vpx/vp9/encoder/x86/vp9_dct_sse2.c

2902 lines
123 KiB
C
Raw Normal View History

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <emmintrin.h> // SSE2
#include "vp9/common/vp9_idct.h" // for cospi constants
#include "vpx_ports/mem.h"
void vp9_fdct4x4_1_sse2(const int16_t *input, int16_t *output, int stride) {
__m128i in0, in1;
__m128i tmp;
const __m128i zero = _mm_setzero_si128();
in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
in1 = _mm_unpacklo_epi64(in1, _mm_loadl_epi64((const __m128i *)
(input + 2 * stride)));
in0 = _mm_unpacklo_epi64(in0, _mm_loadl_epi64((const __m128i *)
(input + 3 * stride)));
tmp = _mm_add_epi16(in0, in1);
in0 = _mm_unpacklo_epi16(zero, tmp);
in1 = _mm_unpackhi_epi16(zero, tmp);
in0 = _mm_srai_epi32(in0, 16);
in1 = _mm_srai_epi32(in1, 16);
tmp = _mm_add_epi32(in0, in1);
in0 = _mm_unpacklo_epi32(tmp, zero);
in1 = _mm_unpackhi_epi32(tmp, zero);
tmp = _mm_add_epi32(in0, in1);
in0 = _mm_srli_si128(tmp, 8);
in1 = _mm_add_epi32(tmp, in0);
in0 = _mm_slli_epi32(in1, 1);
_mm_store_si128((__m128i *)(output), in0);
}
void vp9_fdct4x4_sse2(const int16_t *input, int16_t *output, int stride) {
// This 2D transform implements 4 vertical 1D transforms followed
// by 4 horizontal 1D transforms. The multiplies and adds are as given
// by Chen, Smith and Fralick ('77). The commands for moving the data
// around have been minimized by hand.
// For the purposes of the comments, the 16 inputs are referred to at i0
// through iF (in raster order), intermediate variables are a0, b0, c0
// through f, and correspond to the in-place computations mapped to input
// locations. The outputs, o0 through oF are labeled according to the
// output locations.
// Constants
// These are the coefficients used for the multiplies.
// In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64),
// where cospi_N_64 = cos(N pi /64)
const __m128i k__cospi_A = _mm_setr_epi16(cospi_16_64, cospi_16_64,
cospi_16_64, cospi_16_64,
cospi_16_64, -cospi_16_64,
cospi_16_64, -cospi_16_64);
const __m128i k__cospi_B = _mm_setr_epi16(cospi_16_64, -cospi_16_64,
cospi_16_64, -cospi_16_64,
cospi_16_64, cospi_16_64,
cospi_16_64, cospi_16_64);
const __m128i k__cospi_C = _mm_setr_epi16(cospi_8_64, cospi_24_64,
cospi_8_64, cospi_24_64,
cospi_24_64, -cospi_8_64,
cospi_24_64, -cospi_8_64);
const __m128i k__cospi_D = _mm_setr_epi16(cospi_24_64, -cospi_8_64,
cospi_24_64, -cospi_8_64,
cospi_8_64, cospi_24_64,
cospi_8_64, cospi_24_64);
const __m128i k__cospi_E = _mm_setr_epi16(cospi_16_64, cospi_16_64,
cospi_16_64, cospi_16_64,
cospi_16_64, cospi_16_64,
cospi_16_64, cospi_16_64);
const __m128i k__cospi_F = _mm_setr_epi16(cospi_16_64, -cospi_16_64,
cospi_16_64, -cospi_16_64,
cospi_16_64, -cospi_16_64,
cospi_16_64, -cospi_16_64);
const __m128i k__cospi_G = _mm_setr_epi16(cospi_8_64, cospi_24_64,
cospi_8_64, cospi_24_64,
-cospi_8_64, -cospi_24_64,
-cospi_8_64, -cospi_24_64);
const __m128i k__cospi_H = _mm_setr_epi16(cospi_24_64, -cospi_8_64,
cospi_24_64, -cospi_8_64,
-cospi_24_64, cospi_8_64,
-cospi_24_64, cospi_8_64);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
// This second rounding constant saves doing some extra adds at the end
const __m128i k__DCT_CONST_ROUNDING2 = _mm_set1_epi32(DCT_CONST_ROUNDING
+(DCT_CONST_ROUNDING << 1));
const int DCT_CONST_BITS2 = DCT_CONST_BITS+2;
const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
__m128i in0, in1;
// Load inputs.
{
in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
in1 = _mm_unpacklo_epi64(in1, _mm_loadl_epi64((const __m128i *)
(input + 2 * stride)));
in0 = _mm_unpacklo_epi64(in0, _mm_loadl_epi64((const __m128i *)
(input + 3 * stride)));
// in0 = [i0 i1 i2 i3 iC iD iE iF]
// in1 = [i4 i5 i6 i7 i8 i9 iA iB]
// multiply by 16 to give some extra precision
in0 = _mm_slli_epi16(in0, 4);
in1 = _mm_slli_epi16(in1, 4);
// if (i == 0 && input[0]) input[0] += 1;
// add 1 to the upper left pixel if it is non-zero, which helps reduce
// the round-trip error
{
// The mask will only contain whether the first value is zero, all
// other comparison will fail as something shifted by 4 (above << 4)
// can never be equal to one. To increment in the non-zero case, we
// add the mask and one for the first element:
// - if zero, mask = -1, v = v - 1 + 1 = v
// - if non-zero, mask = 0, v = v + 0 + 1 = v + 1
__m128i mask = _mm_cmpeq_epi16(in0, k__nonzero_bias_a);
in0 = _mm_add_epi16(in0, mask);
in0 = _mm_add_epi16(in0, k__nonzero_bias_b);
}
}
// There are 4 total stages, alternating between an add/subtract stage
// followed by an multiply-and-add stage.
{
// Stage 1: Add/subtract
// in0 = [i0 i1 i2 i3 iC iD iE iF]
// in1 = [i4 i5 i6 i7 i8 i9 iA iB]
const __m128i r0 = _mm_unpacklo_epi16(in0, in1);
const __m128i r1 = _mm_unpackhi_epi16(in0, in1);
// r0 = [i0 i4 i1 i5 i2 i6 i3 i7]
// r1 = [iC i8 iD i9 iE iA iF iB]
const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4);
const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4);
// r2 = [i0 i4 i1 i5 i3 i7 i2 i6]
// r3 = [iC i8 iD i9 iF iB iE iA]
const __m128i t0 = _mm_add_epi16(r2, r3);
const __m128i t1 = _mm_sub_epi16(r2, r3);
// t0 = [a0 a4 a1 a5 a3 a7 a2 a6]
// t1 = [aC a8 aD a9 aF aB aE aA]
// Stage 2: multiply by constants (which gets us into 32 bits).
// The constants needed here are:
// k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16]
// k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16]
// k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08]
// k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24]
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A);
const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C);
const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D);
// Then add and right-shift to get back to 16-bit range
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
// w0 = [b0 b1 b7 b6]
// w1 = [b8 b9 bF bE]
// w2 = [b4 b5 b3 b2]
// w3 = [bC bD bB bA]
const __m128i x0 = _mm_packs_epi32(w0, w1);
const __m128i x1 = _mm_packs_epi32(w2, w3);
// x0 = [b0 b1 b7 b6 b8 b9 bF bE]
// x1 = [b4 b5 b3 b2 bC bD bB bA]
in0 = _mm_shuffle_epi32(x0, 0xD8);
in1 = _mm_shuffle_epi32(x1, 0x8D);
// in0 = [b0 b1 b8 b9 b7 b6 bF bE]
// in1 = [b3 b2 bB bA b4 b5 bC bD]
}
{
// vertical DCTs finished. Now we do the horizontal DCTs.
// Stage 3: Add/subtract
const __m128i t0 = _mm_add_epi16(in0, in1);
const __m128i t1 = _mm_sub_epi16(in0, in1);
// t0 = [c0 c1 c8 c9 c4 c5 cC cD]
// t1 = [c3 c2 cB cA -c7 -c6 -cF -cE]
// Stage 4: multiply by constants (which gets us into 32 bits).
// The constants needed here are:
// k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16]
// k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16]
// k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24]
// k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08]
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E);
const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F);
const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G);
const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H);
// Then add and right-shift to get back to 16-bit range
// but this combines the final right-shift as well to save operations
// This unusual rounding operations is to maintain bit-accurate
// compatibility with the c version of this function which has two
// rounding steps in a row.
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2);
// w0 = [o0 o4 o8 oC]
// w1 = [o2 o6 oA oE]
// w2 = [o1 o5 o9 oD]
// w3 = [o3 o7 oB oF]
// remember the o's are numbered according to the correct output location
const __m128i x0 = _mm_packs_epi32(w0, w1);
const __m128i x1 = _mm_packs_epi32(w2, w3);
// x0 = [o0 o4 o8 oC o2 o6 oA oE]
// x1 = [o1 o5 o9 oD o3 o7 oB oF]
const __m128i y0 = _mm_unpacklo_epi16(x0, x1);
const __m128i y1 = _mm_unpackhi_epi16(x0, x1);
// y0 = [o0 o1 o4 o5 o8 o9 oC oD]
// y1 = [o2 o3 o6 o7 oA oB oE oF]
in0 = _mm_unpacklo_epi32(y0, y1);
// in0 = [o0 o1 o2 o3 o4 o5 o6 o7]
in1 = _mm_unpackhi_epi32(y0, y1);
// in1 = [o8 o9 oA oB oC oD oE oF]
}
// Post-condition (v + 1) >> 2 is now incorporated into previous
// add and right-shift commands. Only 2 store instructions needed
// because we are using the fact that 1/3 are stored just after 0/2.
