341716182545, -0.461939766255643,
-0.461939766255643, -0.191341716182545, 0.191341716182545, 0.461939766255643,
0.415734806151273, -0.097545161008064, -0.490392640201615, -0.277785116509801,
0.277785116509801, 0.490392640201615, 0.097545161008064, -0.415734806151273,
0.353553390593274, -0.353553390593274, -0.353553390593274, 0.353553390593274,
0.353553390593274, -0.353553390593274, -0.353553390593274, 0.353553390593274,
0.277785116509801, -0.490392640201615, 0.097545161008064, 0.415734806151273,
-0.415734806151273, -0.097545161008064, 0.490392640201615, -0.277785116509801,
0.191341716182545, -0.461939766255643, 0.461939766255643, -0.191341716182545,
-0.191341716182545, 0.461939766255643, -0.461939766255643, 0.191341716182545,
0.097545161008064, -0.277785116509801, 0.415734806151273, -0.490392640201615,
0.490392640201615, -0.415734806151273, 0.277785116509801, -0.097545161008064
};
static const float adst_8[64] = {
0.089131608307533, 0.175227946595735, 0.255357107325376, 0.326790388032145,
0.387095214016349, 0.434217976756762, 0.466553967085785, 0.483002021635509,
0.255357107325376, 0.434217976756762, 0.483002021635509, 0.387095214016349,
0.175227946595735, -0.089131608307533, -0.326790388032145, -0.466553967085785,
0.387095214016349, 0.466553967085785, 0.175227946595735, -0.255357107325376,
-0.483002021635509, -0.326790388032145, 0.089131608307533, 0.434217976756762,
0.466553967085785, 0.255357107325376, -0.326790388032145, -0.434217976756762,
0.089131608307533, 0.483002021635509, 0.175227946595735, -0.387095214016348,
0.483002021635509, -0.089131608307533, -0.466553967085785, 0.175227946595735,
0.434217976756762, -0.255357107325376, -0.387095214016348, 0.326790388032145,
0.434217976756762, -0.387095214016348, -0.089131608307533, 0.466553967085786,
-0.326790388032145, -0.175227946595735, 0.483002021635509, -0.255357107325375,
0.326790388032145, -0.483002021635509, 0.387095214016349, -0.089131608307534,
-0.255357107325377, 0.466553967085785, -0.434217976756762, 0.175227946595736,
0.175227946595735, -0.326790388032145, 0.434217976756762, -0.483002021635509,
0.466553967085785, -0.387095214016348, 0.255357107325376, -0.089131608307532
};
/* Converted the transforms to integers. */
static const int16_t dct_i4[16] = {
16384, 16384, 16384, 16384,
21407, 8867, -8867, -21407,
16384, -16384, -16384, 16384,
8867, -21407, 21407, -8867
};
static const int16_t adst_i4[16] = {
7472, 14042, 18919, 21513,
18919, 18919, 0, -18919,
21513, -7472, -18919, 14042,
14042, -21513, 18919, -7472
};
static const int16_t dct_i8[64] = {
11585, 11585, 11585, 11585,
11585, 11585, 11585, 11585,
16069, 13623, 9102, 3196,
-3196, -9102, -13623, -16069,
15137, 6270, -6270, -15137,
-15137, -6270, 6270, 15137,
13623, -3196, -16069, -9102,
9102, 16069, 3196, -13623,
11585, -11585, -11585, 11585,
11585, -11585, -11585, 11585,
9102, -16069, 3196, 13623,
-13623, -3196, 16069, -9102,
6270, -15137, 15137, -6270,
-6270, 15137, -15137, 6270,
3196, -9102, 13623, -16069,
16069, -13623, 9102, -3196
};
#if CONFIG_INTHT
static const int16_t adst_i8[64] = {
1606, 4756, 7723, 10394,
12665, 14449, 15678, 16305,
4756, 12665, 16305, 14449,
7723, -1606, -10394, -15678,
7723, 16305, 10394, -4756,
-15678, -12665, 1606, 14449,
10394, 14449, -4756, -16305,
-1606, 15678, 7723, -12665,
12665, 7723, -15678, -1606,
16305, -4756, -14449, 10394,
14449, -1606, -12665, 15678,
-4756, -10394, 16305, -7723,
15678, -10394, 1606, 7723,
-14449, 16305, -12665, 4756,
16305, -15678, 14449, -12665,
10394, -7723, 4756, -1606
};
#else
static const int16_t adst_i8[64] = {
2921, 5742, 8368, 10708,
12684, 14228, 15288, 15827,
8368, 14228, 15827, 12684,
5742, -2921, -10708, -15288,
12684, 15288, 5742, -8368,
-15827, -10708, 2921, 14228,
15288, 8368, -10708, -14228,
2921, 15827, 5742, -12684,
15827, -2921, -15288, 5742,
14228, -8368, -12684, 10708,
14228, -12684, -2921, 15288,
-10708, -5742, 15827, -8368,
10708, -15827, 12684, -2921,
-8368, 15288, -14228, 5742,
5742, -10708, 14228, -15827,
15288, -12684, 8368, -2921
};
#endif
static const float dct_16[256] = {
0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000,
0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000,
0.351851, 0.338330, 0.311806, 0.273300, 0.224292, 0.166664, 0.102631, 0.034654,
-0.034654, -0.102631, -0.166664, -0.224292, -0.273300, -0.311806, -0.338330, -0.351851,
0.346760, 0.293969, 0.196424, 0.068975, -0.068975, -0.196424, -0.293969, -0.346760,
-0.346760, -0.293969, -0.196424, -0.068975, 0.068975, 0.196424, 0.293969, 0.346760,
0.338330, 0.224292, 0.034654, -0.166664, -0.311806, -0.351851, -0.273300, -0.102631,
0.102631, 0.273300, 0.351851, 0.311806, 0.166664, -0.034654, -0.224292, -0.338330,
0.326641, 0.135299, -0.135299, -0.326641, -0.326641, -0.135299, 0.135299, 0.326641,
0.326641, 0.135299, -0.135299, -0.326641, -0.326641, -0.135299, 0.135299, 0.326641,
0.311806, 0.034654, -0.273300, -0.338330, -0.102631, 0.224292, 0.351851, 0.166664,
-0.166664, -0.351851, -0.224292, 0.102631, 0.338330, 0.273300, -0.034654, -0.311806,
0.293969, -0.068975, -0.346760, -0.196424, 0.196424, 0.346760, 0.068975, -0.293969,
-0.293969, 0.068975, 0.346760, 0.196424, -0.196424, -0.346760, -0.068975, 0.293969,
0.273300, -0.166664, -0.338330, 0.034654, 0.351851, 0.102631, -0.311806, -0.224292,
0.224292, 0.311806, -0.102631, -0.351851, -0.034654, 0.338330, 0.166664, -0.273300,
0.250000, -0.250000, -0.250000, 0.250000, 0.250000, -0.250000, -0.250000, 0.250000,
0.250000, -0.250000, -0.250000, 0.250000, 0.250000, -0.250000, -0.250000, 0.250000,
0.224292, -0.311806, -0.102631, 0.351851, -0.034654, -0.338330, 0.166664, 0.273300,
-0.273300, -0.166664, 0.338330, 0.034654, -0.351851, 0.102631, 0.311806, -0.224292,
0.196424, -0.346760, 0.068975, 0.293969, -0.293969, -0.068975, 0.346760, -0.196424,
-0.196424, 0.346760, -0.068975, -0.293969, 0.293969, 0.068975, -0.346760, 0.196424,
0.166664, -0.351851, 0.224292, 0.102631, -0.338330, 0.273300, 0.034654, -0.311806,
0.311806, -0.034654, -0.273300, 0.338330, -0.102631, -0.224292, 0.351851, -0.166664,
0.135299, -0.326641, 0.326641, -0.135299, -0.135299, 0.326641, -0.326641, 0.135299,
0.135299, -0.326641, 0.326641, -0.135299, -0.135299, 0.326641, -0.326641, 0.135299,
0.102631, -0.273300, 0.351851, -0.311806, 0.166664, 0.034654, -0.224292, 0.338330,
-0.338330, 0.224292, -0.034654, -0.166664, 0.311806, -0.351851, 0.273300, -0.102631,
0.068975, -0.196424, 0.293969, -0.346760, 0.346760, -0.293969, 0.196424, -0.068975,
-0.068975, 0.196424, -0.293969, 0.346760, -0.346760, 0.293969, -0.196424, 0.068975,
0.034654, -0.102631, 0.166664, -0.224292, 0.273300, -0.311806, 0.338330, -0.351851,
0.351851, -0.338330, 0.311806, -0.273300, 0.224292, -0.166664, 0.102631, -0.034654
};
static const float adst_16[256] = {
0.033094, 0.065889, 0.098087, 0.129396, 0.159534, 0.188227, 0.215215, 0.240255,
0.263118, 0.283599, 0.301511, 0.316693, 0.329007, 0.338341, 0.344612, 0.347761,
0.098087, 0.188227, 0.263118, 0.316693, 0.344612, 0.344612, 0.316693, 0.263118,
0.188227, 0.098087, 0.000000, -0.098087, -0.188227, -0.263118, -0.316693, -0.344612,
0.159534, 0.283599, 0.344612, 0.329007, 0.240255, 0.098087, -0.065889, -0.215215,
-0.316693, -0.347761, -0.301511, -0.188227, -0.033094, 0.129396, 0.263118, 0.338341,
0.215215, 0.338341, 0.316693, 0.159534, -0.065889, -0.263118, -0.347761, -0.283599,
-0.098087, 0.129396, 0.301511, 0.344612, 0.240255, 0.033094, -0.188227, -0.329007,
0.263118, 0.344612, 0.188227, -0.098087, -0.316693, -0.316693, -0.098087, 0.188227,
0.344612, 0.263118, 0.000000, -0.263118, -0.344612, -0.188227, 0.098087, 0.316693,
0.301511, 0.301511, 0.000000, -0.301511, -0.301511, -0.000000, 0.301511, 0.301511,
0.000000, -0.301511, -0.301511, -0.000000, 0.301511, 0.301511, 0.000000, -0.301511,
0.329007, 0.215215, -0.188227, -0.338341, -0.033094, 0.316693, 0.240255, -0.159534,
-0.344612, -0.065889, 0.301511, 0.263118, -0.129396, -0.347761, -0.098087, 0.283599,
0.344612, 0.098087, -0.316693, -0.188227, 0.263118, 0.263118, -0.188227, -0.316693,
0.098087, 0.344612, 0.000000, -0.344612, -0.098087, 0.316693, 0.188227, -0.263118,
0.347761, -0.033094, -0.344612, 0.065889, 0.338341, -0.098087, -0.329007, 0.129396,
0.316693, -0.159534, -0.301511, 0.188227, 0.283599, -0.215215, -0.263118, 0.240255,
0.338341, -0.159534, -0.263118, 0.283599, 0.129396, -0.344612, 0.033094, 0.329007,
-0.188227, -0.240255, 0.301511, 0.098087, -0.347761, 0.065889, 0.316693, -0.215215,
0.316693, -0.263118, -0.098087, 0.344612, -0.188227, -0.188227, 0.344612, -0.098087,
-0.263118, 0.316693, 0.000000, -0.316693, 0.263118, 0.098087, -0.344612, 0.188227,
0.283599, -0.329007, 0.098087, 0.215215, -0.347761, 0.188227, 0.129396, -0.338341,
0.263118, 0.033094, -0.301511, 0.316693, -0.065889, -0.240255, 0.344612, -0.159534,