{
_mm_storeu_si128((__m128i *)(output + 0 * 4), in0);
_mm_storeu_si128((__m128i *)(output + 2 * 4), in1);
}
}
static INLINE void load_buffer_4x4(const int16_t *input, __m128i *in,
int stride) {
const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1);
const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0);
__m128i mask;
in[0] = _mm_loadl_epi64((const __m128i *)(input + 0 * stride));
in[1] = _mm_loadl_epi64((const __m128i *)(input + 1 * stride));
in[2] = _mm_loadl_epi64((const __m128i *)(input + 2 * stride));
in[3] = _mm_loadl_epi64((const __m128i *)(input + 3 * stride));
in[0] = _mm_slli_epi16(in[0], 4);
in[1] = _mm_slli_epi16(in[1], 4);
in[2] = _mm_slli_epi16(in[2], 4);
in[3] = _mm_slli_epi16(in[3], 4);
mask = _mm_cmpeq_epi16(in[0], k__nonzero_bias_a);
in[0] = _mm_add_epi16(in[0], mask);
in[0] = _mm_add_epi16(in[0], k__nonzero_bias_b);
}
static INLINE void write_buffer_4x4(int16_t *output, __m128i *res) {
const __m128i kOne = _mm_set1_epi16(1);
__m128i in01 = _mm_unpacklo_epi64(res[0], res[1]);
__m128i in23 = _mm_unpacklo_epi64(res[2], res[3]);
__m128i out01 = _mm_add_epi16(in01, kOne);
__m128i out23 = _mm_add_epi16(in23, kOne);
out01 = _mm_srai_epi16(out01, 2);
out23 = _mm_srai_epi16(out23, 2);
_mm_store_si128((__m128i *)(output + 0 * 8), out01);
_mm_store_si128((__m128i *)(output + 1 * 8), out23);
}
static INLINE void transpose_4x4(__m128i *res) {
// Combine and transpose
// 00 01 02 03 20 21 22 23
// 10 11 12 13 30 31 32 33
const __m128i tr0_0 = _mm_unpacklo_epi16(res[0], res[1]);
const __m128i tr0_1 = _mm_unpackhi_epi16(res[0], res[1]);
// 00 10 01 11 02 12 03 13
// 20 30 21 31 22 32 23 33
res[0] = _mm_unpacklo_epi32(tr0_0, tr0_1);
res[2] = _mm_unpackhi_epi32(tr0_0, tr0_1);
// 00 10 20 30 01 11 21 31
// 02 12 22 32 03 13 23 33
// only use the first 4 16-bit integers
res[1] = _mm_unpackhi_epi64(res[0], res[0]);
res[3] = _mm_unpackhi_epi64(res[2], res[2]);
}
void fdct4_sse2(__m128i *in) {
const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
__m128i u[4], v[4];
u[0]=_mm_unpacklo_epi16(in[0], in[1]);
u[1]=_mm_unpacklo_epi16(in[3], in[2]);
v[0] = _mm_add_epi16(u[0], u[1]);
v[1] = _mm_sub_epi16(u[0], u[1]);
u[0] = _mm_madd_epi16(v[0], k__cospi_p16_p16); // 0
u[1] = _mm_madd_epi16(v[0], k__cospi_p16_m16); // 2
u[2] = _mm_madd_epi16(v[1], k__cospi_p08_p24); // 1
u[3] = _mm_madd_epi16(v[1], k__cospi_p24_m08); // 3
v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
in[0] = _mm_packs_epi32(u[0], u[1]);
in[1] = _mm_packs_epi32(u[2], u[3]);
transpose_4x4(in);
}
void fadst4_sse2(__m128i *in) {
const __m128i k__sinpi_p01_p02 = pair_set_epi16(sinpi_1_9, sinpi_2_9);
const __m128i k__sinpi_p04_m01 = pair_set_epi16(sinpi_4_9, -sinpi_1_9);
const __m128i k__sinpi_p03_p04 = pair_set_epi16(sinpi_3_9, sinpi_4_9);
const __m128i k__sinpi_m03_p02 = pair_set_epi16(-sinpi_3_9, sinpi_2_9);
const __m128i k__sinpi_p03_p03 = _mm_set1_epi16(sinpi_3_9);
const __m128i kZero = _mm_set1_epi16(0);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
__m128i u[8], v[8];
__m128i in7 = _mm_add_epi16(in[0], in[1]);
u[0] = _mm_unpacklo_epi16(in[0], in[1]);
u[1] = _mm_unpacklo_epi16(in[2], in[3]);
u[2] = _mm_unpacklo_epi16(in7, kZero);
u[3] = _mm_unpacklo_epi16(in[2], kZero);
u[4] = _mm_unpacklo_epi16(in[3], kZero);
v[0] = _mm_madd_epi16(u[0], k__sinpi_p01_p02); // s0 + s2
v[1] = _mm_madd_epi16(u[1], k__sinpi_p03_p04); // s4 + s5
v[2] = _mm_madd_epi16(u[2], k__sinpi_p03_p03); // x1
v[3] = _mm_madd_epi16(u[0], k__sinpi_p04_m01); // s1 - s3
v[4] = _mm_madd_epi16(u[1], k__sinpi_m03_p02); // -s4 + s6
v[5] = _mm_madd_epi16(u[3], k__sinpi_p03_p03); // s4
v[6] = _mm_madd_epi16(u[4], k__sinpi_p03_p03);
u[0] = _mm_add_epi32(v[0], v[1]);
u[1] = _mm_sub_epi32(v[2], v[6]);
u[2] = _mm_add_epi32(v[3], v[4]);
u[3] = _mm_sub_epi32(u[2], u[0]);
u[4] = _mm_slli_epi32(v[5], 2);
u[5] = _mm_sub_epi32(u[4], v[5]);
u[6] = _mm_add_epi32(u[3], u[5]);
v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
v[3] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
in[0] = _mm_packs_epi32(u[0], u[2]);
in[1] = _mm_packs_epi32(u[1], u[3]);
transpose_4x4(in);
}
void vp9_fht4x4_sse2(const int16_t *input, int16_t *output,
int stride, int tx_type) {
__m128i in[4];
switch (tx_type) {
case DCT_DCT:
vp9_fdct4x4_sse2(input, output, stride);
break;
case ADST_DCT:
load_buffer_4x4(input, in, stride);
fadst4_sse2(in);
fdct4_sse2(in);
write_buffer_4x4(output, in);
break;
case DCT_ADST:
load_buffer_4x4(input, in, stride);
fdct4_sse2(in);
fadst4_sse2(in);
write_buffer_4x4(output, in);
break;
case ADST_ADST:
load_buffer_4x4(input, in, stride);
fadst4_sse2(in);
fadst4_sse2(in);
write_buffer_4x4(output, in);
break;
default:
assert(0);
break;
}
}
void vp9_fdct8x8_1_sse2(const int16_t *input, int16_t *output, int stride) {
__m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
__m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
__m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
__m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
__m128i u0, u1, sum;
u0 = _mm_add_epi16(in0, in1);
u1 = _mm_add_epi16(in2, in3);
in0 = _mm_load_si128((const __m128i *)(input + 4 * stride));
in1 = _mm_load_si128((const __m128i *)(input + 5 * stride));
in2 = _mm_load_si128((const __m128i *)(input + 6 * stride));
in3 = _mm_load_si128((const __m128i *)(input + 7 * stride));
sum = _mm_add_epi16(u0, u1);
in0 = _mm_add_epi16(in0, in1);
in2 = _mm_add_epi16(in2, in3);
sum = _mm_add_epi16(sum, in0);
u0 = _mm_setzero_si128();
sum = _mm_add_epi16(sum, in2);
in0 = _mm_unpacklo_epi16(u0, sum);
in1 = _mm_unpackhi_epi16(u0, sum);
in0 = _mm_srai_epi32(in0, 16);
in1 = _mm_srai_epi32(in1, 16);
sum = _mm_add_epi32(in0, in1);
in0 = _mm_unpacklo_epi32(sum, u0);
in1 = _mm_unpackhi_epi32(sum, u0);
sum = _mm_add_epi32(in0, in1);
in0 = _mm_srli_si128(sum, 8);
in1 = _mm_add_epi32(sum, in0);
_mm_store_si128((__m128i *)(output), in1);
}
void vp9_fdct8x8_sse2(const int16_t *input, int16_t *output, int stride) {
int pass;
// Constants
// When we use them, in one case, they are all the same. In all others
// it's a pair of them that we need to repeat four times. This is done
// by constructing the 32 bit constant corresponding to that pair.
const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
// Load input
__m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
__m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
__m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
__m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
__m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride));
__m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride));
__m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride));
__m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride));
// Pre-condition input (shift by two)
in0 = _mm_slli_epi16(in0, 2);
in1 = _mm_slli_epi16(in1, 2);
in2 = _mm_slli_epi16(in2, 2);
in3 = _mm_slli_epi16(in3, 2);
in4 = _mm_slli_epi16(in4, 2);
in5 = _mm_slli_epi16(in5, 2);
in6 = _mm_slli_epi16(in6, 2);
in7 = _mm_slli_epi16(in7, 2);
// We do two passes, first the columns, then the rows. The results of the
// first pass are transposed so that the same column code can be reused. The
// results of the second pass are also transposed so that the rows (processed
// as columns) are put back in row positions.
for (pass = 0; pass < 2; pass++) {
// To store results of each pass before the transpose.
__m128i res0, res1, res2, res3, res4, res5, res6, res7;
// Add/subtract
const __m128i q0 = _mm_add_epi16(in0, in7);
const __m128i q1 = _mm_add_epi16(in1, in6);
const __m128i q2 = _mm_add_epi16(in2, in5);
const __m128i q3 = _mm_add_epi16(in3, in4);
const __m128i q4 = _mm_sub_epi16(in3, in4);
const __m128i q5 = _mm_sub_epi16(in2, in5);
const __m128i q6 = _mm_sub_epi16(in1, in6);
const __m128i q7 = _mm_sub_epi16(in0, in7);
// Work on first four results
{
// Add/subtract
const __m128i r0 = _mm_add_epi16(q0, q3);
const __m128i r1 = _mm_add_epi16(q1, q2);
const __m128i r2 = _mm_sub_epi16(q1, q2);
const __m128i r3 = _mm_sub_epi16(q0, q3);
// Interleave to do the multiply by constants which gets us into 32bits
const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
// dct_const_round_shift
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
// Combine
res0 = _mm_packs_epi32(w0, w1);
res4 = _mm_packs_epi32(w2, w3);
res2 = _mm_packs_epi32(w4, w5);
res6 = _mm_packs_epi32(w6, w7);
}
// Work on next four results
{
// Interleave to do the multiply by constants which gets us into 32bits
const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
// dct_const_round_shift
const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
// Combine
const __m128i r0 = _mm_packs_epi32(s0, s1);
const __m128i r1 = _mm_packs_epi32(s2, s3);
// Add/subtract
const __m128i x0 = _mm_add_epi16(q4, r0);
const __m128i x1 = _mm_sub_epi16(q4, r0);
const __m128i x2 = _mm_sub_epi16(q7, r1);
const __m128i x3 = _mm_add_epi16(q7, r1);
// Interleave to do the multiply by constants which gets us into 32bits
const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
// dct_const_round_shift
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
// Combine
res1 = _mm_packs_epi32(w0, w1);
res7 = _mm_packs_epi32(w2, w3);
res5 = _mm_packs_epi32(w4, w5);
res3 = _mm_packs_epi32(w6, w7);
}
// Transpose the 8x8.
{
// 00 01 02 03 04 05 06 07
// 10 11 12 13 14 15 16 17
// 20 21 22 23 24 25 26 27
// 30 31 32 33 34 35 36 37
// 40 41 42 43 44 45 46 47
// 50 51 52 53 54 55 56 57
// 60 61 62 63 64 65 66 67
// 70 71 72 73 74 75 76 77
const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
// 00 10 01 11 02 12 03 13
// 20 30 21 31 22 32 23 33
// 04 14 05 15 06 16 07 17
// 24 34 25 35 26 36 27 37
// 40 50 41 51 42 52 43 53
// 60 70 61 71 62 72 63 73
// 54 54 55 55 56 56 57 57
// 64 74 65 75 66 76 67 77
const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
// 00 10 20 30 01 11 21 31
// 40 50 60 70 41 51 61 71
// 02 12 22 32 03 13 23 33
// 42 52 62 72 43 53 63 73
// 04 14 24 34 05 15 21 36
// 44 54 64 74 45 55 61 76
// 06 16 26 36 07 17 27 37
// 46 56 66 76 47 57 67 77
in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
// 00 10 20 30 40 50 60 70
// 01 11 21 31 41 51 61 71
// 02 12 22 32 42 52 62 72
// 03 13 23 33 43 53 63 73
// 04 14 24 34 44 54 64 74
// 05 15 25 35 45 55 65 75
// 06 16 26 36 46 56 66 76
// 07 17 27 37 47 57 67 77
}
}
// Post-condition output and store it
{
// Post-condition (division by two)
// division of two 16 bits signed numbers using shifts
// n / 2 = (n - (n >> 15)) >> 1
const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
in0 = _mm_sub_epi16(in0, sign_in0);
in1 = _mm_sub_epi16(in1, sign_in1);
in2 = _mm_sub_epi16(in2, sign_in2);
in3 = _mm_sub_epi16(in3, sign_in3);
in4 = _mm_sub_epi16(in4, sign_in4);
in5 = _mm_sub_epi16(in5, sign_in5);
in6 = _mm_sub_epi16(in6, sign_in6);
in7 = _mm_sub_epi16(in7, sign_in7);
in0 = _mm_srai_epi16(in0, 1);
in1 = _mm_srai_epi16(in1, 1);
in2 = _mm_srai_epi16(in2, 1);
in3 = _mm_srai_epi16(in3, 1);
in4 = _mm_srai_epi16(in4, 1);
in5 = _mm_srai_epi16(in5, 1);
in6 = _mm_srai_epi16(in6, 1);
in7 = _mm_srai_epi16(in7, 1);
// store results
_mm_store_si128((__m128i *)(output + 0 * 8), in0);
_mm_store_si128((__m128i *)(output + 1 * 8), in1);
_mm_store_si128((__m128i *)(output + 2 * 8), in2);
_mm_store_si128((__m128i *)(output + 3 * 8), in3);
_mm_store_si128((__m128i *)(output + 4 * 8), in4);
_mm_store_si128((__m128i *)(output + 5 * 8), in5);
_mm_store_si128((__m128i *)(output + 6 * 8), in6);
_mm_store_si128((__m128i *)(output + 7 * 8), in7);
}
}
// load 8x8 array
static INLINE void load_buffer_8x8(const int16_t *input, __m128i *in,
int stride) {
in[0] = _mm_load_si128((const __m128i *)(input + 0 * stride));
in[1] = _mm_load_si128((const __m128i *)(input + 1 * stride));
in[2] = _mm_load_si128((const __m128i *)(input + 2 * stride));
in[3] = _mm_load_si128((const __m128i *)(input + 3 * stride));
in[4] = _mm_load_si128((const __m128i *)(input + 4 * stride));
in[5] = _mm_load_si128((const __m128i *)(input + 5 * stride));
in[6] = _mm_load_si128((const __m128i *)(input + 6 * stride));
in[7] = _mm_load_si128((const __m128i *)(input + 7 * stride));
in[0] = _mm_slli_epi16(in[0], 2);
in[1] = _mm_slli_epi16(in[1], 2);
in[2] = _mm_slli_epi16(in[2], 2);
in[3] = _mm_slli_epi16(in[3], 2);
in[4] = _mm_slli_epi16(in[4], 2);
in[5] = _mm_slli_epi16(in[5], 2);
in[6] = _mm_slli_epi16(in[6], 2);
in[7] = _mm_slli_epi16(in[7], 2);
}
// right shift and rounding
static INLINE void right_shift_8x8(__m128i *res, int const bit) {
const __m128i kOne = _mm_set1_epi16(1);
const int bit_m02 = bit - 2;
__m128i sign0 = _mm_srai_epi16(res[0], 15);
__m128i sign1 = _mm_srai_epi16(res[1], 15);
__m128i sign2 = _mm_srai_epi16(res[2], 15);
__m128i sign3 = _mm_srai_epi16(res[3], 15);
__m128i sign4 = _mm_srai_epi16(res[4], 15);
__m128i sign5 = _mm_srai_epi16(res[5], 15);
__m128i sign6 = _mm_srai_epi16(res[6], 15);
__m128i sign7 = _mm_srai_epi16(res[7], 15);
if (bit_m02 >= 0) {
__m128i k_const_rounding = _mm_slli_epi16(kOne, bit_m02);
res[0] = _mm_add_epi16(res[0], k_const_rounding);
res[1] = _mm_add_epi16(res[1], k_const_rounding);
res[2] = _mm_add_epi16(res[2], k_const_rounding);
res[3] = _mm_add_epi16(res[3], k_const_rounding);
res[4] = _mm_add_epi16(res[4], k_const_rounding);
res[5] = _mm_add_epi16(res[5], k_const_rounding);
res[6] = _mm_add_epi16(res[6], k_const_rounding);
res[7] = _mm_add_epi16(res[7], k_const_rounding);
}
res[0] = _mm_sub_epi16(res[0], sign0);
res[1] = _mm_sub_epi16(res[1], sign1);
res[2] = _mm_sub_epi16(res[2], sign2);
res[3] = _mm_sub_epi16(res[3], sign3);
res[4] = _mm_sub_epi16(res[4], sign4);
res[5] = _mm_sub_epi16(res[5], sign5);
res[6] = _mm_sub_epi16(res[6], sign6);
res[7] = _mm_sub_epi16(res[7], sign7);
res[0] = _mm_srai_epi16(res[0], bit);
res[1] = _mm_srai_epi16(res[1], bit);
res[2] = _mm_srai_epi16(res[2], bit);
res[3] = _mm_srai_epi16(res[3], bit);
res[4] = _mm_srai_epi16(res[4], bit);
res[5] = _mm_srai_epi16(res[5], bit);
res[6] = _mm_srai_epi16(res[6], bit);
res[7] = _mm_srai_epi16(res[7], bit);
}
// write 8x8 array
static INLINE void write_buffer_8x8(int16_t *output, __m128i *res, int stride) {
_mm_store_si128((__m128i *)(output + 0 * stride), res[0]);
_mm_store_si128((__m128i *)(output + 1 * stride), res[1]);
_mm_store_si128((__m128i *)(output + 2 * stride), res[2]);
_mm_store_si128((__m128i *)(output + 3 * stride), res[3]);
_mm_store_si128((__m128i *)(output + 4 * stride), res[4]);
_mm_store_si128((__m128i *)(output + 5 * stride), res[5]);
_mm_store_si128((__m128i *)(output + 6 * stride), res[6]);
_mm_store_si128((__m128i *)(output + 7 * stride), res[7]);
}
// perform in-place transpose
static INLINE void array_transpose_8x8(__m128i *in, __m128i *res) {
const __m128i tr0_0 = _mm_unpacklo_epi16(in[0], in[1]);
const __m128i tr0_1 = _mm_unpacklo_epi16(in[2], in[3]);
const __m128i tr0_2 = _mm_unpackhi_epi16(in[0], in[1]);
const __m128i tr0_3 = _mm_unpackhi_epi16(in[2], in[3]);
const __m128i tr0_4 = _mm_unpacklo_epi16(in[4], in[5]);
const __m128i tr0_5 = _mm_unpacklo_epi16(in[6], in[7]);
const __m128i tr0_6 = _mm_unpackhi_epi16(in[4], in[5]);
const __m128i tr0_7 = _mm_unpackhi_epi16(in[6], in[7]);
// 00 10 01 11 02 12 03 13
// 20 30 21 31 22 32 23 33
// 04 14 05 15 06 16 07 17
// 24 34 25 35 26 36 27 37
// 40 50 41 51 42 52 43 53
// 60 70 61 71 62 72 63 73
// 44 54 45 55 46 56 47 57
// 64 74 65 75 66 76 67 77
const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_4, tr0_5);
const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_4, tr0_5);
const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_2, tr0_3);
const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_2, tr0_3);
const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
// 00 10 20 30 01 11 21 31
// 40 50 60 70 41 51 61 71
// 02 12 22 32 03 13 23 33
// 42 52 62 72 43 53 63 73
// 04 14 24 34 05 15 25 35
// 44 54 64 74 45 55 65 75
// 06 16 26 36 07 17 27 37
// 46 56 66 76 47 57 67 77
res[0] = _mm_unpacklo_epi64(tr1_0, tr1_1);
res[1] = _mm_unpackhi_epi64(tr1_0, tr1_1);
res[2] = _mm_unpacklo_epi64(tr1_2, tr1_3);
res[3] = _mm_unpackhi_epi64(tr1_2, tr1_3);
res[4] = _mm_unpacklo_epi64(tr1_4, tr1_5);
res[5] = _mm_unpackhi_epi64(tr1_4, tr1_5);
res[6] = _mm_unpacklo_epi64(tr1_6, tr1_7);
res[7] = _mm_unpackhi_epi64(tr1_6, tr1_7);
// 00 10 20 30 40 50 60 70
// 01 11 21 31 41 51 61 71
// 02 12 22 32 42 52 62 72
// 03 13 23 33 43 53 63 73
// 04 14 24 34 44 54 64 74
// 05 15 25 35 45 55 65 75
// 06 16 26 36 46 56 66 76
// 07 17 27 37 47 57 67 77
}
void fdct8_sse2(__m128i *in) {
// constants
const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
__m128i u0, u1, u2, u3, u4, u5, u6, u7;
__m128i v0, v1, v2, v3, v4, v5, v6, v7;
__m128i s0, s1, s2, s3, s4, s5, s6, s7;
// stage 1
s0 = _mm_add_epi16(in[0], in[7]);
s1 = _mm_add_epi16(in[1], in[6]);
s2 = _mm_add_epi16(in[2], in[5]);
s3 = _mm_add_epi16(in[3], in[4]);
s4 = _mm_sub_epi16(in[3], in[4]);
s5 = _mm_sub_epi16(in[2], in[5]);
s6 = _mm_sub_epi16(in[1], in[6]);
s7 = _mm_sub_epi16(in[0], in[7]);
u0 = _mm_add_epi16(s0, s3);
u1 = _mm_add_epi16(s1, s2);
u2 = _mm_sub_epi16(s1, s2);
u3 = _mm_sub_epi16(s0, s3);
// interleave and perform butterfly multiplication/addition
v0 = _mm_unpacklo_epi16(u0, u1);
v1 = _mm_unpackhi_epi16(u0, u1);
v2 = _mm_unpacklo_epi16(u2, u3);
v3 = _mm_unpackhi_epi16(u2, u3);
u0 = _mm_madd_epi16(v0, k__cospi_p16_p16);
u1 = _mm_madd_epi16(v1, k__cospi_p16_p16);
u2 = _mm_madd_epi16(v0, k__cospi_p16_m16);
u3 = _mm_madd_epi16(v1, k__cospi_p16_m16);
u4 = _mm_madd_epi16(v2, k__cospi_p24_p08);
u5 = _mm_madd_epi16(v3, k__cospi_p24_p08);
u6 = _mm_madd_epi16(v2, k__cospi_m08_p24);
u7 = _mm_madd_epi16(v3, k__cospi_m08_p24);
// shift and rounding
v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
in[0] = _mm_packs_epi32(u0, u1);
in[2] = _mm_packs_epi32(u4, u5);
in[4] = _mm_packs_epi32(u2, u3);
in[6] = _mm_packs_epi32(u6, u7);
// stage 2
// interleave and perform butterfly multiplication/addition
u0 = _mm_unpacklo_epi16(s6, s5);
u1 = _mm_unpackhi_epi16(s6, s5);
v0 = _mm_madd_epi16(u0, k__cospi_p16_m16);
v1 = _mm_madd_epi16(u1, k__cospi_p16_m16);
v2 = _mm_madd_epi16(u0, k__cospi_p16_p16);
v3 = _mm_madd_epi16(u1, k__cospi_p16_p16);
// shift and rounding
u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
u0 = _mm_packs_epi32(v0, v1);
u1 = _mm_packs_epi32(v2, v3);
// stage 3
s0 = _mm_add_epi16(s4, u0);
s1 = _mm_sub_epi16(s4, u0);
s2 = _mm_sub_epi16(s7, u1);
s3 = _mm_add_epi16(s7, u1);
// stage 4
u0 = _mm_unpacklo_epi16(s0, s3);
u1 = _mm_unpackhi_epi16(s0, s3);
u2 = _mm_unpacklo_epi16(s1, s2);
u3 = _mm_unpackhi_epi16(s1, s2);
v0 = _mm_madd_epi16(u0, k__cospi_p28_p04);
v1 = _mm_madd_epi16(u1, k__cospi_p28_p04);
v2 = _mm_madd_epi16(u2, k__cospi_p12_p20);
v3 = _mm_madd_epi16(u3, k__cospi_p12_p20);
v4 = _mm_madd_epi16(u2, k__cospi_m20_p12);
v5 = _mm_madd_epi16(u3, k__cospi_m20_p12);
v6 = _mm_madd_epi16(u0, k__cospi_m04_p28);
v7 = _mm_madd_epi16(u1, k__cospi_m04_p28);
// shift and rounding
u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING);
u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING);
u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING);
u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING);
v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
v4 = _mm_srai_epi32(u4, DCT_CONST_BITS);
v5 = _mm_srai_epi32(u5, DCT_CONST_BITS);
v6 = _mm_srai_epi32(u6, DCT_CONST_BITS);
v7 = _mm_srai_epi32(u7, DCT_CONST_BITS);
in[1] = _mm_packs_epi32(v0, v1);
in[3] = _mm_packs_epi32(v4, v5);
in[5] = _mm_packs_epi32(v2, v3);
in[7] = _mm_packs_epi32(v6, v7);
// transpose
array_transpose_8x8(in, in);
}
void fadst8_sse2(__m128i *in) {
// Constants
const __m128i k__cospi_p02_p30 = pair_set_epi16(cospi_2_64, cospi_30_64);
const __m128i k__cospi_p30_m02 = pair_set_epi16(cospi_30_64, -cospi_2_64);
const __m128i k__cospi_p10_p22 = pair_set_epi16(cospi_10_64, cospi_22_64);
const __m128i k__cospi_p22_m10 = pair_set_epi16(cospi_22_64, -cospi_10_64);
const __m128i k__cospi_p18_p14 = pair_set_epi16(cospi_18_64, cospi_14_64);