0.240255, -0.347761, 0.263118, -0.033094, -0.215215, 0.344612, -0.283599, 0.065889,
0.188227, -0.338341, 0.301511, -0.098087, -0.159534, 0.329007, -0.316693, 0.129396,
0.188227, -0.316693, 0.344612, -0.263118, 0.098087, 0.098087, -0.263118, 0.344612,
-0.316693, 0.188227, 0.000000, -0.188227, 0.316693, -0.344612, 0.263118, -0.098087,
0.129396, -0.240255, 0.316693, -0.347761, 0.329007, -0.263118, 0.159534, -0.033094,
-0.098087, 0.215215, -0.301511, 0.344612, -0.338341, 0.283599, -0.188227, 0.065889,
0.065889, -0.129396, 0.188227, -0.240255, 0.283599, -0.316693, 0.338341, -0.347761,
0.344612, -0.329007, 0.301511, -0.263118, 0.215215, -0.159534, 0.098087, -0.033094
};
/* Converted the transforms to integers. */
static const int16_t dct_i16[256] = {
8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192,
8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192,
11529, 11086, 10217, 8955, 7350, 5461, 3363, 1136,
-1136, -3363, -5461, -7350, -8955, -10217, -11086, -11529,
11363, 9633, 6436, 2260, -2260, -6436, -9633, -11363,
-11363, -9633, -6436, -2260, 2260, 6436, 9633, 11363,
11086, 7350, 1136, -5461, -10217, -11529, -8955, -3363,
3363, 8955, 11529, 10217, 5461, -1136, -7350, -11086,
10703, 4433, -4433, -10703, -10703, -4433, 4433, 10703,
10703, 4433, -4433, -10703, -10703, -4433, 4433, 10703,
10217, 1136, -8955, -11086, -3363, 7350, 11529, 5461,
-5461, -11529, -7350, 3363, 11086, 8955, -1136, -10217,
9633, -2260, -11363, -6436, 6436, 11363, 2260, -9633,
-9633, 2260, 11363, 6436, -6436, -11363, -2260, 9633,
8955, -5461, -11086, 1136, 11529, 3363, -10217, -7350,
7350, 10217, -3363, -11529, -1136, 11086, 5461, -8955,
8192, -8192, -8192, 8192, 8192, -8192, -8192, 8192,
8192, -8192, -8192, 8192, 8192, -8192, -8192, 8192,
7350, -10217, -3363, 11529, -1136, -11086, 5461, 8955,
-8955, -5461, 11086, 1136, -11529, 3363, 10217, -7350,
6436, -11363, 2260, 9633, -9633, -2260, 11363, -6436,
-6436, 11363, -2260, -9633, 9633, 2260, -11363, 6436,
5461, -11529, 7350, 3363, -11086, 8955, 1136, -10217,
10217, -1136, -8955, 11086, -3363, -7350, 11529, -5461,
4433, -10703, 10703, -4433, -4433, 10703, -10703, 4433,
4433, -10703, 10703, -4433, -4433, 10703, -10703, 4433,
3363, -8955, 11529, -10217, 5461, 1136, -7350, 11086,
-11086, 7350, -1136, -5461, 10217, -11529, 8955, -3363,
2260, -6436, 9633, -11363, 11363, -9633, 6436, -2260,
-2260, 6436, -9633, 11363, -11363, 9633, -6436, 2260,
1136, -3363, 5461, -7350, 8955, -10217, 11086, -11529,
11529, -11086, 10217, -8955, 7350, -5461, 3363, -1136
};
#if CONFIG_INTHT
static const int16_t adst_i16[256] = {
568, 1700, 2815, 3903, 4953, 5956, 6901, 7780,
8584, 9305, 9937, 10473, 10908, 11238, 11459, 11571,
1700, 4953, 7780, 9937, 11238, 11571, 10908, 9305,
6901, 3903, 568, -2815, -5956, -8584, -10473, -11459,
2815, 7780, 10908, 11459, 9305, 4953, -568, -5956,
-9937, -11571, -10473, -6901, -1700, 3903, 8584, 11238,
3903, 9937, 11459, 7780, 568, -6901, -11238, -10473,
-4953, 2815, 9305, 11571, 8584, 1700, -5956, -10908,
4953, 11238, 9305, 568, -8584, -11459, -5956, 3903,
10908, 9937, 1700, -7780, -11571, -6901, 2815, 10473,
5956, 11571, 4953, -6901, -11459, -3903, 7780, 11238,
2815, -8584, -10908, -1700, 9305, 10473, 568, -9937,
6901, 10908, -568, -11238, -5956, 7780, 10473, -1700,
-11459, -4953, 8584, 9937, -2815, -11571, -3903, 9305,
7780, 9305, -5956, -10473, 3903, 11238, -1700, -11571,
-568, 11459, 2815, -10908, -4953, 9937, 6901, -8584,
8584, 6901, -9937, -4953, 10908, 2815, -11459, -568,
11571, -1700, -11238, 3903, 10473, -5956, -9305, 7780,
9305, 3903, -11571, 2815, 9937, -8584, -4953, 11459,
-1700, -10473, 7780, 5956, -11238, 568, 10908, -6901,
9937, 568, -10473, 9305, 1700, -10908, 8584, 2815,
-11238, 7780, 3903, -11459, 6901, 4953, -11571, 5956,
10473, -2815, -6901, 11571, -7780, -1700, 9937, -10908,
3903, 5956, -11459, 8584, 568, -9305, 11238, -4953,
10908, -5956, -1700, 8584, -11571, 9305, -2815, -4953,
10473, -11238, 6901, 568, -7780, 11459, -9937, 3903,
11238, -8584, 3903, 1700, -6901, 10473, -11571, 9937,
-5956, 568, 4953, -9305, 11459, -10908, 7780, -2815,
11459, -10473, 8584, -5956, 2815, 568, -3903, 6901,
-9305, 10908, -11571, 11238, -9937, 7780, -4953, 1700,
11571, -11459, 11238, -10908, 10473, -9937, 9305, -8584,
7780, -6901, 5956, -4953, 3903, -2815, 1700, -568
};
#else
static const int16_t adst_i16[256] = {
1084, 2159, 3214, 4240, 5228, 6168, 7052, 7873,
8622, 9293, 9880, 10377, 10781, 11087, 11292, 11395,
3214, 6168, 8622, 10377, 11292, 11292, 10377, 8622,
6168, 3214, 0, -3214, -6168, -8622, -10377, -11292,
5228, 9293, 11292, 10781, 7873, 3214, -2159, -7052,
-10377, -11395, -9880, -6168, -1084, 4240, 8622, 11087,
7052, 11087, 10377, 5228, -2159, -8622, -11395, -9293,
-3214, 4240, 9880, 11292, 7873, 1084, -6168, -10781,
8622, 11292, 6168, -3214, -10377, -10377, -3214, 6168,
11292, 8622, 0, -8622, -11292, -6168, 3214, 10377,
9880, 9880, 0, -9880, -9880, 0, 9880, 9880,
0, -9880, -9880, 0, 9880, 9880, 0, -9880,
10781, 7052, -6168, -11087, -1084, 10377, 7873, -5228,
-11292, -2159, 9880, 8622, -4240, -11395, -3214, 9293,
11292, 3214, -10377, -6168, 8622, 8622, -6168, -10377,
3214, 11292, 0, -11292, -3214, 10377, 6168, -8622,
11395, -1084, -11292, 2159, 11087, -3214, -10781, 4240,
10377, -5228, -9880, 6168, 9293, -7052, -8622, 7873,
11087, -5228, -8622, 9293, 4240, -11292, 1084, 10781,
-6168, -7873, 9880, 3214, -11395, 2159, 10377, -7052,
10377, -8622, -3214, 11292, -6168, -6168, 11292, -3214,
-8622, 10377, 0, -10377, 8622, 3214, -11292, 6168,
9293, -10781, 3214, 7052, -11395, 6168, 4240, -11087,
8622, 1084, -9880, 10377, -2159, -7873, 11292, -5228,
7873, -11395, 8622, -1084, -7052, 11292, -9293, 2159,
6168, -11087, 9880, -3214, -5228, 10781, -10377, 4240,
6168, -10377, 11292, -8622, 3214, 3214, -8622, 11292,
-10377, 6168, 0, -6168, 10377, -11292, 8622, -3214,
4240, -7873, 10377, -11395, 10781, -8622, 5228, -1084,
-3214, 7052, -9880, 11292, -11087, 9293, -6168, 2159,
2159, -4240, 6168, -7873, 9293, -10377, 11087, -11395,
11292, -10781, 9880, -8622, 7052, -5228, 3214, -1084
};
#endif
/* For test */
#define TEST_INT 1
#if TEST_INT
#define vp9_fht_int_c vp9_fht_c
#else
#define vp9_fht_float_c vp9_fht_c
#endif
void vp9_fht_float_c(const int16_t *input, int pitch, int16_t *output,
TX_TYPE tx_type, int tx_dim) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
int i, j, k;
float bufa[256], bufb[256]; // buffers are for floating-point test purpose
// the implementation could be simplified in
// conjunction with integer transform
const int16_t *ip = input;
int16_t *op = output;
float *pfa = &bufa[0];
float *pfb = &bufb[0];
// pointers to vertical and horizontal transforms
const float *ptv, *pth;
assert(tx_type != DCT_DCT);
// load and convert residual array into floating-point
for (j = 0; j < tx_dim; j++) {
for (i = 0; i < tx_dim; i++) {
pfa[i] = (float)ip[i];
}
pfa += tx_dim;
ip += pitch / 2;
}
// vertical transformation
pfa = &bufa[0];
pfb = &bufb[0];
switch (tx_type) {
case ADST_ADST :
case ADST_DCT :
ptv = (tx_dim == 4) ? &adst_4[0] :
((tx_dim == 8) ? &adst_8[0] : &adst_16[0]);
break;
default :
ptv = (tx_dim == 4) ? &dct_4[0] :
((tx_dim == 8) ? &dct_8[0] : &dct_16[0]);
break;
}
for (j = 0; j < tx_dim; j++) {
for (i = 0; i < tx_dim; i++) {
pfb[i] = 0;
for (k = 0; k < tx_dim; k++) {
pfb[i] += ptv[k] * pfa[(k * tx_dim)];
}
pfa += 1;
}
pfb += tx_dim;
ptv += tx_dim;
pfa = &bufa[0];
}
// horizontal transformation
pfa = &bufa[0];
pfb = &bufb[0];
switch (tx_type) {
case ADST_ADST :
case DCT_ADST :
pth = (tx_dim == 4) ? &adst_4[0] :
((tx_dim == 8) ? &adst_8[0] : &adst_16[0]);
break;
default :
pth = (tx_dim == 4) ? &dct_4[0] :
((tx_dim == 8) ? &dct_8[0] : &dct_16[0]);
break;
}
for (j = 0; j < tx_dim; j++) {
for (i = 0; i < tx_dim; i++) {
pfa[i] = 0;
for (k = 0; k < tx_dim; k++) {
pfa[i] += pfb[k] * pth[k];
}
pth += tx_dim;
}
pfa += tx_dim;
pfb += tx_dim;
// pth -= tx_dim * tx_dim;
switch (tx_type) {
case ADST_ADST :
case DCT_ADST :
pth = (tx_dim == 4) ? &adst_4[0] :
((tx_dim == 8) ? &adst_8[0] : &adst_16[0]);
break;
default :
pth = (tx_dim == 4) ? &dct_4[0] :
((tx_dim == 8) ? &dct_8[0] : &dct_16[0]);
break;
}
}
// convert to short integer format and load BLOCKD buffer
op = output;
pfa = &bufa[0];
for (j = 0; j < tx_dim; j++) {
for (i = 0; i < tx_dim; i++) {
op[i] = (pfa[i] > 0 ) ? (int16_t)( 8 * pfa[i] + 0.49) :
-(int16_t)(- 8 * pfa[i] + 0.49);
}
op += tx_dim;
pfa += tx_dim;
}
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
/* Converted the transforms to integer form. */
#define VERTICAL_SHIFT 11
#define VERTICAL_ROUNDING ((1 << (VERTICAL_SHIFT - 1)) - 1)
#define HORIZONTAL_SHIFT 16
#define HORIZONTAL_ROUNDING ((1 << (HORIZONTAL_SHIFT - 1)) - 1)
void vp9_fht_int_c(const int16_t *input, int pitch, int16_t *output,
TX_TYPE tx_type, int tx_dim) {
int i, j, k;
int16_t imbuf[256];
const int16_t *ip = input;
int16_t *op = output;