const __m128i k__cospi_p14_m18 = pair_set_epi16(cospi_14_64, -cospi_18_64);
const __m128i k__cospi_p26_p06 = pair_set_epi16(cospi_26_64, cospi_6_64);
const __m128i k__cospi_p06_m26 = pair_set_epi16(cospi_6_64, -cospi_26_64);
const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
const __m128i k__const_0 = _mm_set1_epi16(0);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
__m128i u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15;
__m128i v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15;
__m128i w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
__m128i s0, s1, s2, s3, s4, s5, s6, s7;
__m128i in0, in1, in2, in3, in4, in5, in6, in7;
// properly aligned for butterfly input
in0 = in[7];
in1 = in[0];
in2 = in[5];
in3 = in[2];
in4 = in[3];
in5 = in[4];
in6 = in[1];
in7 = in[6];
// column transformation
// stage 1
// interleave and multiply/add into 32-bit integer
s0 = _mm_unpacklo_epi16(in0, in1);
s1 = _mm_unpackhi_epi16(in0, in1);
s2 = _mm_unpacklo_epi16(in2, in3);
s3 = _mm_unpackhi_epi16(in2, in3);
s4 = _mm_unpacklo_epi16(in4, in5);
s5 = _mm_unpackhi_epi16(in4, in5);
s6 = _mm_unpacklo_epi16(in6, in7);
s7 = _mm_unpackhi_epi16(in6, in7);
u0 = _mm_madd_epi16(s0, k__cospi_p02_p30);
u1 = _mm_madd_epi16(s1, k__cospi_p02_p30);
u2 = _mm_madd_epi16(s0, k__cospi_p30_m02);
u3 = _mm_madd_epi16(s1, k__cospi_p30_m02);
u4 = _mm_madd_epi16(s2, k__cospi_p10_p22);
u5 = _mm_madd_epi16(s3, k__cospi_p10_p22);
u6 = _mm_madd_epi16(s2, k__cospi_p22_m10);
u7 = _mm_madd_epi16(s3, k__cospi_p22_m10);
u8 = _mm_madd_epi16(s4, k__cospi_p18_p14);
u9 = _mm_madd_epi16(s5, k__cospi_p18_p14);
u10 = _mm_madd_epi16(s4, k__cospi_p14_m18);
u11 = _mm_madd_epi16(s5, k__cospi_p14_m18);
u12 = _mm_madd_epi16(s6, k__cospi_p26_p06);
u13 = _mm_madd_epi16(s7, k__cospi_p26_p06);
u14 = _mm_madd_epi16(s6, k__cospi_p06_m26);
u15 = _mm_madd_epi16(s7, k__cospi_p06_m26);
// addition
w0 = _mm_add_epi32(u0, u8);
w1 = _mm_add_epi32(u1, u9);
w2 = _mm_add_epi32(u2, u10);
w3 = _mm_add_epi32(u3, u11);
w4 = _mm_add_epi32(u4, u12);
w5 = _mm_add_epi32(u5, u13);
w6 = _mm_add_epi32(u6, u14);
w7 = _mm_add_epi32(u7, u15);
w8 = _mm_sub_epi32(u0, u8);
w9 = _mm_sub_epi32(u1, u9);
w10 = _mm_sub_epi32(u2, u10);
w11 = _mm_sub_epi32(u3, u11);
w12 = _mm_sub_epi32(u4, u12);
w13 = _mm_sub_epi32(u5, u13);
w14 = _mm_sub_epi32(u6, u14);
w15 = _mm_sub_epi32(u7, u15);
// shift and rounding
v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING);
v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING);
v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING);
v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING);
v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING);
v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING);
v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING);
v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING);
v8 = _mm_add_epi32(w8, k__DCT_CONST_ROUNDING);
v9 = _mm_add_epi32(w9, k__DCT_CONST_ROUNDING);
v10 = _mm_add_epi32(w10, k__DCT_CONST_ROUNDING);
v11 = _mm_add_epi32(w11, k__DCT_CONST_ROUNDING);
v12 = _mm_add_epi32(w12, k__DCT_CONST_ROUNDING);
v13 = _mm_add_epi32(w13, k__DCT_CONST_ROUNDING);
v14 = _mm_add_epi32(w14, k__DCT_CONST_ROUNDING);
v15 = _mm_add_epi32(w15, k__DCT_CONST_ROUNDING);
u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
u8 = _mm_srai_epi32(v8, DCT_CONST_BITS);
u9 = _mm_srai_epi32(v9, DCT_CONST_BITS);
u10 = _mm_srai_epi32(v10, DCT_CONST_BITS);
u11 = _mm_srai_epi32(v11, DCT_CONST_BITS);
u12 = _mm_srai_epi32(v12, DCT_CONST_BITS);
u13 = _mm_srai_epi32(v13, DCT_CONST_BITS);
u14 = _mm_srai_epi32(v14, DCT_CONST_BITS);
u15 = _mm_srai_epi32(v15, DCT_CONST_BITS);
// back to 16-bit and pack 8 integers into __m128i
in[0] = _mm_packs_epi32(u0, u1);
in[1] = _mm_packs_epi32(u2, u3);
in[2] = _mm_packs_epi32(u4, u5);
in[3] = _mm_packs_epi32(u6, u7);
in[4] = _mm_packs_epi32(u8, u9);
in[5] = _mm_packs_epi32(u10, u11);
in[6] = _mm_packs_epi32(u12, u13);
in[7] = _mm_packs_epi32(u14, u15);
// stage 2
s0 = _mm_add_epi16(in[0], in[2]);
s1 = _mm_add_epi16(in[1], in[3]);
s2 = _mm_sub_epi16(in[0], in[2]);
s3 = _mm_sub_epi16(in[1], in[3]);
u0 = _mm_unpacklo_epi16(in[4], in[5]);
u1 = _mm_unpackhi_epi16(in[4], in[5]);
u2 = _mm_unpacklo_epi16(in[6], in[7]);
u3 = _mm_unpackhi_epi16(in[6], in[7]);
v0 = _mm_madd_epi16(u0, k__cospi_p08_p24);
v1 = _mm_madd_epi16(u1, k__cospi_p08_p24);
v2 = _mm_madd_epi16(u0, k__cospi_p24_m08);
v3 = _mm_madd_epi16(u1, k__cospi_p24_m08);
v4 = _mm_madd_epi16(u2, k__cospi_m24_p08);
v5 = _mm_madd_epi16(u3, k__cospi_m24_p08);
v6 = _mm_madd_epi16(u2, k__cospi_p08_p24);
v7 = _mm_madd_epi16(u3, k__cospi_p08_p24);
w0 = _mm_add_epi32(v0, v4);
w1 = _mm_add_epi32(v1, v5);
w2 = _mm_add_epi32(v2, v6);
w3 = _mm_add_epi32(v3, v7);
w4 = _mm_sub_epi32(v0, v4);
w5 = _mm_sub_epi32(v1, v5);
w6 = _mm_sub_epi32(v2, v6);
w7 = _mm_sub_epi32(v3, v7);
v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING);
v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING);
v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING);
v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING);
v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING);
v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING);
v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING);
v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING);
u0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
u1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
u2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
u3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
u4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
u5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
u6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
u7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
// back to 16-bit intergers
s4 = _mm_packs_epi32(u0, u1);
s5 = _mm_packs_epi32(u2, u3);
s6 = _mm_packs_epi32(u4, u5);
s7 = _mm_packs_epi32(u6, u7);
// stage 3
u0 = _mm_unpacklo_epi16(s2, s3);
u1 = _mm_unpackhi_epi16(s2, s3);
u2 = _mm_unpacklo_epi16(s6, s7);
u3 = _mm_unpackhi_epi16(s6, s7);
v0 = _mm_madd_epi16(u0, k__cospi_p16_p16);
v1 = _mm_madd_epi16(u1, k__cospi_p16_p16);
v2 = _mm_madd_epi16(u0, k__cospi_p16_m16);
v3 = _mm_madd_epi16(u1, k__cospi_p16_m16);
v4 = _mm_madd_epi16(u2, k__cospi_p16_p16);
v5 = _mm_madd_epi16(u3, k__cospi_p16_p16);
v6 = _mm_madd_epi16(u2, k__cospi_p16_m16);
v7 = _mm_madd_epi16(u3, k__cospi_p16_m16);
u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING);
u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING);
u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING);
u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING);
u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING);
u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING);
u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING);
u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING);
v0 = _mm_srai_epi32(u0, DCT_CONST_BITS);
v1 = _mm_srai_epi32(u1, DCT_CONST_BITS);
v2 = _mm_srai_epi32(u2, DCT_CONST_BITS);
v3 = _mm_srai_epi32(u3, DCT_CONST_BITS);
v4 = _mm_srai_epi32(u4, DCT_CONST_BITS);
v5 = _mm_srai_epi32(u5, DCT_CONST_BITS);
v6 = _mm_srai_epi32(u6, DCT_CONST_BITS);
v7 = _mm_srai_epi32(u7, DCT_CONST_BITS);
s2 = _mm_packs_epi32(v0, v1);
s3 = _mm_packs_epi32(v2, v3);
s6 = _mm_packs_epi32(v4, v5);
s7 = _mm_packs_epi32(v6, v7);
// FIXME(jingning): do subtract using bit inversion?
in[0] = s0;
in[1] = _mm_sub_epi16(k__const_0, s4);
in[2] = s6;
in[3] = _mm_sub_epi16(k__const_0, s2);
in[4] = s3;
in[5] = _mm_sub_epi16(k__const_0, s7);
in[6] = s5;
in[7] = _mm_sub_epi16(k__const_0, s1);
// transpose
array_transpose_8x8(in, in);
}
void vp9_fht8x8_sse2(const int16_t *input, int16_t *output,
int stride, int tx_type) {
__m128i in[8];
switch (tx_type) {
case DCT_DCT:
vp9_fdct8x8_sse2(input, output, stride);
break;
case ADST_DCT:
load_buffer_8x8(input, in, stride);
fadst8_sse2(in);
fdct8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case DCT_ADST:
load_buffer_8x8(input, in, stride);
fdct8_sse2(in);
fadst8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
case ADST_ADST:
load_buffer_8x8(input, in, stride);
fadst8_sse2(in);
fadst8_sse2(in);
right_shift_8x8(in, 1);
write_buffer_8x8(output, in, 8);
break;
default:
assert(0);
break;
}
}
void vp9_fdct16x16_1_sse2(const int16_t *input, int16_t *output, int stride) {
__m128i in0, in1, in2, in3;
__m128i u0, u1;
__m128i sum = _mm_setzero_si128();
int i;
for (i = 0; i < 2; ++i) {
input += 8 * i;
in0 = _mm_load_si128((const __m128i *)(input + 0 * stride));
in1 = _mm_load_si128((const __m128i *)(input + 1 * stride));
in2 = _mm_load_si128((const __m128i *)(input + 2 * stride));
in3 = _mm_load_si128((const __m128i *)(input + 3 * stride));
u0 = _mm_add_epi16(in0, in1);
u1 = _mm_add_epi16(in2, in3);
sum = _mm_add_epi16(sum, u0);
in0 = _mm_load_si128((const __m128i *)(input + 4 * stride));
in1 = _mm_load_si128((const __m128i *)(input + 5 * stride));
in2 = _mm_load_si128((const __m128i *)(input + 6 * stride));
in3 = _mm_load_si128((const __m128i *)(input + 7 * stride));
sum = _mm_add_epi16(sum, u1);
u0 = _mm_add_epi16(in0, in1);
u1 = _mm_add_epi16(in2, in3);
sum = _mm_add_epi16(sum, u0);
in0 = _mm_load_si128((const __m128i *)(input + 8 * stride));
in1 = _mm_load_si128((const __m128i *)(input + 9 * stride));
in2 = _mm_load_si128((const __m128i *)(input + 10 * stride));
in3 = _mm_load_si128((const __m128i *)(input + 11 * stride));
sum = _mm_add_epi16(sum, u1);
u0 = _mm_add_epi16(in0, in1);
u1 = _mm_add_epi16(in2, in3);
sum = _mm_add_epi16(sum, u0);
in0 = _mm_load_si128((const __m128i *)(input + 12 * stride));
in1 = _mm_load_si128((const __m128i *)(input + 13 * stride));
in2 = _mm_load_si128((const __m128i *)(input + 14 * stride));
in3 = _mm_load_si128((const __m128i *)(input + 15 * stride));
sum = _mm_add_epi16(sum, u1);
u0 = _mm_add_epi16(in0, in1);
u1 = _mm_add_epi16(in2, in3);
sum = _mm_add_epi16(sum, u0);
sum = _mm_add_epi16(sum, u1);
}
u0 = _mm_setzero_si128();
in0 = _mm_unpacklo_epi16(u0, sum);
in1 = _mm_unpackhi_epi16(u0, sum);
in0 = _mm_srai_epi32(in0, 16);
in1 = _mm_srai_epi32(in1, 16);
sum = _mm_add_epi32(in0, in1);
in0 = _mm_unpacklo_epi32(sum, u0);
in1 = _mm_unpackhi_epi32(sum, u0);
sum = _mm_add_epi32(in0, in1);
in0 = _mm_srli_si128(sum, 8);
in1 = _mm_add_epi32(sum, in0);
in1 = _mm_srai_epi32(in1, 1);
_mm_store_si128((__m128i *)(output), in1);
}
void vp9_fdct16x16_sse2(const int16_t *input, int16_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
// as the first pass results are transposed, we transpose the columns (that
// is the transposed rows) and transpose the results (so that it goes back
// in normal/row positions).
int pass;
// We need an intermediate buffer between passes.
DECLARE_ALIGNED_ARRAY(16, int16_t, intermediate, 256);
const int16_t *in = input;
int16_t *out = intermediate;
// Constants
// When we use them, in one case, they are all the same. In all others
// it's a pair of them that we need to repeat four times. This is done
// by constructing the 32 bit constant corresponding to that pair.
const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64);
const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64);
const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64);
const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64);
const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64);
const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
const __m128i kOne = _mm_set1_epi16(1);
// Do the two transform/transpose passes
for (pass = 0; pass < 2; ++pass) {
// We process eight columns (transposed rows in second pass) at a time.
int column_start;
for (column_start = 0; column_start < 16; column_start += 8) {
__m128i in00, in01, in02, in03, in04, in05, in06, in07;
__m128i in08, in09, in10, in11, in12, in13, in14, in15;
__m128i input0, input1, input2, input3, input4, input5, input6, input7;
__m128i step1_0, step1_1, step1_2, step1_3;
__m128i step1_4, step1_5, step1_6, step1_7;
__m128i step2_1, step2_2, step2_3, step2_4, step2_5, step2_6;
__m128i step3_0, step3_1, step3_2, step3_3;
__m128i step3_4, step3_5, step3_6, step3_7;
__m128i res00, res01, res02, res03, res04, res05, res06, res07;
__m128i res08, res09, res10, res11, res12, res13, res14, res15;
// Load and pre-condition input.
if (0 == pass) {
in00 = _mm_load_si128((const __m128i *)(in + 0 * stride));
in01 = _mm_load_si128((const __m128i *)(in + 1 * stride));
in02 = _mm_load_si128((const __m128i *)(in + 2 * stride));
in03 = _mm_load_si128((const __m128i *)(in + 3 * stride));
in04 = _mm_load_si128((const __m128i *)(in + 4 * stride));
in05 = _mm_load_si128((const __m128i *)(in + 5 * stride));
in06 = _mm_load_si128((const __m128i *)(in + 6 * stride));
in07 = _mm_load_si128((const __m128i *)(in + 7 * stride));
in08 = _mm_load_si128((const __m128i *)(in + 8 * stride));
in09 = _mm_load_si128((const __m128i *)(in + 9 * stride));
in10 = _mm_load_si128((const __m128i *)(in + 10 * stride));
in11 = _mm_load_si128((const __m128i *)(in + 11 * stride));
in12 = _mm_load_si128((const __m128i *)(in + 12 * stride));
in13 = _mm_load_si128((const __m128i *)(in + 13 * stride));
in14 = _mm_load_si128((const __m128i *)(in + 14 * stride));
in15 = _mm_load_si128((const __m128i *)(in + 15 * stride));
// x = x << 2
in00 = _mm_slli_epi16(in00, 2);
in01 = _mm_slli_epi16(in01, 2);
in02 = _mm_slli_epi16(in02, 2);
in03 = _mm_slli_epi16(in03, 2);
in04 = _mm_slli_epi16(in04, 2);
in05 = _mm_slli_epi16(in05, 2);
in06 = _mm_slli_epi16(in06, 2);
in07 = _mm_slli_epi16(in07, 2);
in08 = _mm_slli_epi16(in08, 2);
in09 = _mm_slli_epi16(in09, 2);
in10 = _mm_slli_epi16(in10, 2);
in11 = _mm_slli_epi16(in11, 2);
in12 = _mm_slli_epi16(in12, 2);
in13 = _mm_slli_epi16(in13, 2);
in14 = _mm_slli_epi16(in14, 2);
in15 = _mm_slli_epi16(in15, 2);
} else {
in00 = _mm_load_si128((const __m128i *)(in + 0 * 16));
in01 = _mm_load_si128((const __m128i *)(in + 1 * 16));
in02 = _mm_load_si128((const __m128i *)(in + 2 * 16));
in03 = _mm_load_si128((const __m128i *)(in + 3 * 16));
in04 = _mm_load_si128((const __m128i *)(in + 4 * 16));
in05 = _mm_load_si128((const __m128i *)(in + 5 * 16));
in06 = _mm_load_si128((const __m128i *)(in + 6 * 16));
in07 = _mm_load_si128((const __m128i *)(in + 7 * 16));
in08 = _mm_load_si128((const __m128i *)(in + 8 * 16));
in09 = _mm_load_si128((const __m128i *)(in + 9 * 16));
in10 = _mm_load_si128((const __m128i *)(in + 10 * 16));
in11 = _mm_load_si128((const __m128i *)(in + 11 * 16));
in12 = _mm_load_si128((const __m128i *)(in + 12 * 16));
in13 = _mm_load_si128((const __m128i *)(in + 13 * 16));
in14 = _mm_load_si128((const __m128i *)(in + 14 * 16));
in15 = _mm_load_si128((const __m128i *)(in + 15 * 16));
// x = (x + 1) >> 2
in00 = _mm_add_epi16(in00, kOne);
in01 = _mm_add_epi16(in01, kOne);
in02 = _mm_add_epi16(in02, kOne);
in03 = _mm_add_epi16(in03, kOne);
in04 = _mm_add_epi16(in04, kOne);
in05 = _mm_add_epi16(in05, kOne);
in06 = _mm_add_epi16(in06, kOne);
in07 = _mm_add_epi16(in07, kOne);
in08 = _mm_add_epi16(in08, kOne);
in09 = _mm_add_epi16(in09, kOne);
in10 = _mm_add_epi16(in10, kOne);
in11 = _mm_add_epi16(in11, kOne);
in12 = _mm_add_epi16(in12, kOne);
in13 = _mm_add_epi16(in13, kOne);
in14 = _mm_add_epi16(in14, kOne);
in15 = _mm_add_epi16(in15, kOne);
in00 = _mm_srai_epi16(in00, 2);
in01 = _mm_srai_epi16(in01, 2);
in02 = _mm_srai_epi16(in02, 2);
in03 = _mm_srai_epi16(in03, 2);
in04 = _mm_srai_epi16(in04, 2);
in05 = _mm_srai_epi16(in05, 2);
in06 = _mm_srai_epi16(in06, 2);
in07 = _mm_srai_epi16(in07, 2);
in08 = _mm_srai_epi16(in08, 2);
in09 = _mm_srai_epi16(in09, 2);
in10 = _mm_srai_epi16(in10, 2);
in11 = _mm_srai_epi16(in11, 2);
in12 = _mm_srai_epi16(in12, 2);
in13 = _mm_srai_epi16(in13, 2);
in14 = _mm_srai_epi16(in14, 2);
in15 = _mm_srai_epi16(in15, 2);
}
in += 8;
// Calculate input for the first 8 results.
{
input0 = _mm_add_epi16(in00, in15);
input1 = _mm_add_epi16(in01, in14);
input2 = _mm_add_epi16(in02, in13);
input3 = _mm_add_epi16(in03, in12);
input4 = _mm_add_epi16(in04, in11);
input5 = _mm_add_epi16(in05, in10);
input6 = _mm_add_epi16(in06, in09);
input7 = _mm_add_epi16(in07, in08);
}
// Calculate input for the next 8 results.
{
step1_0 = _mm_sub_epi16(in07, in08);
step1_1 = _mm_sub_epi16(in06, in09);
step1_2 = _mm_sub_epi16(in05, in10);
step1_3 = _mm_sub_epi16(in04, in11);
step1_4 = _mm_sub_epi16(in03, in12);
step1_5 = _mm_sub_epi16(in02, in13);
step1_6 = _mm_sub_epi16(in01, in14);
step1_7 = _mm_sub_epi16(in00, in15);
}
// Work on the first eight values; fdct8(input, even_results);
{
// Add/subtract
const __m128i q0 = _mm_add_epi16(input0, input7);
const __m128i q1 = _mm_add_epi16(input1, input6);
const __m128i q2 = _mm_add_epi16(input2, input5);
const __m128i q3 = _mm_add_epi16(input3, input4);
const __m128i q4 = _mm_sub_epi16(input3, input4);
const __m128i q5 = _mm_sub_epi16(input2, input5);
const __m128i q6 = _mm_sub_epi16(input1, input6);
const __m128i q7 = _mm_sub_epi16(input0, input7);
// Work on first four results
{
// Add/subtract
const __m128i r0 = _mm_add_epi16(q0, q3);
const __m128i r1 = _mm_add_epi16(q1, q2);
const __m128i r2 = _mm_sub_epi16(q1, q2);
const __m128i r3 = _mm_sub_epi16(q0, q3);
// Interleave to do the multiply by constants which gets us
// into 32 bits.
const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
// dct_const_round_shift
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
// Combine
res00 = _mm_packs_epi32(w0, w1);
res08 = _mm_packs_epi32(w2, w3);
res04 = _mm_packs_epi32(w4, w5);
res12 = _mm_packs_epi32(w6, w7);
}
// Work on next four results
{
// Interleave to do the multiply by constants which gets us
// into 32 bits.
const __m128i d0 = _mm_unpacklo_epi16(q6, q5);
const __m128i d1 = _mm_unpackhi_epi16(q6, q5);
const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16);
const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16);
const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16);
const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16);
// dct_const_round_shift
const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING);
const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING);
const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING);
const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING);
const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS);
const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS);
const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS);
const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS);
// Combine
const __m128i r0 = _mm_packs_epi32(s0, s1);
const __m128i r1 = _mm_packs_epi32(s2, s3);
// Add/subtract
const __m128i x0 = _mm_add_epi16(q4, r0);
const __m128i x1 = _mm_sub_epi16(q4, r0);
const __m128i x2 = _mm_sub_epi16(q7, r1);
const __m128i x3 = _mm_add_epi16(q7, r1);
// Interleave to do the multiply by constants which gets us
// into 32 bits.
const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
// dct_const_round_shift
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
// Combine
res02 = _mm_packs_epi32(w0, w1);
res14 = _mm_packs_epi32(w2, w3);
res10 = _mm_packs_epi32(w4, w5);
res06 = _mm_packs_epi32(w6, w7);
}
}
// Work on the next eight values; step1 -> odd_results
{
// step 2
{
const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2);
const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2);
const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3);
const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3);
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_m16);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_m16);
const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p16_m16);
const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p16_m16);
// dct_const_round_shift
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
// Combine
step2_2 = _mm_packs_epi32(w0, w1);
step2_3 = _mm_packs_epi32(w2, w3);
}
{
const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2);
const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2);
const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3);
const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3);
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p16_p16);
const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p16_p16);
// dct_const_round_shift
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
// Combine
step2_5 = _mm_packs_epi32(w0, w1);
step2_4 = _mm_packs_epi32(w2, w3);
}
// step 3
{
step3_0 = _mm_add_epi16(step1_0, step2_3);
step3_1 = _mm_add_epi16(step1_1, step2_2);
step3_2 = _mm_sub_epi16(step1_1, step2_2);
step3_3 = _mm_sub_epi16(step1_0, step2_3);
step3_4 = _mm_sub_epi16(step1_7, step2_4);
step3_5 = _mm_sub_epi16(step1_6, step2_5);
step3_6 = _mm_add_epi16(step1_6, step2_5);
step3_7 = _mm_add_epi16(step1_7, step2_4);
}
// step 4
{
const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6);
const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6);
const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5);
const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5);
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_m08_p24);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_m08_p24);
const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p24_p08);
const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p24_p08);
// dct_const_round_shift
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
// Combine
step2_1 = _mm_packs_epi32(w0, w1);
step2_2 = _mm_packs_epi32(w2, w3);
}
{
const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6);
const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6);
const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5);
const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5);
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p24_p08);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p24_p08);
const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p08_m24);
const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p08_m24);
// dct_const_round_shift
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
// Combine
step2_6 = _mm_packs_epi32(w0, w1);
step2_5 = _mm_packs_epi32(w2, w3);
}
// step 5
{
step1_0 = _mm_add_epi16(step3_0, step2_1);
step1_1 = _mm_sub_epi16(step3_0, step2_1);
step1_2 = _mm_add_epi16(step3_3, step2_2);
step1_3 = _mm_sub_epi16(step3_3, step2_2);
step1_4 = _mm_sub_epi16(step3_4, step2_5);
step1_5 = _mm_add_epi16(step3_4, step2_5);
step1_6 = _mm_sub_epi16(step3_7, step2_6);
step1_7 = _mm_add_epi16(step3_7, step2_6);
}
// step 6
{
const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7);
const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7);
const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6);
const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6);
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p30_p02);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p30_p02);
const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p14_p18);
const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p14_p18);
// dct_const_round_shift
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
// Combine
res01 = _mm_packs_epi32(w0, w1);
res09 = _mm_packs_epi32(w2, w3);
}
{
const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5);
const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5);
const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4);
const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4);
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p22_p10);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p22_p10);
const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p06_p26);
const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p06_p26);
// dct_const_round_shift
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
// Combine
res05 = _mm_packs_epi32(w0, w1);
res13 = _mm_packs_epi32(w2, w3);
}
{
const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5);
const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5);
const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4);
const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4);
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_m10_p22);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_m10_p22);
const __m128i u2 = _mm_madd_epi16(t2, k__cospi_m26_p06);
const __m128i u3 = _mm_madd_epi16(t3, k__cospi_m26_p06);
// dct_const_round_shift
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
// Combine
res11 = _mm_packs_epi32(w0, w1);
res03 = _mm_packs_epi32(w2, w3);
}
{
const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7);
const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7);
const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6);
const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6);
const __m128i u0 = _mm_madd_epi16(t0, k__cospi_m02_p30);
const __m128i u1 = _mm_madd_epi16(t1, k__cospi_m02_p30);
const __m128i u2 = _mm_madd_epi16(t2, k__cospi_m18_p14);
const __m128i u3 = _mm_madd_epi16(t3, k__cospi_m18_p14);
// dct_const_round_shift
const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
// Combine
res15 = _mm_packs_epi32(w0, w1);
res07 = _mm_packs_epi32(w2, w3);
}
}
// Transpose the results, do it as two 8x8 transposes.