int16_t *im = &imbuf[0];
/* pointers to vertical and horizontal transforms. */
const int16_t *ptv = NULL, *pth = NULL;
switch (tx_type) {
case ADST_ADST :
ptv = pth = (tx_dim == 4) ? &adst_i4[0]
: ((tx_dim == 8) ? &adst_i8[0]
: &adst_i16[0]);
break;
case ADST_DCT :
ptv = (tx_dim == 4) ? &adst_i4[0]
: ((tx_dim == 8) ? &adst_i8[0] : &adst_i16[0]);
pth = (tx_dim == 4) ? &dct_i4[0]
: ((tx_dim == 8) ? &dct_i8[0] : &dct_i16[0]);
break;
case DCT_ADST :
ptv = (tx_dim == 4) ? &dct_i4[0]
: ((tx_dim == 8) ? &dct_i8[0] : &dct_i16[0]);
pth = (tx_dim == 4) ? &adst_i4[0]
: ((tx_dim == 8) ? &adst_i8[0] : &adst_i16[0]);
break;
case DCT_DCT :
ptv = pth = (tx_dim == 4) ? &dct_i4[0]
: ((tx_dim == 8) ? &dct_i8[0] : &dct_i16[0]);
break;
default:
assert(0);
break;
}
/* vertical transformation */
for (j = 0; j < tx_dim; j++) {
for (i = 0; i < tx_dim; i++) {
int temp = 0;
for (k = 0; k < tx_dim; k++) {
temp += ptv[k] * ip[(k * (pitch >> 1))];
}
im[i] = (int16_t)((temp + VERTICAL_ROUNDING) >> VERTICAL_SHIFT);
ip++;
}
im += tx_dim; // 16
ptv += tx_dim;
ip = input;
}
/* horizontal transformation */
im = &imbuf[0];
for (j = 0; j < tx_dim; j++) {
const int16_t *pthc = pth;
for (i = 0; i < tx_dim; i++) {
int temp = 0;
for (k = 0; k < tx_dim; k++) {
temp += im[k] * pthc[k];
}
op[i] = (int16_t)((temp + HORIZONTAL_ROUNDING) >> HORIZONTAL_SHIFT);
pthc += tx_dim;
}
im += tx_dim; // 16
op += tx_dim;
}
}
static void fdct4_1d(int16_t *input, int16_t *output) {
int16_t step[4];
int temp1, temp2;
step[0] = input[0] + input[3];
step[1] = input[1] + input[2];
step[2] = input[1] - input[2];
step[3] = input[0] - input[3];
temp1 = (step[0] + step[1]) * cospi_16_64;
temp2 = (step[0] - step[1]) * cospi_16_64;
output[0] = dct_const_round_shift(temp1);
output[2] = dct_const_round_shift(temp2);
temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
output[1] = dct_const_round_shift(temp1);
output[3] = dct_const_round_shift(temp2);
}
2010-05-18 17:58:33 +02:00
void vp9_short_fdct4x4_c(short *input, short *output, int pitch) {
int16_t out[4 * 4];
int16_t *outptr = &out[0];
const int short_pitch = pitch >> 1;
int i, j;
int16_t temp_in[4], temp_out[4];
// First transform cols
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = input[j * short_pitch + i] << 4;
if (i == 0 && temp_in[0])
temp_in[0] += 1;
fdct4_1d(temp_in, temp_out);
for (j = 0; j < 4; ++j)
outptr[j * 4 + i] = temp_out[j];
}
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = out[j + i * 4];
fdct4_1d(temp_in, temp_out);
for (j = 0; j < 4; ++j)
output[j + i * 4] = (temp_out[j] + 1) >> 2;
}
2010-05-18 17:58:33 +02:00
}
#if CONFIG_INTHT4X4
static void fadst4_1d(int16_t *input, int16_t *output) {
int x0, x1, x2, x3;
int s0, s1, s2, s3, s4, s5, s6, s7;
x0 = input[0];
x1 = input[1];
x2 = input[2];
x3 = input[3];
if (!(x0 | x1 | x2 | x3)) {
output[0] = output[1] = output[2] = output[3] = 0;
return;
}
s0 = sinpi_1_9 * x0;
s1 = sinpi_4_9 * x0;
s2 = sinpi_2_9 * x1;
s3 = sinpi_1_9 * x1;
s4 = sinpi_3_9 * x2;
s5 = sinpi_4_9 * x3;
s6 = sinpi_2_9 * x3;
s7 = x0 + x1 - x3;
x0 = s0 + s2 + s5;
x1 = sinpi_3_9 * s7;
x2 = s1 - s3 + s6;
x3 = s4;
s0 = x0 + x3;
s1 = x1;
s2 = x2 - x3;
s3 = x2 - x0 + x3;
// 1-D transform scaling factor is sqrt(2).
output[0] = dct_const_round_shift(s0);
output[1] = dct_const_round_shift(s1);
output[2] = dct_const_round_shift(s2);
output[3] = dct_const_round_shift(s3);
}
void vp9_short_fht4x4_c(int16_t *input, int16_t *output,
int pitch, TX_TYPE tx_type) {
int16_t out[4 * 4];
int16_t *outptr = &out[0];
const int short_pitch = pitch >> 1;
int i, j;
int16_t temp_in[4], temp_out[4];
void (*fwdr)(int16_t*, int16_t*);
void (*fwdc)(int16_t*, int16_t*);
switch (tx_type) {
case ADST_ADST:
fwdc = &fadst4_1d;
fwdr = &fadst4_1d;
break;
case ADST_DCT:
fwdc = &fadst4_1d;
fwdr = &fdct4_1d;
break;
case DCT_ADST:
fwdc = &fdct4_1d;
fwdr = &fadst4_1d;
break;
case DCT_DCT:
fwdc = &fdct4_1d;
fwdr = &fdct4_1d;
break;
default:
assert(0);
}
// column transform
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = input[j * short_pitch + i] << 4;
if (i == 0 && temp_in[0])
temp_in[0] += 1;
fwdc(temp_in, temp_out);
for (j = 0; j < 4; ++j)
outptr[j * 4 + i] = temp_out[j];
}
// row transform
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = out[j + i * 4];
fwdr(temp_in, temp_out);
for (j = 0; j < 4; ++j)
output[j + i * 4] = (temp_out[j] + 1) >> 2;
}
}
#endif
void vp9_short_fdct8x4_c(short *input, short *output, int pitch)
{
vp9_short_fdct4x4_c(input, output, pitch);
vp9_short_fdct4x4_c(input + 4, output + 16, pitch);
}
2010-05-18 17:58:33 +02:00
static void fdct8_1d(int16_t *input, int16_t *output) {
int16_t step[8];
int temp1, temp2;
// stage 1
step[0] = input[0] + input[7];
step[1] = input[1] + input[6];
step[2] = input[2] + input[5];
step[3] = input[3] + input[4];
step[4] = input[3] - input[4];
step[5] = input[2] - input[5];
step[6] = input[1] - input[6];
step[7] = input[0] - input[7];
fdct4_1d(step, step);
// Stage 2
output[4] = step[4];
temp1 = (-step[5] + step[6]) * cospi_16_64;
temp2 = (step[6] + step[5]) * cospi_16_64;
output[5] = dct_const_round_shift(temp1);
output[6] = dct_const_round_shift(temp2);
output[7] = step[7];
// Stage 3
step[4] = output[4] + output[5];
step[5] = -output[5] + output[4];
step[6] = -output[6] + output[7];
step[7] = output[7] + output[6];
// Stage 4
output[0] = step[0];
output[4] = step[2];
output[2] = step[1];
output[6] = step[3];
temp1 = step[4] * cospi_28_64 + step[7] * cospi_4_64;
temp2 = step[5] * cospi_12_64 + step[6] * cospi_20_64;
output[1] = dct_const_round_shift(temp1);
output[5] = dct_const_round_shift(temp2);
temp1 = step[6] * cospi_12_64 + step[5] * -cospi_20_64;
temp2 = step[7] * cospi_28_64 + step[4] * -cospi_4_64;
output[3] = dct_const_round_shift(temp1);
output[7] = dct_const_round_shift(temp2);
}
void vp9_short_fdct8x8_c(int16_t *input, int16_t *output, int pitch) {
int shortpitch = pitch >> 1;
int i, j;
int16_t out[64];
int16_t temp_in[8], temp_out[8];
// First transform columns
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
temp_in[j] = input[j * shortpitch + i] << 2;
fdct8_1d(temp_in, temp_out);
for (j = 0; j < 8; j++)
out[j * 8 + i] = temp_out[j];
}
// Then transform rows
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j + i * 8];
fdct8_1d(temp_in, temp_out);
for (j = 0; j < 8; ++j)
output[j + i * 8] = temp_out[j] / 2;
}
}
#if CONFIG_INTHT
static void fadst8_1d(int16_t *input, int16_t *output) {
int x0, x1, x2, x3, x4, x5, x6, x7;
int s0, s1, s2, s3, s4, s5, s6, s7;
x0 = input[7];
x1 = input[0];
x2 = input[5];
x3 = input[2];
x4 = input[3];
x5 = input[4];
x6 = input[1];
x7 = input[6];
// stage 1
s0 = cospi_2_64 * x0 + cospi_30_64 * x1;
s1 = cospi_30_64 * x0 - cospi_2_64 * x1;
s2 = cospi_10_64 * x2 + cospi_22_64 * x3;
s3 = cospi_22_64 * x2 - cospi_10_64 * x3;
s4 = cospi_18_64 * x4 + cospi_14_64 * x5;
s5 = cospi_14_64 * x4 - cospi_18_64 * x5;
s6 = cospi_26_64 * x6 + cospi_6_64 * x7;
s7 = cospi_6_64 * x6 - cospi_26_64 * x7;
x0 = dct_const_round_shift(s0 + s4);
x1 = dct_const_round_shift(s1 + s5);
x2 = dct_const_round_shift(s2 + s6);
x3 = dct_const_round_shift(s3 + s7);
x4 = dct_const_round_shift(s0 - s4);
x5 = dct_const_round_shift(s1 - s5);
x6 = dct_const_round_shift(s2 - s6);
x7 = dct_const_round_shift(s3 - s7);
// stage 2
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = cospi_8_64 * x4 + cospi_24_64 * x5;
s5 = cospi_24_64 * x4 - cospi_8_64 * x5;
s6 = - cospi_24_64 * x6 + cospi_8_64 * x7;
s7 = cospi_8_64 * x6 + cospi_24_64 * x7;
x0 = s0 + s2;
x1 = s1 + s3;
x2 = s0 - s2;
x3 = s1 - s3;
x4 = dct_const_round_shift(s4 + s6);
x5 = dct_const_round_shift(s5 + s7);
x6 = dct_const_round_shift(s4 - s6);
x7 = dct_const_round_shift(s5 - s7);
// stage 3
s2 = cospi_16_64 * (x2 + x3);
s3 = cospi_16_64 * (x2 - x3);
s6 = cospi_16_64 * (x6 + x7);
s7 = cospi_16_64 * (x6 - x7);
x2 = dct_const_round_shift(s2);
x3 = dct_const_round_shift(s3);
x6 = dct_const_round_shift(s6);
x7 = dct_const_round_shift(s7);
output[0] = x0;
output[1] = - x4;
output[2] = x6;
output[3] = - x2;
output[4] = x3;
output[5] = - x7;
output[6] = x5;
output[7] = - x1;
}
void vp9_short_fht8x8_c(int16_t *input, int16_t *output,
int pitch, TX_TYPE tx_type) {
int16_t out[64];
int16_t *outptr = &out[0];
const int short_pitch = pitch >> 1;
int i, j;
int16_t temp_in[8], temp_out[8];
void (*fwdr)(int16_t*, int16_t*);
void (*fwdc)(int16_t*, int16_t*);
switch (tx_type) {
case ADST_ADST:
fwdc = &fadst8_1d;
fwdr = &fadst8_1d;
break;
case ADST_DCT:
fwdc = &fadst8_1d;
fwdr = &fdct8_1d;
break;
case DCT_ADST:
fwdc = &fdct8_1d;
fwdr = &fadst8_1d;
break;
case DCT_DCT:
fwdc = &fdct8_1d;
fwdr = &fdct8_1d;
break;
default:
assert(0);
}
// column transform
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = input[j * short_pitch + i] << 2;
fwdc(temp_in, temp_out);
for (j = 0; j < 8; ++j)