{
// 00 01 02 03 04 05 06 07
// 10 11 12 13 14 15 16 17
// 20 21 22 23 24 25 26 27
// 30 31 32 33 34 35 36 37
// 40 41 42 43 44 45 46 47
// 50 51 52 53 54 55 56 57
// 60 61 62 63 64 65 66 67
// 70 71 72 73 74 75 76 77
const __m128i tr0_0 = _mm_unpacklo_epi16(res00, res01);
const __m128i tr0_1 = _mm_unpacklo_epi16(res02, res03);
const __m128i tr0_2 = _mm_unpackhi_epi16(res00, res01);
const __m128i tr0_3 = _mm_unpackhi_epi16(res02, res03);
const __m128i tr0_4 = _mm_unpacklo_epi16(res04, res05);
const __m128i tr0_5 = _mm_unpacklo_epi16(res06, res07);
const __m128i tr0_6 = _mm_unpackhi_epi16(res04, res05);
const __m128i tr0_7 = _mm_unpackhi_epi16(res06, res07);
// 00 10 01 11 02 12 03 13
// 20 30 21 31 22 32 23 33
// 04 14 05 15 06 16 07 17
// 24 34 25 35 26 36 27 37
// 40 50 41 51 42 52 43 53
// 60 70 61 71 62 72 63 73
// 54 54 55 55 56 56 57 57
// 64 74 65 75 66 76 67 77
const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
// 00 10 20 30 01 11 21 31
// 40 50 60 70 41 51 61 71
// 02 12 22 32 03 13 23 33
// 42 52 62 72 43 53 63 73
// 04 14 24 34 05 15 21 36
// 44 54 64 74 45 55 61 76
// 06 16 26 36 07 17 27 37
// 46 56 66 76 47 57 67 77
const __m128i tr2_0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
const __m128i tr2_1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
const __m128i tr2_2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
const __m128i tr2_3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
const __m128i tr2_4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
const __m128i tr2_5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
const __m128i tr2_6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
const __m128i tr2_7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
// 00 10 20 30 40 50 60 70
// 01 11 21 31 41 51 61 71
// 02 12 22 32 42 52 62 72
// 03 13 23 33 43 53 63 73
// 04 14 24 34 44 54 64 74
// 05 15 25 35 45 55 65 75
// 06 16 26 36 46 56 66 76
// 07 17 27 37 47 57 67 77
_mm_storeu_si128((__m128i *)(out + 0 * 16), tr2_0);
_mm_storeu_si128((__m128i *)(out + 1 * 16), tr2_1);
_mm_storeu_si128((__m128i *)(out + 2 * 16), tr2_2);
_mm_storeu_si128((__m128i *)(out + 3 * 16), tr2_3);
_mm_storeu_si128((__m128i *)(out + 4 * 16), tr2_4);
_mm_storeu_si128((__m128i *)(out + 5 * 16), tr2_5);
_mm_storeu_si128((__m128i *)(out + 6 * 16), tr2_6);
_mm_storeu_si128((__m128i *)(out + 7 * 16), tr2_7);
}
{
// 00 01 02 03 04 05 06 07
// 10 11 12 13 14 15 16 17
// 20 21 22 23 24 25 26 27
// 30 31 32 33 34 35 36 37
// 40 41 42 43 44 45 46 47
// 50 51 52 53 54 55 56 57
// 60 61 62 63 64 65 66 67
// 70 71 72 73 74 75 76 77
const __m128i tr0_0 = _mm_unpacklo_epi16(res08, res09);
const __m128i tr0_1 = _mm_unpacklo_epi16(res10, res11);
const __m128i tr0_2 = _mm_unpackhi_epi16(res08, res09);
const __m128i tr0_3 = _mm_unpackhi_epi16(res10, res11);
const __m128i tr0_4 = _mm_unpacklo_epi16(res12, res13);
const __m128i tr0_5 = _mm_unpacklo_epi16(res14, res15);
const __m128i tr0_6 = _mm_unpackhi_epi16(res12, res13);
const __m128i tr0_7 = _mm_unpackhi_epi16(res14, res15);
// 00 10 01 11 02 12 03 13
// 20 30 21 31 22 32 23 33
// 04 14 05 15 06 16 07 17
// 24 34 25 35 26 36 27 37
// 40 50 41 51 42 52 43 53
// 60 70 61 71 62 72 63 73
// 54 54 55 55 56 56 57 57
// 64 74 65 75 66 76 67 77
const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
// 00 10 20 30 01 11 21 31
// 40 50 60 70 41 51 61 71
// 02 12 22 32 03 13 23 33
// 42 52 62 72 43 53 63 73
// 04 14 24 34 05 15 21 36
// 44 54 64 74 45 55 61 76
// 06 16 26 36 07 17 27 37
// 46 56 66 76 47 57 67 77
const __m128i tr2_0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
const __m128i tr2_1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
const __m128i tr2_2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
const __m128i tr2_3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
const __m128i tr2_4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
const __m128i tr2_5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
const __m128i tr2_6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
const __m128i tr2_7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
// 00 10 20 30 40 50 60 70
// 01 11 21 31 41 51 61 71
// 02 12 22 32 42 52 62 72
// 03 13 23 33 43 53 63 73
// 04 14 24 34 44 54 64 74
// 05 15 25 35 45 55 65 75
// 06 16 26 36 46 56 66 76
// 07 17 27 37 47 57 67 77
// Store results
_mm_store_si128((__m128i *)(out + 8 + 0 * 16), tr2_0);
_mm_store_si128((__m128i *)(out + 8 + 1 * 16), tr2_1);
_mm_store_si128((__m128i *)(out + 8 + 2 * 16), tr2_2);
_mm_store_si128((__m128i *)(out + 8 + 3 * 16), tr2_3);
_mm_store_si128((__m128i *)(out + 8 + 4 * 16), tr2_4);
_mm_store_si128((__m128i *)(out + 8 + 5 * 16), tr2_5);
_mm_store_si128((__m128i *)(out + 8 + 6 * 16), tr2_6);
_mm_store_si128((__m128i *)(out + 8 + 7 * 16), tr2_7);
}
out += 8*16;
}
// Setup in/out for next pass.
in = intermediate;
out = output;
}
}
static INLINE void load_buffer_16x16(const int16_t* input, __m128i *in0,
__m128i *in1, int stride) {
// load first 8 columns
load_buffer_8x8(input, in0, stride);
load_buffer_8x8(input + 8 * stride, in0 + 8, stride);
input += 8;
// load second 8 columns
load_buffer_8x8(input, in1, stride);
load_buffer_8x8(input + 8 * stride, in1 + 8, stride);
}
static INLINE void write_buffer_16x16(int16_t *output, __m128i *in0,
__m128i *in1, int stride) {
// write first 8 columns
write_buffer_8x8(output, in0, stride);
write_buffer_8x8(output + 8 * stride, in0 + 8, stride);
// write second 8 columns
output += 8;
write_buffer_8x8(output, in1, stride);
write_buffer_8x8(output + 8 * stride, in1 + 8, stride);
}
static INLINE void array_transpose_16x16(__m128i *res0, __m128i *res1) {
__m128i tbuf[8];
array_transpose_8x8(res0, res0);
array_transpose_8x8(res1, tbuf);
array_transpose_8x8(res0 + 8, res1);
array_transpose_8x8(res1 + 8, res1 + 8);
res0[8] = tbuf[0];
res0[9] = tbuf[1];
res0[10] = tbuf[2];
res0[11] = tbuf[3];
res0[12] = tbuf[4];
res0[13] = tbuf[5];
res0[14] = tbuf[6];
res0[15] = tbuf[7];
}
static INLINE void right_shift_16x16(__m128i *res0, __m128i *res1) {
// perform rounding operations
right_shift_8x8(res0, 2);
right_shift_8x8(res0 + 8, 2);
right_shift_8x8(res1, 2);
right_shift_8x8(res1 + 8, 2);
}
void fdct16_8col(__m128i *in) {
// perform 16x16 1-D DCT for 8 columns
__m128i i[8], s[8], p[8], t[8], u[16], v[16];
const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64);
const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
const __m128i k__cospi_p08_m24 = pair_set_epi16(cospi_8_64, -cospi_24_64);
const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64);
const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64);
const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64);
const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64);
const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64);
const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64);
const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64);
const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
// stage 1
i[0] = _mm_add_epi16(in[0], in[15]);
i[1] = _mm_add_epi16(in[1], in[14]);
i[2] = _mm_add_epi16(in[2], in[13]);
i[3] = _mm_add_epi16(in[3], in[12]);
i[4] = _mm_add_epi16(in[4], in[11]);
i[5] = _mm_add_epi16(in[5], in[10]);
i[6] = _mm_add_epi16(in[6], in[9]);
i[7] = _mm_add_epi16(in[7], in[8]);
s[0] = _mm_sub_epi16(in[7], in[8]);
s[1] = _mm_sub_epi16(in[6], in[9]);
s[2] = _mm_sub_epi16(in[5], in[10]);
s[3] = _mm_sub_epi16(in[4], in[11]);
s[4] = _mm_sub_epi16(in[3], in[12]);
s[5] = _mm_sub_epi16(in[2], in[13]);
s[6] = _mm_sub_epi16(in[1], in[14]);
s[7] = _mm_sub_epi16(in[0], in[15]);
p[0] = _mm_add_epi16(i[0], i[7]);
p[1] = _mm_add_epi16(i[1], i[6]);
p[2] = _mm_add_epi16(i[2], i[5]);
p[3] = _mm_add_epi16(i[3], i[4]);
p[4] = _mm_sub_epi16(i[3], i[4]);
p[5] = _mm_sub_epi16(i[2], i[5]);
p[6] = _mm_sub_epi16(i[1], i[6]);
p[7] = _mm_sub_epi16(i[0], i[7]);
u[0] = _mm_add_epi16(p[0], p[3]);
u[1] = _mm_add_epi16(p[1], p[2]);
u[2] = _mm_sub_epi16(p[1], p[2]);
u[3] = _mm_sub_epi16(p[0], p[3]);
v[0] = _mm_unpacklo_epi16(u[0], u[1]);
v[1] = _mm_unpackhi_epi16(u[0], u[1]);
v[2] = _mm_unpacklo_epi16(u[2], u[3]);
v[3] = _mm_unpackhi_epi16(u[2], u[3]);
u[0] = _mm_madd_epi16(v[0], k__cospi_p16_p16);
u[1] = _mm_madd_epi16(v[1], k__cospi_p16_p16);
u[2] = _mm_madd_epi16(v[0], k__cospi_p16_m16);
u[3] = _mm_madd_epi16(v[1], k__cospi_p16_m16);