outptr[j * 8 + i] = temp_out[j];
}
// row transform
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j + i * 8];
fwdr(temp_in, temp_out);
for (j = 0; j < 8; ++j)
output[j + i * 8] = temp_out[j] >> 1;
}
}
#endif
void vp9_short_walsh4x4_x8_c(short *input, short *output, int pitch) {
int i;
int a1, b1, c1, d1;
short *ip = input;
short *op = output;
int pitch_short = pitch >> 1;
for (i = 0; i < 4; i++) {
a1 = ip[0 * pitch_short] + ip[3 * pitch_short];
b1 = ip[1 * pitch_short] + ip[2 * pitch_short];
c1 = ip[1 * pitch_short] - ip[2 * pitch_short];
d1 = ip[0 * pitch_short] - ip[3 * pitch_short];
op[0] = (a1 + b1 + 1) >> 1;
op[4] = (c1 + d1) >> 1;
op[8] = (a1 - b1) >> 1;
op[12] = (d1 - c1) >> 1;
ip++;
op++;
}
ip = output;
op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0] + ip[3];
b1 = ip[1] + ip[2];
c1 = ip[1] - ip[2];
d1 = ip[0] - ip[3];
op[0] = ((a1 + b1 + 1) >> 1) << WHT_UPSCALE_FACTOR;
op[1] = ((c1 + d1) >> 1) << WHT_UPSCALE_FACTOR;
op[2] = ((a1 - b1) >> 1) << WHT_UPSCALE_FACTOR;
op[3] = ((d1 - c1) >> 1) << WHT_UPSCALE_FACTOR;
ip += 4;
op += 4;
}
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
}
void vp9_short_walsh8x4_x8_c(short *input, short *output, int pitch) {
vp9_short_walsh4x4_x8_c(input, output, pitch);
vp9_short_walsh4x4_x8_c(input + 4, output + 16, pitch);
Add lossless compression mode. This commit adds lossless compression capability to the experimental branch. The lossless experiment can be enabled using --enable-lossless in configure. When the experiment is enabled, the encoder will use lossless compression mode by command line option --lossless, and the decoder automatically recognizes a losslessly encoded clip and decodes accordingly. To achieve the lossless coding, this commit has changed the following: 1. To encode at lossless mode, encoder forces the use of unit quantizer, i.e, Q 0, where effective quantization is 1. Encoder also disables the usage of 8x8 transform and allows only 4x4 transform; 2. At Q 0, the first order 4x4 DCT/IDCT have been switched over to a pair of forward and inverse Walsh-Hadamard Transform (http://goo.gl/EIsfy), with proper scaling applied to match the range of the original 4x4 DCT/IDCT pair; 3. At Q 0, the second order remains to use the previous walsh-hadamard transform pair. However, to maintain the reversibility in second order transform at Q 0, scaling down is applied to first order DC coefficients prior to forward transform, and scaling up is applied to the second order output prior to quantization. Symmetric upscaling and downscaling are added around inverse second order transform; 4. At lossless mode, encoder also disables a number of minor features to ensure no loss is introduced, these features includes: a. Trellis quantization optimization b. Loop filtering c. Aggressive zero-binning, rounding and zero-bin boosting d. Mode based zero-bin boosting Lossless coding test was performed on all clips within the derf set, to verify that the commit has achieved lossless compression for all clips. The average compression ratio is around 2.57 to 1. (http://goo.gl/dEShs) Change-Id: Ia3aba7dd09df40dd590f93b9aba134defbc64e34
2012-06-14 04:03:31 +02:00
}
// Rewrote to use same algorithm as others.
static void fdct16_1d(int16_t input[16], int16_t output[16]) {
int16_t step[16];
int temp1, temp2;
// step 1
step[ 0] = input[0] + input[15];
step[ 1] = input[1] + input[14];
step[ 2] = input[2] + input[13];
step[ 3] = input[3] + input[12];
step[ 4] = input[4] + input[11];
step[ 5] = input[5] + input[10];
step[ 6] = input[6] + input[ 9];
step[ 7] = input[7] + input[ 8];
step[ 8] = input[7] - input[ 8];
step[ 9] = input[6] - input[ 9];
step[10] = input[5] - input[10];
step[11] = input[4] - input[11];
step[12] = input[3] - input[12];
step[13] = input[2] - input[13];
step[14] = input[1] - input[14];
step[15] = input[0] - input[15];
fdct8_1d(step, step);
// step 2
output[8] = step[8];
output[9] = step[9];
temp1 = (-step[10] + step[13]) * cospi_16_64;
temp2 = (-step[11] + step[12]) * cospi_16_64;
output[10] = dct_const_round_shift(temp1);
output[11] = dct_const_round_shift(temp2);
temp1 = (step[11] + step[12]) * cospi_16_64;
temp2 = (step[10] + step[13]) * cospi_16_64;
output[12] = dct_const_round_shift(temp1);
output[13] = dct_const_round_shift(temp2);
output[14] = step[14];
output[15] = step[15];
// step 3
step[ 8] = output[8] + output[11];
step[ 9] = output[9] + output[10];
step[ 10] = output[9] - output[10];
step[ 11] = output[8] - output[11];
step[ 12] = -output[12] + output[15];
step[ 13] = -output[13] + output[14];
step[ 14] = output[13] + output[14];
step[ 15] = output[12] + output[15];
// step 4
output[8] = step[8];
temp1 = -step[9] * cospi_8_64 + step[14] * cospi_24_64;
temp2 = -step[10] * cospi_24_64 - step[13] * cospi_8_64;
output[9] = dct_const_round_shift(temp1);
output[10] = dct_const_round_shift(temp2);
output[11] = step[11];
output[12] = step[12];
temp1 = -step[10] * cospi_8_64 + step[13] * cospi_24_64;
temp2 = step[9] * cospi_24_64 + step[14] * cospi_8_64;
output[13] = dct_const_round_shift(temp1);
output[14] = dct_const_round_shift(temp2);
output[15] = step[15];
// step 5
step[8] = output[8] + output[9];
step[9] = output[8] - output[9];
step[10] = -output[10] + output[11];
step[11] = output[10] + output[11];
step[12] = output[12] + output[13];
step[13] = output[12] - output[13];
step[14] = -output[14] + output[15];
step[15] = output[14] + output[15];
// step 6
output[0] = step[0];
output[8] = step[4];
output[4] = step[2];
output[12] = step[6];
output[2] = step[1];
output[10] = step[5];
output[6] = step[3];
output[14] = step[7];
temp1 = step[8] * cospi_30_64 + step[15] * cospi_2_64;
temp2 = step[9] * cospi_14_64 + step[14] * cospi_18_64;
output[1] = dct_const_round_shift(temp1);
output[9] = dct_const_round_shift(temp2);
temp1 = step[10] * cospi_22_64 + step[13] * cospi_10_64;
temp2 = step[11] * cospi_6_64 + step[12] * cospi_26_64;
output[5] = dct_const_round_shift(temp1);
output[13] = dct_const_round_shift(temp2);
temp1 = -step[11] * cospi_26_64 + step[12] * cospi_6_64;
temp2 = -step[10] * cospi_10_64 + step[13] * cospi_22_64;
output[3] = dct_const_round_shift(temp1);
output[11] = dct_const_round_shift(temp2);
temp1 = -step[9] * cospi_18_64 + step[14] * cospi_14_64;
temp2 = -step[8] * cospi_2_64 + step[15] * cospi_30_64;
output[7] = dct_const_round_shift(temp1);
output[15] = dct_const_round_shift(temp2);
}
void vp9_short_fdct16x16_c(int16_t *input, int16_t *out, int pitch) {
int shortpitch = pitch >> 1;
int i, j;
int16_t output[256];
int16_t temp_in[16], temp_out[16];
// First transform columns
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++)
temp_in[j] = input[j * shortpitch + i] << 2;
fdct16_1d(temp_in, temp_out);
for (j = 0; j < 16; j++)
output[j * 16 + i] = (temp_out[j] + 1) >> 2;
}
// Then transform rows
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = output[j + i * 16];
fdct16_1d(temp_in, temp_out);
for (j = 0; j < 16; ++j)
out[j + i * 16] = temp_out[j];
}
}
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
#if CONFIG_INTHT16X16
void fadst16_1d(int16_t *input, int16_t *output) {
int x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
int s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15;
x0 = input[15];
x1 = input[0];
x2 = input[13];
x3 = input[2];
x4 = input[11];
x5 = input[4];
x6 = input[9];
x7 = input[6];
x8 = input[7];
x9 = input[8];
x10 = input[5];
x11 = input[10];
x12 = input[3];
x13 = input[12];
x14 = input[1];
x15 = input[14];
// stage 1
s0 = x0 * cospi_1_64 + x1 * cospi_31_64;
s1 = x0 * cospi_31_64 - x1 * cospi_1_64;
s2 = x2 * cospi_5_64 + x3 * cospi_27_64;
s3 = x2 * cospi_27_64 - x3 * cospi_5_64;
s4 = x4 * cospi_9_64 + x5 * cospi_23_64;
s5 = x4 * cospi_23_64 - x5 * cospi_9_64;
s6 = x6 * cospi_13_64 + x7 * cospi_19_64;
s7 = x6 * cospi_19_64 - x7 * cospi_13_64;
s8 = x8 * cospi_17_64 + x9 * cospi_15_64;
s9 = x8 * cospi_15_64 - x9 * cospi_17_64;
s10 = x10 * cospi_21_64 + x11 * cospi_11_64;
s11 = x10 * cospi_11_64 - x11 * cospi_21_64;
s12 = x12 * cospi_25_64 + x13 * cospi_7_64;
s13 = x12 * cospi_7_64 - x13 * cospi_25_64;
s14 = x14 * cospi_29_64 + x15 * cospi_3_64;
s15 = x14 * cospi_3_64 - x15 * cospi_29_64;
x0 = dct_const_round_shift(s0 + s8);
x1 = dct_const_round_shift(s1 + s9);
x2 = dct_const_round_shift(s2 + s10);
x3 = dct_const_round_shift(s3 + s11);
x4 = dct_const_round_shift(s4 + s12);
x5 = dct_const_round_shift(s5 + s13);
x6 = dct_const_round_shift(s6 + s14);
x7 = dct_const_round_shift(s7 + s15);
x8 = dct_const_round_shift(s0 - s8);
x9 = dct_const_round_shift(s1 - s9);
x10 = dct_const_round_shift(s2 - s10);
x11 = dct_const_round_shift(s3 - s11);
x12 = dct_const_round_shift(s4 - s12);
x13 = dct_const_round_shift(s5 - s13);
x14 = dct_const_round_shift(s6 - s14);
x15 = dct_const_round_shift(s7 - s15);
// stage 2
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = x4;
s5 = x5;
s6 = x6;
s7 = x7;
s8 = x8 * cospi_4_64 + x9 * cospi_28_64;
s9 = x8 * cospi_28_64 - x9 * cospi_4_64;
s10 = x10 * cospi_20_64 + x11 * cospi_12_64;
s11 = x10 * cospi_12_64 - x11 * cospi_20_64;
s12 = - x12 * cospi_28_64 + x13 * cospi_4_64;
s13 = x12 * cospi_4_64 + x13 * cospi_28_64;
s14 = - x14 * cospi_12_64 + x15 * cospi_20_64;
s15 = x14 * cospi_20_64 + x15 * cospi_12_64;
x0 = s0 + s4;
x1 = s1 + s5;
x2 = s2 + s6;
x3 = s3 + s7;
x4 = s0 - s4;
x5 = s1 - s5;
x6 = s2 - s6;
x7 = s3 - s7;
x8 = dct_const_round_shift(s8 + s12);
x9 = dct_const_round_shift(s9 + s13);
x10 = dct_const_round_shift(s10 + s14);
x11 = dct_const_round_shift(s11 + s15);
x12 = dct_const_round_shift(s8 - s12);
x13 = dct_const_round_shift(s9 - s13);
x14 = dct_const_round_shift(s10 - s14);
x15 = dct_const_round_shift(s11 - s15);
// stage 3
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = x4 * cospi_8_64 + x5 * cospi_24_64;
s5 = x4 * cospi_24_64 - x5 * cospi_8_64;
s6 = - x6 * cospi_24_64 + x7 * cospi_8_64;
s7 = x6 * cospi_8_64 + x7 * cospi_24_64;
s8 = x8;
s9 = x9;
s10 = x10;
s11 = x11;
s12 = x12 * cospi_8_64 + x13 * cospi_24_64;
s13 = x12 * cospi_24_64 - x13 * cospi_8_64;
s14 = - x14 * cospi_24_64 + x15 * cospi_8_64;
s15 = x14 * cospi_8_64 + x15 * cospi_24_64;
x0 = s0 + s2;
x1 = s1 + s3;
x2 = s0 - s2;
x3 = s1 - s3;
x4 = dct_const_round_shift(s4 + s6);
x5 = dct_const_round_shift(s5 + s7);
x6 = dct_const_round_shift(s4 - s6);
x7 = dct_const_round_shift(s5 - s7);
x8 = s8 + s10;
x9 = s9 + s11;
x10 = s8 - s10;
x11 = s9 - s11;
x12 = dct_const_round_shift(s12 + s14);
x13 = dct_const_round_shift(s13 + s15);
x14 = dct_const_round_shift(s12 - s14);
x15 = dct_const_round_shift(s13 - s15);
// stage 4
s2 = (- cospi_16_64) * (x2 + x3);
s3 = cospi_16_64 * (x2 - x3);
s6 = cospi_16_64 * (x6 + x7);
s7 = cospi_16_64 * (- x6 + x7);
s10 = cospi_16_64 * (x10 + x11);
s11 = cospi_16_64 * (- x10 + x11);
s14 = (- cospi_16_64) * (x14 + x15);
s15 = cospi_16_64 * (x14 - x15);
x2 = dct_const_round_shift(s2);
x3 = dct_const_round_shift(s3);
x6 = dct_const_round_shift(s6);
x7 = dct_const_round_shift(s7);
x10 = dct_const_round_shift(s10);
x11 = dct_const_round_shift(s11);
x14 = dct_const_round_shift(s14);
x15 = dct_const_round_shift(s15);
output[0] = x0;
output[1] = - x8;
output[2] = x12;
output[3] = - x4;
output[4] = x6;
output[5] = x14;
output[6] = x10;
output[7] = x2;
output[8] = x3;
output[9] = x11;
output[10] = x15;
output[11] = x7;
output[12] = x5;
output[13] = - x13;
output[14] = x9;
output[15] = - x1;
}
void vp9_short_fht16x16_c(int16_t *input, int16_t *output,
int pitch, TX_TYPE tx_type) {
int16_t out[256];
int16_t *outptr = &out[0];
const int short_pitch = pitch >> 1;
int i, j;
int16_t temp_in[16], temp_out[16];
void (*fwdr)(int16_t*, int16_t*);
void (*fwdc)(int16_t*, int16_t*);
switch (tx_type) {
case ADST_ADST:
fwdc = &fadst16_1d;
fwdr = &fadst16_1d;
break;
case ADST_DCT:
fwdc = &fadst16_1d;
fwdr = &fdct16_1d;
break;
case DCT_ADST:
fwdc = &fdct16_1d;
fwdr = &fadst16_1d;
break;
case DCT_DCT:
fwdc = &fdct16_1d;
fwdr = &fdct16_1d;
break;
default:
assert(0);
}
// column transform
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = input[j * short_pitch + i];
fwdc(temp_in, temp_out);
for (j = 0; j < 16; ++j)
outptr[j * 16 + i] = temp_out[j];
}
// row transform
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j + i * 16];
fwdr(temp_in, temp_out);
for (j = 0; j < 16; ++j)
output[j + i * 16] = temp_out[j];
}
}
#endif
#define TEST_INT_32x32_DCT 1
#if !TEST_INT_32x32_DCT
32x32 transform for superblocks. This adds Debargha's DCT/DWT hybrid and a regular 32x32 DCT, and adds code all over the place to wrap that in the bitstream/encoder/decoder/RD. Some implementation notes (these probably need careful review): - token range is extended by 1 bit, since the value range out of this transform is [-16384,16383]. - the coefficients coming out of the FDCT are manually scaled back by 1 bit, or else they won't fit in int16_t (they are 17 bits). Because of this, the RD error scoring does not right-shift the MSE score by two (unlike for 4x4/8x8/16x16). - to compensate for this loss in precision, the quantizer is halved also. This is currently a little hacky. - FDCT and IDCT is double-only right now. Needs a fixed-point impl. - There are no default probabilities for the 32x32 transform yet; I'm simply using the 16x16 luma ones. A future commit will add newly generated probabilities for all transforms. - No ADST version. I don't think we'll add one for this level; if an ADST is desired, transform-size selection can scale back to 16x16 or lower, and use an ADST at that level. Additional notes specific to Debargha's DWT/DCT hybrid: - coefficient scale is different for the top/left 16x16 (DCT-over-DWT) block than for the rest (DWT pixel differences) of the block. Therefore, RD error scoring isn't easily scalable between coefficient and pixel domain. Thus, unfortunately, we need to compute the RD distortion in the pixel domain until we figure out how to scale these appropriately. Change-Id: I00386f20f35d7fabb19aba94c8162f8aee64ef2b
2012-12-07 23:45:05 +01:00
static void dct32_1d(double *input, double *output, int stride) {
static const double C1 = 0.998795456205; // cos(pi * 1 / 64)
static const double C2 = 0.995184726672; // cos(pi * 2 / 64)
static const double C3 = 0.989176509965; // cos(pi * 3 / 64)
static const double C4 = 0.980785280403; // cos(pi * 4 / 64)
static const double C5 = 0.970031253195; // cos(pi * 5 / 64)
static const double C6 = 0.956940335732; // cos(pi * 6 / 64)
static const double C7 = 0.941544065183; // cos(pi * 7 / 64)
static const double C8 = 0.923879532511; // cos(pi * 8 / 64)
static const double C9 = 0.903989293123; // cos(pi * 9 / 64)
static const double C10 = 0.881921264348; // cos(pi * 10 / 64)
static const double C11 = 0.857728610000; // cos(pi * 11 / 64)
static const double C12 = 0.831469612303; // cos(pi * 12 / 64)
static const double C13 = 0.803207531481; // cos(pi * 13 / 64)
static const double C14 = 0.773010453363; // cos(pi * 14 / 64)
static const double C15 = 0.740951125355; // cos(pi * 15 / 64)
static const double C16 = 0.707106781187; // cos(pi * 16 / 64)
static const double C17 = 0.671558954847; // cos(pi * 17 / 64)
static const double C18 = 0.634393284164; // cos(pi * 18 / 64)
static const double C19 = 0.595699304492; // cos(pi * 19 / 64)
static const double C20 = 0.555570233020; // cos(pi * 20 / 64)
static const double C21 = 0.514102744193; // cos(pi * 21 / 64)
static const double C22 = 0.471396736826; // cos(pi * 22 / 64)
static const double C23 = 0.427555093430; // cos(pi * 23 / 64)
static const double C24 = 0.382683432365; // cos(pi * 24 / 64)
static const double C25 = 0.336889853392; // cos(pi * 25 / 64)
static const double C26 = 0.290284677254; // cos(pi * 26 / 64)
static const double C27 = 0.242980179903; // cos(pi * 27 / 64)
static const double C28 = 0.195090322016; // cos(pi * 28 / 64)
static const double C29 = 0.146730474455; // cos(pi * 29 / 64)
static const double C30 = 0.098017140330; // cos(pi * 30 / 64)
static const double C31 = 0.049067674327; // cos(pi * 31 / 64)
double step[32];
// Stage 1
step[0] = input[stride*0] + input[stride*(32 - 1)];
step[1] = input[stride*1] + input[stride*(32 - 2)];
step[2] = input[stride*2] + input[stride*(32 - 3)];
step[3] = input[stride*3] + input[stride*(32 - 4)];
step[4] = input[stride*4] + input[stride*(32 - 5)];
step[5] = input[stride*5] + input[stride*(32 - 6)];
step[6] = input[stride*6] + input[stride*(32 - 7)];
step[7] = input[stride*7] + input[stride*(32 - 8)];
step[8] = input[stride*8] + input[stride*(32 - 9)];
step[9] = input[stride*9] + input[stride*(32 - 10)];
step[10] = input[stride*10] + input[stride*(32 - 11)];
step[11] = input[stride*11] + input[stride*(32 - 12)];
step[12] = input[stride*12] + input[stride*(32 - 13)];
step[13] = input[stride*13] + input[stride*(32 - 14)];
step[14] = input[stride*14] + input[stride*(32 - 15)];
step[15] = input[stride*15] + input[stride*(32 - 16)];
step[16] = -input[stride*16] + input[stride*(32 - 17)];
step[17] = -input[stride*17] + input[stride*(32 - 18)];
step[18] = -input[stride*18] + input[stride*(32 - 19)];
step[19] = -input[stride*19] + input[stride*(32 - 20)];
step[20] = -input[stride*20] + input[stride*(32 - 21)];
step[21] = -input[stride*21] + input[stride*(32 - 22)];
step[22] = -input[stride*22] + input[stride*(32 - 23)];
step[23] = -input[stride*23] + input[stride*(32 - 24)];
step[24] = -input[stride*24] + input[stride*(32 - 25)];
step[25] = -input[stride*25] + input[stride*(32 - 26)];
step[26] = -input[stride*26] + input[stride*(32 - 27)];
step[27] = -input[stride*27] + input[stride*(32 - 28)];
step[28] = -input[stride*28] + input[stride*(32 - 29)];