u[4] = _mm_madd_epi16(v[2], k__cospi_p24_p08);
u[5] = _mm_madd_epi16(v[3], k__cospi_p24_p08);
u[6] = _mm_madd_epi16(v[2], k__cospi_m08_p24);
u[7] = _mm_madd_epi16(v[3], k__cospi_m08_p24);
v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
in[0] = _mm_packs_epi32(u[0], u[1]);
in[4] = _mm_packs_epi32(u[4], u[5]);
in[8] = _mm_packs_epi32(u[2], u[3]);
in[12] = _mm_packs_epi32(u[6], u[7]);
u[0] = _mm_unpacklo_epi16(p[5], p[6]);
u[1] = _mm_unpackhi_epi16(p[5], p[6]);
v[0] = _mm_madd_epi16(u[0], k__cospi_m16_p16);
v[1] = _mm_madd_epi16(u[1], k__cospi_m16_p16);
v[2] = _mm_madd_epi16(u[0], k__cospi_p16_p16);
v[3] = _mm_madd_epi16(u[1], k__cospi_p16_p16);
u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
u[0] = _mm_packs_epi32(v[0], v[1]);
u[1] = _mm_packs_epi32(v[2], v[3]);
t[0] = _mm_add_epi16(p[4], u[0]);
t[1] = _mm_sub_epi16(p[4], u[0]);
t[2] = _mm_sub_epi16(p[7], u[1]);
t[3] = _mm_add_epi16(p[7], u[1]);
u[0] = _mm_unpacklo_epi16(t[0], t[3]);
u[1] = _mm_unpackhi_epi16(t[0], t[3]);
u[2] = _mm_unpacklo_epi16(t[1], t[2]);
u[3] = _mm_unpackhi_epi16(t[1], t[2]);
v[0] = _mm_madd_epi16(u[0], k__cospi_p28_p04);
v[1] = _mm_madd_epi16(u[1], k__cospi_p28_p04);
v[2] = _mm_madd_epi16(u[2], k__cospi_p12_p20);
v[3] = _mm_madd_epi16(u[3], k__cospi_p12_p20);
v[4] = _mm_madd_epi16(u[2], k__cospi_m20_p12);
v[5] = _mm_madd_epi16(u[3], k__cospi_m20_p12);
v[6] = _mm_madd_epi16(u[0], k__cospi_m04_p28);
v[7] = _mm_madd_epi16(u[1], k__cospi_m04_p28);
u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
in[2] = _mm_packs_epi32(v[0], v[1]);
in[6] = _mm_packs_epi32(v[4], v[5]);
in[10] = _mm_packs_epi32(v[2], v[3]);
in[14] = _mm_packs_epi32(v[6], v[7]);
// stage 2
u[0] = _mm_unpacklo_epi16(s[2], s[5]);
u[1] = _mm_unpackhi_epi16(s[2], s[5]);
u[2] = _mm_unpacklo_epi16(s[3], s[4]);
u[3] = _mm_unpackhi_epi16(s[3], s[4]);
v[0] = _mm_madd_epi16(u[0], k__cospi_m16_p16);
v[1] = _mm_madd_epi16(u[1], k__cospi_m16_p16);
v[2] = _mm_madd_epi16(u[2], k__cospi_m16_p16);
v[3] = _mm_madd_epi16(u[3], k__cospi_m16_p16);
v[4] = _mm_madd_epi16(u[2], k__cospi_p16_p16);
v[5] = _mm_madd_epi16(u[3], k__cospi_p16_p16);
v[6] = _mm_madd_epi16(u[0], k__cospi_p16_p16);
v[7] = _mm_madd_epi16(u[1], k__cospi_p16_p16);
u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
t[2] = _mm_packs_epi32(v[0], v[1]);
t[3] = _mm_packs_epi32(v[2], v[3]);
t[4] = _mm_packs_epi32(v[4], v[5]);
t[5] = _mm_packs_epi32(v[6], v[7]);
// stage 3
p[0] = _mm_add_epi16(s[0], t[3]);
p[1] = _mm_add_epi16(s[1], t[2]);
p[2] = _mm_sub_epi16(s[1], t[2]);
p[3] = _mm_sub_epi16(s[0], t[3]);
p[4] = _mm_sub_epi16(s[7], t[4]);
p[5] = _mm_sub_epi16(s[6], t[5]);
p[6] = _mm_add_epi16(s[6], t[5]);
p[7] = _mm_add_epi16(s[7], t[4]);
// stage 4
u[0] = _mm_unpacklo_epi16(p[1], p[6]);
u[1] = _mm_unpackhi_epi16(p[1], p[6]);
u[2] = _mm_unpacklo_epi16(p[2], p[5]);
u[3] = _mm_unpackhi_epi16(p[2], p[5]);
v[0] = _mm_madd_epi16(u[0], k__cospi_m08_p24);
v[1] = _mm_madd_epi16(u[1], k__cospi_m08_p24);
v[2] = _mm_madd_epi16(u[2], k__cospi_p24_p08);
v[3] = _mm_madd_epi16(u[3], k__cospi_p24_p08);
v[4] = _mm_madd_epi16(u[2], k__cospi_p08_m24);
v[5] = _mm_madd_epi16(u[3], k__cospi_p08_m24);
v[6] = _mm_madd_epi16(u[0], k__cospi_p24_p08);
v[7] = _mm_madd_epi16(u[1], k__cospi_p24_p08);
u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
t[1] = _mm_packs_epi32(v[0], v[1]);
t[2] = _mm_packs_epi32(v[2], v[3]);
t[5] = _mm_packs_epi32(v[4], v[5]);
t[6] = _mm_packs_epi32(v[6], v[7]);
// stage 5
s[0] = _mm_add_epi16(p[0], t[1]);
s[1] = _mm_sub_epi16(p[0], t[1]);
s[2] = _mm_add_epi16(p[3], t[2]);
s[3] = _mm_sub_epi16(p[3], t[2]);
s[4] = _mm_sub_epi16(p[4], t[5]);
s[5] = _mm_add_epi16(p[4], t[5]);
s[6] = _mm_sub_epi16(p[7], t[6]);
s[7] = _mm_add_epi16(p[7], t[6]);
// stage 6
u[0] = _mm_unpacklo_epi16(s[0], s[7]);
u[1] = _mm_unpackhi_epi16(s[0], s[7]);
u[2] = _mm_unpacklo_epi16(s[1], s[6]);
u[3] = _mm_unpackhi_epi16(s[1], s[6]);
u[4] = _mm_unpacklo_epi16(s[2], s[5]);
u[5] = _mm_unpackhi_epi16(s[2], s[5]);
u[6] = _mm_unpacklo_epi16(s[3], s[4]);
u[7] = _mm_unpackhi_epi16(s[3], s[4]);
v[0] = _mm_madd_epi16(u[0], k__cospi_p30_p02);
v[1] = _mm_madd_epi16(u[1], k__cospi_p30_p02);
v[2] = _mm_madd_epi16(u[2], k__cospi_p14_p18);
v[3] = _mm_madd_epi16(u[3], k__cospi_p14_p18);
v[4] = _mm_madd_epi16(u[4], k__cospi_p22_p10);
v[5] = _mm_madd_epi16(u[5], k__cospi_p22_p10);
v[6] = _mm_madd_epi16(u[6], k__cospi_p06_p26);
v[7] = _mm_madd_epi16(u[7], k__cospi_p06_p26);
v[8] = _mm_madd_epi16(u[6], k__cospi_m26_p06);
v[9] = _mm_madd_epi16(u[7], k__cospi_m26_p06);
v[10] = _mm_madd_epi16(u[4], k__cospi_m10_p22);
v[11] = _mm_madd_epi16(u[5], k__cospi_m10_p22);
v[12] = _mm_madd_epi16(u[2], k__cospi_m18_p14);
v[13] = _mm_madd_epi16(u[3], k__cospi_m18_p14);
v[14] = _mm_madd_epi16(u[0], k__cospi_m02_p30);
v[15] = _mm_madd_epi16(u[1], k__cospi_m02_p30);
u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
u[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING);
u[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING);
u[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING);
u[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING);
u[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING);
u[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING);
u[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING);
u[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING);
v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
in[1] = _mm_packs_epi32(v[0], v[1]);
in[9] = _mm_packs_epi32(v[2], v[3]);
in[5] = _mm_packs_epi32(v[4], v[5]);
in[13] = _mm_packs_epi32(v[6], v[7]);
in[3] = _mm_packs_epi32(v[8], v[9]);
in[11] = _mm_packs_epi32(v[10], v[11]);
in[7] = _mm_packs_epi32(v[12], v[13]);
in[15] = _mm_packs_epi32(v[14], v[15]);
}
void fadst16_8col(__m128i *in) {
// perform 16x16 1-D ADST for 8 columns
__m128i s[16], x[16], u[32], v[32];
const __m128i k__cospi_p01_p31 = pair_set_epi16(cospi_1_64, cospi_31_64);
const __m128i k__cospi_p31_m01 = pair_set_epi16(cospi_31_64, -cospi_1_64);
const __m128i k__cospi_p05_p27 = pair_set_epi16(cospi_5_64, cospi_27_64);
const __m128i k__cospi_p27_m05 = pair_set_epi16(cospi_27_64, -cospi_5_64);
const __m128i k__cospi_p09_p23 = pair_set_epi16(cospi_9_64, cospi_23_64);
const __m128i k__cospi_p23_m09 = pair_set_epi16(cospi_23_64, -cospi_9_64);
const __m128i k__cospi_p13_p19 = pair_set_epi16(cospi_13_64, cospi_19_64);
const __m128i k__cospi_p19_m13 = pair_set_epi16(cospi_19_64, -cospi_13_64);
const __m128i k__cospi_p17_p15 = pair_set_epi16(cospi_17_64, cospi_15_64);
const __m128i k__cospi_p15_m17 = pair_set_epi16(cospi_15_64, -cospi_17_64);
const __m128i k__cospi_p21_p11 = pair_set_epi16(cospi_21_64, cospi_11_64);
const __m128i k__cospi_p11_m21 = pair_set_epi16(cospi_11_64, -cospi_21_64);
const __m128i k__cospi_p25_p07 = pair_set_epi16(cospi_25_64, cospi_7_64);
const __m128i k__cospi_p07_m25 = pair_set_epi16(cospi_7_64, -cospi_25_64);
const __m128i k__cospi_p29_p03 = pair_set_epi16(cospi_29_64, cospi_3_64);
const __m128i k__cospi_p03_m29 = pair_set_epi16(cospi_3_64, -cospi_29_64);
const __m128i k__cospi_p04_p28 = pair_set_epi16(cospi_4_64, cospi_28_64);
const __m128i k__cospi_p28_m04 = pair_set_epi16(cospi_28_64, -cospi_4_64);
const __m128i k__cospi_p20_p12 = pair_set_epi16(cospi_20_64, cospi_12_64);
const __m128i k__cospi_p12_m20 = pair_set_epi16(cospi_12_64, -cospi_20_64);
const __m128i k__cospi_m28_p04 = pair_set_epi16(-cospi_28_64, cospi_4_64);
const __m128i k__cospi_m12_p20 = pair_set_epi16(-cospi_12_64, cospi_20_64);
const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64);
const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64);
const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64);
const __m128i k__cospi_m16_m16 = _mm_set1_epi16(-cospi_16_64);
const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64);
const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64);
const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
const __m128i kZero = _mm_set1_epi16(0);
u[0] = _mm_unpacklo_epi16(in[15], in[0]);
u[1] = _mm_unpackhi_epi16(in[15], in[0]);
u[2] = _mm_unpacklo_epi16(in[13], in[2]);
u[3] = _mm_unpackhi_epi16(in[13], in[2]);
u[4] = _mm_unpacklo_epi16(in[11], in[4]);
u[5] = _mm_unpackhi_epi16(in[11], in[4]);
u[6] = _mm_unpacklo_epi16(in[9], in[6]);
u[7] = _mm_unpackhi_epi16(in[9], in[6]);
u[8] = _mm_unpacklo_epi16(in[7], in[8]);
u[9] = _mm_unpackhi_epi16(in[7], in[8]);