step[29] = -input[stride*29] + input[stride*(32 - 30)];
step[30] = -input[stride*30] + input[stride*(32 - 31)];
step[31] = -input[stride*31] + input[stride*(32 - 32)];
// Stage 2
output[stride*0] = step[0] + step[16 - 1];
output[stride*1] = step[1] + step[16 - 2];
output[stride*2] = step[2] + step[16 - 3];
output[stride*3] = step[3] + step[16 - 4];
output[stride*4] = step[4] + step[16 - 5];
output[stride*5] = step[5] + step[16 - 6];
output[stride*6] = step[6] + step[16 - 7];
output[stride*7] = step[7] + step[16 - 8];
output[stride*8] = -step[8] + step[16 - 9];
output[stride*9] = -step[9] + step[16 - 10];
output[stride*10] = -step[10] + step[16 - 11];
output[stride*11] = -step[11] + step[16 - 12];
output[stride*12] = -step[12] + step[16 - 13];
output[stride*13] = -step[13] + step[16 - 14];
output[stride*14] = -step[14] + step[16 - 15];
output[stride*15] = -step[15] + step[16 - 16];
output[stride*16] = step[16];
output[stride*17] = step[17];
output[stride*18] = step[18];
output[stride*19] = step[19];
output[stride*20] = (-step[20] + step[27])*C16;
output[stride*21] = (-step[21] + step[26])*C16;
output[stride*22] = (-step[22] + step[25])*C16;
output[stride*23] = (-step[23] + step[24])*C16;
output[stride*24] = (step[24] + step[23])*C16;
output[stride*25] = (step[25] + step[22])*C16;
output[stride*26] = (step[26] + step[21])*C16;
output[stride*27] = (step[27] + step[20])*C16;
output[stride*28] = step[28];
output[stride*29] = step[29];
output[stride*30] = step[30];
output[stride*31] = step[31];
// Stage 3
step[0] = output[stride*0] + output[stride*(8 - 1)];
step[1] = output[stride*1] + output[stride*(8 - 2)];
step[2] = output[stride*2] + output[stride*(8 - 3)];
step[3] = output[stride*3] + output[stride*(8 - 4)];
step[4] = -output[stride*4] + output[stride*(8 - 5)];
step[5] = -output[stride*5] + output[stride*(8 - 6)];
step[6] = -output[stride*6] + output[stride*(8 - 7)];
step[7] = -output[stride*7] + output[stride*(8 - 8)];
step[8] = output[stride*8];
step[9] = output[stride*9];
step[10] = (-output[stride*10] + output[stride*13])*C16;
step[11] = (-output[stride*11] + output[stride*12])*C16;
step[12] = (output[stride*12] + output[stride*11])*C16;
step[13] = (output[stride*13] + output[stride*10])*C16;
step[14] = output[stride*14];
step[15] = output[stride*15];
step[16] = output[stride*16] + output[stride*23];
step[17] = output[stride*17] + output[stride*22];
step[18] = output[stride*18] + output[stride*21];
step[19] = output[stride*19] + output[stride*20];
step[20] = -output[stride*20] + output[stride*19];
step[21] = -output[stride*21] + output[stride*18];
step[22] = -output[stride*22] + output[stride*17];
step[23] = -output[stride*23] + output[stride*16];
step[24] = -output[stride*24] + output[stride*31];
step[25] = -output[stride*25] + output[stride*30];
step[26] = -output[stride*26] + output[stride*29];
step[27] = -output[stride*27] + output[stride*28];
step[28] = output[stride*28] + output[stride*27];
step[29] = output[stride*29] + output[stride*26];
step[30] = output[stride*30] + output[stride*25];
step[31] = output[stride*31] + output[stride*24];
// Stage 4
output[stride*0] = step[0] + step[3];
output[stride*1] = step[1] + step[2];
output[stride*2] = -step[2] + step[1];
output[stride*3] = -step[3] + step[0];
output[stride*4] = step[4];
output[stride*5] = (-step[5] + step[6])*C16;
output[stride*6] = (step[6] + step[5])*C16;
output[stride*7] = step[7];
output[stride*8] = step[8] + step[11];
output[stride*9] = step[9] + step[10];
output[stride*10] = -step[10] + step[9];
output[stride*11] = -step[11] + step[8];
output[stride*12] = -step[12] + step[15];
output[stride*13] = -step[13] + step[14];
output[stride*14] = step[14] + step[13];
output[stride*15] = step[15] + step[12];
output[stride*16] = step[16];
output[stride*17] = step[17];
output[stride*18] = step[18]*-C8 + step[29]*C24;
output[stride*19] = step[19]*-C8 + step[28]*C24;
output[stride*20] = step[20]*-C24 + step[27]*-C8;
output[stride*21] = step[21]*-C24 + step[26]*-C8;
output[stride*22] = step[22];
output[stride*23] = step[23];
output[stride*24] = step[24];
output[stride*25] = step[25];
output[stride*26] = step[26]*C24 + step[21]*-C8;
output[stride*27] = step[27]*C24 + step[20]*-C8;
output[stride*28] = step[28]*C8 + step[19]*C24;
output[stride*29] = step[29]*C8 + step[18]*C24;
output[stride*30] = step[30];
output[stride*31] = step[31];
// Stage 5
step[0] = (output[stride*0] + output[stride*1]) * C16;
step[1] = (-output[stride*1] + output[stride*0]) * C16;
step[2] = output[stride*2]*C24 + output[stride*3] * C8;
step[3] = output[stride*3]*C24 - output[stride*2] * C8;
step[4] = output[stride*4] + output[stride*5];
step[5] = -output[stride*5] + output[stride*4];
step[6] = -output[stride*6] + output[stride*7];
step[7] = output[stride*7] + output[stride*6];
step[8] = output[stride*8];
step[9] = output[stride*9]*-C8 + output[stride*14]*C24;
step[10] = output[stride*10]*-C24 + output[stride*13]*-C8;
step[11] = output[stride*11];
step[12] = output[stride*12];
step[13] = output[stride*13]*C24 + output[stride*10]*-C8;
step[14] = output[stride*14]*C8 + output[stride*9]*C24;
step[15] = output[stride*15];
step[16] = output[stride*16] + output[stride*19];
step[17] = output[stride*17] + output[stride*18];
step[18] = -output[stride*18] + output[stride*17];
step[19] = -output[stride*19] + output[stride*16];
step[20] = -output[stride*20] + output[stride*23];
step[21] = -output[stride*21] + output[stride*22];
step[22] = output[stride*22] + output[stride*21];
step[23] = output[stride*23] + output[stride*20];
step[24] = output[stride*24] + output[stride*27];
step[25] = output[stride*25] + output[stride*26];
step[26] = -output[stride*26] + output[stride*25];
step[27] = -output[stride*27] + output[stride*24];
step[28] = -output[stride*28] + output[stride*31];
step[29] = -output[stride*29] + output[stride*30];
step[30] = output[stride*30] + output[stride*29];
step[31] = output[stride*31] + output[stride*28];
// Stage 6
output[stride*0] = step[0];
output[stride*1] = step[1];
output[stride*2] = step[2];
output[stride*3] = step[3];
output[stride*4] = step[4]*C28 + step[7]*C4;
output[stride*5] = step[5]*C12 + step[6]*C20;
output[stride*6] = step[6]*C12 + step[5]*-C20;
output[stride*7] = step[7]*C28 + step[4]*-C4;
output[stride*8] = step[8] + step[9];
output[stride*9] = -step[9] + step[8];
output[stride*10] = -step[10] + step[11];
output[stride*11] = step[11] + step[10];
output[stride*12] = step[12] + step[13];
output[stride*13] = -step[13] + step[12];
output[stride*14] = -step[14] + step[15];
output[stride*15] = step[15] + step[14];
output[stride*16] = step[16];
output[stride*17] = step[17]*-C4 + step[30]*C28;
output[stride*18] = step[18]*-C28 + step[29]*-C4;
output[stride*19] = step[19];
output[stride*20] = step[20];
output[stride*21] = step[21]*-C20 + step[26]*C12;
output[stride*22] = step[22]*-C12 + step[25]*-C20;
output[stride*23] = step[23];
output[stride*24] = step[24];
output[stride*25] = step[25]*C12 + step[22]*-C20;
output[stride*26] = step[26]*C20 + step[21]*C12;
output[stride*27] = step[27];
output[stride*28] = step[28];
output[stride*29] = step[29]*C28 + step[18]*-C4;
output[stride*30] = step[30]*C4 + step[17]*C28;
output[stride*31] = step[31];
// Stage 7
step[0] = output[stride*0];
step[1] = output[stride*1];
step[2] = output[stride*2];
step[3] = output[stride*3];
step[4] = output[stride*4];
step[5] = output[stride*5];
step[6] = output[stride*6];
step[7] = output[stride*7];
step[8] = output[stride*8]*C30 + output[stride*15]*C2;
step[9] = output[stride*9]*C14 + output[stride*14]*C18;
step[10] = output[stride*10]*C22 + output[stride*13]*C10;
step[11] = output[stride*11]*C6 + output[stride*12]*C26;
step[12] = output[stride*12]*C6 + output[stride*11]*-C26;
step[13] = output[stride*13]*C22 + output[stride*10]*-C10;
step[14] = output[stride*14]*C14 + output[stride*9]*-C18;
step[15] = output[stride*15]*C30 + output[stride*8]*-C2;
step[16] = output[stride*16] + output[stride*17];
step[17] = -output[stride*17] + output[stride*16];
step[18] = -output[stride*18] + output[stride*19];
step[19] = output[stride*19] + output[stride*18];
step[20] = output[stride*20] + output[stride*21];
step[21] = -output[stride*21] + output[stride*20];
step[22] = -output[stride*22] + output[stride*23];
step[23] = output[stride*23] + output[stride*22];
step[24] = output[stride*24] + output[stride*25];
step[25] = -output[stride*25] + output[stride*24];
step[26] = -output[stride*26] + output[stride*27];
step[27] = output[stride*27] + output[stride*26];
step[28] = output[stride*28] + output[stride*29];
step[29] = -output[stride*29] + output[stride*28];
step[30] = -output[stride*30] + output[stride*31];
step[31] = output[stride*31] + output[stride*30];
// Final stage --- outputs indices are bit-reversed.
output[stride*0] = step[0];
output[stride*16] = step[1];
output[stride*8] = step[2];
output[stride*24] = step[3];
output[stride*4] = step[4];
output[stride*20] = step[5];
output[stride*12] = step[6];
output[stride*28] = step[7];
output[stride*2] = step[8];
output[stride*18] = step[9];
output[stride*10] = step[10];
output[stride*26] = step[11];
output[stride*6] = step[12];
output[stride*22] = step[13];
output[stride*14] = step[14];
output[stride*30] = step[15];
output[stride*1] = step[16]*C31 + step[31]*C1;
output[stride*17] = step[17]*C15 + step[30]*C17;
output[stride*9] = step[18]*C23 + step[29]*C9;
output[stride*25] = step[19]*C7 + step[28]*C25;
output[stride*5] = step[20]*C27 + step[27]*C5;
output[stride*21] = step[21]*C11 + step[26]*C21;
output[stride*13] = step[22]*C19 + step[25]*C13;
output[stride*29] = step[23]*C3 + step[24]*C29;
output[stride*3] = step[24]*C3 + step[23]*-C29;
output[stride*19] = step[25]*C19 + step[22]*-C13;
output[stride*11] = step[26]*C11 + step[21]*-C21;
output[stride*27] = step[27]*C27 + step[20]*-C5;
output[stride*7] = step[28]*C7 + step[19]*-C25;
output[stride*23] = step[29]*C23 + step[18]*-C9;
output[stride*15] = step[30]*C15 + step[17]*-C17;
output[stride*31] = step[31]*C31 + step[16]*-C1;
}
void vp9_short_fdct32x32_c(int16_t *input, int16_t *out, int pitch) {
vp9_clear_system_state(); // Make it simd safe : __asm emms;
{
int shortpitch = pitch >> 1;
int i, j;
double output[1024];
// First transform columns
for (i = 0; i < 32; i++) {
double temp_in[32], temp_out[32];
for (j = 0; j < 32; j++)
temp_in[j] = input[j*shortpitch + i];
dct32_1d(temp_in, temp_out, 1);
for (j = 0; j < 32; j++)
output[j*32 + i] = temp_out[j];
}
// Then transform rows
for (i = 0; i < 32; ++i) {
double temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = output[j + i*32];
dct32_1d(temp_in, temp_out, 1);
for (j = 0; j < 32; ++j)
output[j + i*32] = temp_out[j];
}
// Scale by some magic number
for (i = 0; i < 1024; i++) {
out[i] = (short)round(output[i]/4);
}
}
vp9_clear_system_state(); // Make it simd safe : __asm emms;
}
#else
#define RIGHT_SHIFT 13
#define ROUNDING (1 << (RIGHT_SHIFT - 1))
static void dct32_1d(int *input, int *output, int last_shift_bits) {
static const int16_t C1 = 8182; // 2^13
static const int16_t C2 = 8153;
static const int16_t C3 = 8103;
static const int16_t C4 = 8035;
static const int16_t C5 = 7946;
static const int16_t C6 = 7839;
static const int16_t C7 = 7713;
static const int16_t C8 = 7568;
static const int16_t C9 = 7405;
static const int16_t C10 = 7225;
static const int16_t C11 = 7027;
static const int16_t C12 = 6811;
static const int16_t C13 = 6580;
static const int16_t C14 = 6333;
static const int16_t C15 = 6070;
static const int16_t C16 = 5793;
static const int16_t C17 = 5501;
static const int16_t C18 = 5197;
static const int16_t C19 = 4880;
static const int16_t C20 = 4551;
static const int16_t C21 = 4212;
static const int16_t C22 = 3862;
static const int16_t C23 = 3503;
static const int16_t C24 = 3135;
static const int16_t C25 = 2760;
static const int16_t C26 = 2378;
static const int16_t C27 = 1990;
static const int16_t C28 = 1598;
static const int16_t C29 = 1202;
static const int16_t C30 = 803;
static const int16_t C31 = 402;
int step[32];
int last_rounding = 0;
int final_shift = RIGHT_SHIFT;
int final_rounding = 0;
if (last_shift_bits > 0)
last_rounding = 1 << (last_shift_bits - 1);
final_shift += last_shift_bits;
if (final_shift > 0)
final_rounding = 1 << (final_shift - 1);
// Stage 1
step[0] = input[0] + input[(32 - 1)];
step[1] = input[1] + input[(32 - 2)];
step[2] = input[2] + input[(32 - 3)];
step[3] = input[3] + input[(32 - 4)];
step[4] = input[4] + input[(32 - 5)];
step[5] = input[5] + input[(32 - 6)];
step[6] = input[6] + input[(32 - 7)];
step[7] = input[7] + input[(32 - 8)];
step[8] = input[8] + input[(32 - 9)];
step[9] = input[9] + input[(32 - 10)];
step[10] = input[10] + input[(32 - 11)];
step[11] = input[11] + input[(32 - 12)];
step[12] = input[12] + input[(32 - 13)];
step[13] = input[13] + input[(32 - 14)];
step[14] = input[14] + input[(32 - 15)];
step[15] = input[15] + input[(32 - 16)];
step[16] = -input[16] + input[(32 - 17)];
step[17] = -input[17] + input[(32 - 18)];
step[18] = -input[18] + input[(32 - 19)];
step[19] = -input[19] + input[(32 - 20)];
step[20] = -input[20] + input[(32 - 21)];
step[21] = -input[21] + input[(32 - 22)];
step[22] = -input[22] + input[(32 - 23)];
step[23] = -input[23] + input[(32 - 24)];
step[24] = -input[24] + input[(32 - 25)];
step[25] = -input[25] + input[(32 - 26)];
step[26] = -input[26] + input[(32 - 27)];
step[27] = -input[27] + input[(32 - 28)];
step[28] = -input[28] + input[(32 - 29)];
step[29] = -input[29] + input[(32 - 30)];
step[30] = -input[30] + input[(32 - 31)];
step[31] = -input[31] + input[(32 - 32)];
// Stage 2
output[0] = step[0] + step[16 - 1];
output[1] = step[1] + step[16 - 2];
output[2] = step[2] + step[16 - 3];
output[3] = step[3] + step[16 - 4];
output[4] = step[4] + step[16 - 5];
output[5] = step[5] + step[16 - 6];
output[6] = step[6] + step[16 - 7];
output[7] = step[7] + step[16 - 8];
output[8] = -step[8] + step[16 - 9];
output[9] = -step[9] + step[16 - 10];
output[10] = -step[10] + step[16 - 11];
output[11] = -step[11] + step[16 - 12];
output[12] = -step[12] + step[16 - 13];
output[13] = -step[13] + step[16 - 14];
output[14] = -step[14] + step[16 - 15];
output[15] = -step[15] + step[16 - 16];
output[16] = step[16];
output[17] = step[17];
output[18] = step[18];
output[19] = step[19];
output[20] = ((-step[20] + step[27]) * C16 + ROUNDING) >> RIGHT_SHIFT;
output[21] = ((-step[21] + step[26]) * C16 + ROUNDING) >> RIGHT_SHIFT;
output[22] = ((-step[22] + step[25]) * C16 + ROUNDING) >> RIGHT_SHIFT;
output[23] = ((-step[23] + step[24]) * C16 + ROUNDING) >> RIGHT_SHIFT;
output[24] = ((step[24] + step[23]) * C16 + ROUNDING) >> RIGHT_SHIFT;
output[25] = ((step[25] + step[22]) * C16 + ROUNDING) >> RIGHT_SHIFT;
output[26] = ((step[26] + step[21]) * C16 + ROUNDING) >> RIGHT_SHIFT;
output[27] = ((step[27] + step[20]) * C16 + ROUNDING) >> RIGHT_SHIFT;
output[28] = step[28];
output[29] = step[29];
output[30] = step[30];
output[31] = step[31];
// Stage 3
step[0] = output[0] + output[(8 - 1)];
step[1] = output[1] + output[(8 - 2)];
step[2] = output[2] + output[(8 - 3)];
step[3] = output[3] + output[(8 - 4)];
step[4] = -output[4] + output[(8 - 5)];
step[5] = -output[5] + output[(8 - 6)];
step[6] = -output[6] + output[(8 - 7)];
step[7] = -output[7] + output[(8 - 8)];
step[8] = output[8];
step[9] = output[9];
step[10] = ((-output[10] + output[13]) * C16 + ROUNDING) >> RIGHT_SHIFT;
step[11] = ((-output[11] + output[12]) * C16 + ROUNDING) >> RIGHT_SHIFT;
step[12] = ((output[12] + output[11]) * C16 + ROUNDING) >> RIGHT_SHIFT;
step[13] = ((output[13] + output[10]) * C16 + ROUNDING) >> RIGHT_SHIFT;
step[14] = output[14];
step[15] = output[15];
step[16] = output[16] + output[23];
step[17] = output[17] + output[22];
step[18] = output[18] + output[21];
step[19] = output[19] + output[20];
step[20] = -output[20] + output[19];
step[21] = -output[21] + output[18];
step[22] = -output[22] + output[17];
step[23] = -output[23] + output[16];
step[24] = -output[24] + output[31];
step[25] = -output[25] + output[30];
step[26] = -output[26] + output[29];
step[27] = -output[27] + output[28];
step[28] = output[28] + output[27];
step[29] = output[29] + output[26];
step[30] = output[30] + output[25];
step[31] = output[31] + output[24];
// Stage 4
output[0] = step[0] + step[3];
output[1] = step[1] + step[2];
output[2] = -step[2] + step[1];
output[3] = -step[3] + step[0];
output[4] = step[4];
output[5] = ((-step[5] + step[6]) * C16 + ROUNDING) >> RIGHT_SHIFT;
output[6] = ((step[6] + step[5]) * C16 + ROUNDING) >> RIGHT_SHIFT;
output[7] = step[7];
output[8] = step[8] + step[11];
output[9] = step[9] + step[10];
output[10] = -step[10] + step[9];
output[11] = -step[11] + step[8];
output[12] = -step[12] + step[15];
output[13] = -step[13] + step[14];
output[14] = step[14] + step[13];
output[15] = step[15] + step[12];
output[16] = step[16];
output[17] = step[17];
output[18] = (step[18] * -C8 + step[29] * C24 + ROUNDING) >> RIGHT_SHIFT;
output[19] = (step[19] * -C8 + step[28] * C24 + ROUNDING) >> RIGHT_SHIFT;
output[20] = (step[20] * -C24 + step[27] * -C8 + ROUNDING) >> RIGHT_SHIFT;
output[21] = (step[21] * -C24 + step[26] * -C8 + ROUNDING) >> RIGHT_SHIFT;
output[22] = step[22];
output[23] = step[23];
output[24] = step[24];
output[25] = step[25];
output[26] = (step[26] * C24 + step[21] * -C8 + ROUNDING) >> RIGHT_SHIFT;
output[27] = (step[27] * C24 + step[20] * -C8 + ROUNDING) >> RIGHT_SHIFT;
output[28] = (step[28] * C8 + step[19] * C24 + ROUNDING) >> RIGHT_SHIFT;
output[29] = (step[29] * C8 + step[18] * C24 + ROUNDING) >> RIGHT_SHIFT;
output[30] = step[30];
output[31] = step[31];
// Stage 5
step[0] = ((output[0] + output[1]) * C16 + ROUNDING) >> RIGHT_SHIFT;
step[1] = ((-output[1] + output[0]) * C16 + ROUNDING) >> RIGHT_SHIFT;
step[2] = (output[2] * C24 + output[3] * C8 + ROUNDING) >> RIGHT_SHIFT;
step[3] = (output[3] * C24 - output[2] * C8 + ROUNDING) >> RIGHT_SHIFT;
step[4] = output[4] + output[5];
step[5] = -output[5] + output[4];
step[6] = -output[6] + output[7];
step[7] = output[7] + output[6];
step[8] = output[8];
step[9] = (output[9] * -C8 + output[14] * C24 + ROUNDING) >> RIGHT_SHIFT;
step[10] = (output[10] * -C24 + output[13] * -C8 + ROUNDING) >> RIGHT_SHIFT;
step[11] = output[11];
step[12] = output[12];
step[13] = (output[13] * C24 + output[10] * -C8 + ROUNDING) >> RIGHT_SHIFT;
step[14] = (output[14] * C8 + output[9] * C24 + ROUNDING) >> RIGHT_SHIFT;
step[15] = output[15];
step[16] = output[16] + output[19];
step[17] = output[17] + output[18];
step[18] = -output[18] + output[17];
step[19] = -output[19] + output[16];
step[20] = -output[20] + output[23];
step[21] = -output[21] + output[22];
step[22] = output[22] + output[21];
step[23] = output[23] + output[20];
step[24] = output[24] + output[27];
step[25] = output[25] + output[26];
step[26] = -output[26] + output[25];
step[27] = -output[27] + output[24];
step[28] = -output[28] + output[31];
step[29] = -output[29] + output[30];
step[30] = output[30] + output[29];
step[31] = output[31] + output[28];
// Stage 6
output[0] = step[0];
output[1] = step[1];
output[2] = step[2];
output[3] = step[3];
output[4] = (step[4] * C28 + step[7] * C4 + ROUNDING) >> RIGHT_SHIFT;
output[5] = (step[5] * C12 + step[6] * C20 + ROUNDING) >> RIGHT_SHIFT;
output[6] = (step[6] * C12 + step[5] * -C20 + ROUNDING) >> RIGHT_SHIFT;
output[7] = (step[7] * C28 + step[4] * -C4 + ROUNDING) >> RIGHT_SHIFT;
output[8] = step[8] + step[9];
output[9] = -step[9] + step[8];
output[10] = -step[10] + step[11];
output[11] = step[11] + step[10];
output[12] = step[12] + step[13];
output[13] = -step[13] + step[12];
output[14] = -step[14] + step[15];
output[15] = step[15] + step[14];
output[16] = step[16];
output[17] = (step[17] * -C4 + step[30] * C28 + ROUNDING) >> RIGHT_SHIFT;
output[18] = (step[18] * -C28 + step[29] * -C4 + ROUNDING) >> RIGHT_SHIFT;
output[19] = step[19];
output[20] = step[20];
output[21] = (step[21] * -C20 + step[26] * C12 + ROUNDING) >> RIGHT_SHIFT;
output[22] = (step[22] * -C12 + step[25] * -C20 + ROUNDING) >> RIGHT_SHIFT;
output[23] = step[23];
output[24] = step[24];
output[25] = (step[25] * C12 + step[22] * -C20 + ROUNDING) >> RIGHT_SHIFT;
output[26] = (step[26] * C20 + step[21] * C12 + ROUNDING) >> RIGHT_SHIFT;
output[27] = step[27];
output[28] = step[28];
output[29] = (step[29] * C28 + step[18] * -C4 + ROUNDING) >> RIGHT_SHIFT;
output[30] = (step[30] * C4 + step[17] * C28 + ROUNDING) >> RIGHT_SHIFT;
output[31] = step[31];
// Stage 7
step[0] = output[0];
step[1] = output[1];
step[2] = output[2];
step[3] = output[3];
step[4] = output[4];
step[5] = output[5];
step[6] = output[6];
step[7] = output[7];
step[8] = (output[8] * C30 + output[15] * C2 + ROUNDING) >> RIGHT_SHIFT;
step[9] = (output[9] * C14 + output[14] * C18 + ROUNDING) >> RIGHT_SHIFT;
step[10] = (output[10] * C22 + output[13] * C10 + ROUNDING) >> RIGHT_SHIFT;
step[11] = (output[11] * C6 + output[12] * C26 + ROUNDING) >> RIGHT_SHIFT;
step[12] = (output[12] * C6 + output[11] * -C26 + ROUNDING) >> RIGHT_SHIFT;
step[13] = (output[13] * C22 + output[10] * -C10 + ROUNDING) >> RIGHT_SHIFT;
step[14] = (output[14] * C14 + output[9] * -C18 + ROUNDING) >> RIGHT_SHIFT;
step[15] = (output[15] * C30 + output[8] * -C2 + ROUNDING) >> RIGHT_SHIFT;
step[16] = output[16] + output[17];
step[17] = -output[17] + output[16];
step[18] = -output[18] + output[19];
step[19] = output[19] + output[18];
step[20] = output[20] + output[21];
step[21] = -output[21] + output[20];
step[22] = -output[22] + output[23];
step[23] = output[23] + output[22];
step[24] = output[24] + output[25];
step[25] = -output[25] + output[24];
step[26] = -output[26] + output[27];
step[27] = output[27] + output[26];
step[28] = output[28] + output[29];
step[29] = -output[29] + output[28];
step[30] = -output[30] + output[31];
step[31] = output[31] + output[30];
// Final stage --- outputs indices are bit-reversed.
output[0] = (step[0] + last_rounding) >> last_shift_bits;
output[16] = (step[1] + last_rounding) >> last_shift_bits;
output[8] = (step[2] + last_rounding) >> last_shift_bits;
output[24] = (step[3] + last_rounding) >> last_shift_bits;
output[4] = (step[4] + last_rounding) >> last_shift_bits;
output[20] = (step[5] + last_rounding) >> last_shift_bits;
output[12] = (step[6] + last_rounding) >> last_shift_bits;
output[28] = (step[7] + last_rounding) >> last_shift_bits;
output[2] = (step[8] + last_rounding) >> last_shift_bits;
output[18] = (step[9] + last_rounding) >> last_shift_bits;
output[10] = (step[10] + last_rounding) >> last_shift_bits;
output[26] = (step[11] + last_rounding) >> last_shift_bits;
output[6] = (step[12] + last_rounding) >> last_shift_bits;
output[22] = (step[13] + last_rounding) >> last_shift_bits;
output[14] = (step[14] + last_rounding) >> last_shift_bits;
output[30] = (step[15] + last_rounding) >> last_shift_bits;
output[1] = (step[16] * C31 + step[31] * C1 + final_rounding) >> final_shift;
output[17] = (step[17] * C15 + step[30] * C17 + final_rounding)
>> final_shift;
output[9] = (step[18] * C23 + step[29] * C9 + final_rounding) >> final_shift;
output[25] = (step[19] * C7 + step[28] * C25 + final_rounding) >> final_shift;
output[5] = (step[20] * C27 + step[27] * C5 + final_rounding) >> final_shift;
output[21] = (step[21] * C11 + step[26] * C21 + final_rounding)
>> final_shift;
output[13] = (step[22] * C19 + step[25] * C13 + final_rounding)
>> final_shift;
output[29] = (step[23] * C3 + step[24] * C29 + final_rounding) >> final_shift;
output[3] = (step[24] * C3 + step[23] * -C29 + final_rounding) >> final_shift;
output[19] = (step[25] * C19 + step[22] * -C13 + final_rounding)
>> final_shift;
output[11] = (step[26] * C11 + step[21] * -C21 + final_rounding)
>> final_shift;
output[27] = (step[27] * C27 + step[20] * -C5 + final_rounding)
>> final_shift;
output[7] = (step[28] * C7 + step[19] * -C25 + final_rounding) >> final_shift;
output[23] = (step[29] * C23 + step[18] * -C9 + final_rounding)
>> final_shift;
output[15] = (step[30] * C15 + step[17] * -C17 + final_rounding)
>> final_shift;
output[31] = (step[31] * C31 + step[16] * -C1 + final_rounding)
>> final_shift;
// Clamp to fit 16-bit.
if (last_shift_bits > 0) {
int i;
for (i = 0; i < 32; i++)
if (output[i] < -32768)
output[i] = -32768;
else if (output[i] > 32767)
output[i] = 32767;
}
}
#undef RIGHT_SHIFT
#undef ROUNDING
void vp9_short_fdct32x32_c(int16_t *input, int16_t *out, int pitch) {
int shortpitch = pitch >> 1;
int i, j;
int output[1024];
// First transform columns
for (i = 0; i < 32; i++) {
int temp_in[32], temp_out[32];
for (j = 0; j < 32; j++)
temp_in[j] = input[j * shortpitch + i];
dct32_1d(temp_in, temp_out, 0);
for (j = 0; j < 32; j++)
output[j * 32 + i] = temp_out[j];
}
// Then transform rows
for (i = 0; i < 32; ++i) {
int temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j)
temp_in[j] = output[j + i * 32];
dct32_1d(temp_in, temp_out, 2);
for (j = 0; j < 32; ++j)
out[j + i * 32] = temp_out[j];
}
}
#endif