u[10] = _mm_unpacklo_epi16(in[5], in[10]);
u[11] = _mm_unpackhi_epi16(in[5], in[10]);
u[12] = _mm_unpacklo_epi16(in[3], in[12]);
u[13] = _mm_unpackhi_epi16(in[3], in[12]);
u[14] = _mm_unpacklo_epi16(in[1], in[14]);
u[15] = _mm_unpackhi_epi16(in[1], in[14]);
v[0] = _mm_madd_epi16(u[0], k__cospi_p01_p31);
v[1] = _mm_madd_epi16(u[1], k__cospi_p01_p31);
v[2] = _mm_madd_epi16(u[0], k__cospi_p31_m01);
v[3] = _mm_madd_epi16(u[1], k__cospi_p31_m01);
v[4] = _mm_madd_epi16(u[2], k__cospi_p05_p27);
v[5] = _mm_madd_epi16(u[3], k__cospi_p05_p27);
v[6] = _mm_madd_epi16(u[2], k__cospi_p27_m05);
v[7] = _mm_madd_epi16(u[3], k__cospi_p27_m05);
v[8] = _mm_madd_epi16(u[4], k__cospi_p09_p23);
v[9] = _mm_madd_epi16(u[5], k__cospi_p09_p23);
v[10] = _mm_madd_epi16(u[4], k__cospi_p23_m09);
v[11] = _mm_madd_epi16(u[5], k__cospi_p23_m09);
v[12] = _mm_madd_epi16(u[6], k__cospi_p13_p19);
v[13] = _mm_madd_epi16(u[7], k__cospi_p13_p19);
v[14] = _mm_madd_epi16(u[6], k__cospi_p19_m13);
v[15] = _mm_madd_epi16(u[7], k__cospi_p19_m13);
v[16] = _mm_madd_epi16(u[8], k__cospi_p17_p15);
v[17] = _mm_madd_epi16(u[9], k__cospi_p17_p15);
v[18] = _mm_madd_epi16(u[8], k__cospi_p15_m17);
v[19] = _mm_madd_epi16(u[9], k__cospi_p15_m17);
v[20] = _mm_madd_epi16(u[10], k__cospi_p21_p11);
v[21] = _mm_madd_epi16(u[11], k__cospi_p21_p11);
v[22] = _mm_madd_epi16(u[10], k__cospi_p11_m21);
v[23] = _mm_madd_epi16(u[11], k__cospi_p11_m21);
v[24] = _mm_madd_epi16(u[12], k__cospi_p25_p07);
v[25] = _mm_madd_epi16(u[13], k__cospi_p25_p07);
v[26] = _mm_madd_epi16(u[12], k__cospi_p07_m25);
v[27] = _mm_madd_epi16(u[13], k__cospi_p07_m25);
v[28] = _mm_madd_epi16(u[14], k__cospi_p29_p03);
v[29] = _mm_madd_epi16(u[15], k__cospi_p29_p03);
v[30] = _mm_madd_epi16(u[14], k__cospi_p03_m29);
v[31] = _mm_madd_epi16(u[15], k__cospi_p03_m29);
u[0] = _mm_add_epi32(v[0], v[16]);
u[1] = _mm_add_epi32(v[1], v[17]);
u[2] = _mm_add_epi32(v[2], v[18]);
u[3] = _mm_add_epi32(v[3], v[19]);
u[4] = _mm_add_epi32(v[4], v[20]);
u[5] = _mm_add_epi32(v[5], v[21]);
u[6] = _mm_add_epi32(v[6], v[22]);
u[7] = _mm_add_epi32(v[7], v[23]);
u[8] = _mm_add_epi32(v[8], v[24]);
u[9] = _mm_add_epi32(v[9], v[25]);
u[10] = _mm_add_epi32(v[10], v[26]);
u[11] = _mm_add_epi32(v[11], v[27]);
u[12] = _mm_add_epi32(v[12], v[28]);
u[13] = _mm_add_epi32(v[13], v[29]);
u[14] = _mm_add_epi32(v[14], v[30]);
u[15] = _mm_add_epi32(v[15], v[31]);
u[16] = _mm_sub_epi32(v[0], v[16]);
u[17] = _mm_sub_epi32(v[1], v[17]);
u[18] = _mm_sub_epi32(v[2], v[18]);
u[19] = _mm_sub_epi32(v[3], v[19]);
u[20] = _mm_sub_epi32(v[4], v[20]);
u[21] = _mm_sub_epi32(v[5], v[21]);
u[22] = _mm_sub_epi32(v[6], v[22]);
u[23] = _mm_sub_epi32(v[7], v[23]);
u[24] = _mm_sub_epi32(v[8], v[24]);
u[25] = _mm_sub_epi32(v[9], v[25]);
u[26] = _mm_sub_epi32(v[10], v[26]);
u[27] = _mm_sub_epi32(v[11], v[27]);
u[28] = _mm_sub_epi32(v[12], v[28]);
u[29] = _mm_sub_epi32(v[13], v[29]);
u[30] = _mm_sub_epi32(v[14], v[30]);
u[31] = _mm_sub_epi32(v[15], v[31]);
v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING);
v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING);
v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
v[16] = _mm_add_epi32(u[16], k__DCT_CONST_ROUNDING);
v[17] = _mm_add_epi32(u[17], k__DCT_CONST_ROUNDING);
v[18] = _mm_add_epi32(u[18], k__DCT_CONST_ROUNDING);
v[19] = _mm_add_epi32(u[19], k__DCT_CONST_ROUNDING);
v[20] = _mm_add_epi32(u[20], k__DCT_CONST_ROUNDING);
v[21] = _mm_add_epi32(u[21], k__DCT_CONST_ROUNDING);
v[22] = _mm_add_epi32(u[22], k__DCT_CONST_ROUNDING);
v[23] = _mm_add_epi32(u[23], k__DCT_CONST_ROUNDING);
v[24] = _mm_add_epi32(u[24], k__DCT_CONST_ROUNDING);
v[25] = _mm_add_epi32(u[25], k__DCT_CONST_ROUNDING);
v[26] = _mm_add_epi32(u[26], k__DCT_CONST_ROUNDING);
v[27] = _mm_add_epi32(u[27], k__DCT_CONST_ROUNDING);
v[28] = _mm_add_epi32(u[28], k__DCT_CONST_ROUNDING);
v[29] = _mm_add_epi32(u[29], k__DCT_CONST_ROUNDING);
v[30] = _mm_add_epi32(u[30], k__DCT_CONST_ROUNDING);
v[31] = _mm_add_epi32(u[31], k__DCT_CONST_ROUNDING);
u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS);
u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS);
u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
u[16] = _mm_srai_epi32(v[16], DCT_CONST_BITS);
u[17] = _mm_srai_epi32(v[17], DCT_CONST_BITS);
u[18] = _mm_srai_epi32(v[18], DCT_CONST_BITS);
u[19] = _mm_srai_epi32(v[19], DCT_CONST_BITS);
u[20] = _mm_srai_epi32(v[20], DCT_CONST_BITS);
u[21] = _mm_srai_epi32(v[21], DCT_CONST_BITS);
u[22] = _mm_srai_epi32(v[22], DCT_CONST_BITS);
u[23] = _mm_srai_epi32(v[23], DCT_CONST_BITS);
u[24] = _mm_srai_epi32(v[24], DCT_CONST_BITS);
u[25] = _mm_srai_epi32(v[25], DCT_CONST_BITS);
u[26] = _mm_srai_epi32(v[26], DCT_CONST_BITS);
u[27] = _mm_srai_epi32(v[27], DCT_CONST_BITS);
u[28] = _mm_srai_epi32(v[28], DCT_CONST_BITS);
u[29] = _mm_srai_epi32(v[29], DCT_CONST_BITS);
u[30] = _mm_srai_epi32(v[30], DCT_CONST_BITS);
u[31] = _mm_srai_epi32(v[31], DCT_CONST_BITS);
s[0] = _mm_packs_epi32(u[0], u[1]);
s[1] = _mm_packs_epi32(u[2], u[3]);
s[2] = _mm_packs_epi32(u[4], u[5]);
s[3] = _mm_packs_epi32(u[6], u[7]);
s[4] = _mm_packs_epi32(u[8], u[9]);
s[5] = _mm_packs_epi32(u[10], u[11]);
s[6] = _mm_packs_epi32(u[12], u[13]);
s[7] = _mm_packs_epi32(u[14], u[15]);
s[8] = _mm_packs_epi32(u[16], u[17]);
s[9] = _mm_packs_epi32(u[18], u[19]);
s[10] = _mm_packs_epi32(u[20], u[21]);
s[11] = _mm_packs_epi32(u[22], u[23]);
s[12] = _mm_packs_epi32(u[24], u[25]);
s[13] = _mm_packs_epi32(u[26], u[27]);
s[14] = _mm_packs_epi32(u[28], u[29]);
s[15] = _mm_packs_epi32(u[30], u[31]);
// stage 2
u[0] = _mm_unpacklo_epi16(s[8], s[9]);
u[1] = _mm_unpackhi_epi16(s[8], s[9]);
u[2] = _mm_unpacklo_epi16(s[10], s[11]);
u[3] = _mm_unpackhi_epi16(s[10], s[11]);
u[4] = _mm_unpacklo_epi16(s[12], s[13]);
u[5] = _mm_unpackhi_epi16(s[12], s[13]);
u[6] = _mm_unpacklo_epi16(s[14], s[15]);
u[7] = _mm_unpackhi_epi16(s[14], s[15]);
v[0] = _mm_madd_epi16(u[0], k__cospi_p04_p28);
v[1] = _mm_madd_epi16(u[1], k__cospi_p04_p28);
v[2] = _mm_madd_epi16(u[0], k__cospi_p28_m04);
v[3] = _mm_madd_epi16(u[1], k__cospi_p28_m04);
v[4] = _mm_madd_epi16(u[2], k__cospi_p20_p12);
v[5] = _mm_madd_epi16(u[3], k__cospi_p20_p12);
v[6] = _mm_madd_epi16(u[2], k__cospi_p12_m20);
v[7] = _mm_madd_epi16(u[3], k__cospi_p12_m20);
v[8] = _mm_madd_epi16(u[4], k__cospi_m28_p04);
v[9] = _mm_madd_epi16(u[5], k__cospi_m28_p04);
v[10] = _mm_madd_epi16(u[4], k__cospi_p04_p28);
v[11] = _mm_madd_epi16(u[5], k__cospi_p04_p28);
v[12] = _mm_madd_epi16(u[6], k__cospi_m12_p20);
v[13] = _mm_madd_epi16(u[7], k__cospi_m12_p20);
v[14] = _mm_madd_epi16(u[6], k__cospi_p20_p12);
v[15] = _mm_madd_epi16(u[7], k__cospi_p20_p12);
u[0] = _mm_add_epi32(v[0], v[8]);
u[1] = _mm_add_epi32(v[1], v[9]);
u[2] = _mm_add_epi32(v[2], v[10]);
u[3] = _mm_add_epi32(v[3], v[11]);
u[4] = _mm_add_epi32(v[4], v[12]);
u[5] = _mm_add_epi32(v[5], v[13]);
u[6] = _mm_add_epi32(v[6], v[14]);
u[7] = _mm_add_epi32(v[7], v[15]);
u[8] = _mm_sub_epi32(v[0], v[8]);
u[9] = _mm_sub_epi32(v[1], v[9]);
u[10] = _mm_sub_epi32(v[2], v[10]);
u[11] = _mm_sub_epi32(v[3], v[11]);
u[12] = _mm_sub_epi32(v[4], v[12]);
u[13] = _mm_sub_epi32(v[5], v[13]);
u[14] = _mm_sub_epi32(v[6], v[14]);
u[15] = _mm_sub_epi32(v[7], v[15]);
v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING);
v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING);
v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS);
u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS);
u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS);
u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS);
u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS);
u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS);
u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS);
u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS);
u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS);
u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS);
u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS);
u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS);
u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS);
u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS);
u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS);
u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS);
x[0] = _mm_add_epi16(s[0], s[4]);
x[1] = _mm_add_epi16(s[1], s[5]);
x[2] = _mm_add_epi16(s[2], s[6]);
x[3] = _mm_add_epi16(s[3], s[7]);
x[4] = _mm_sub_epi16(s[0], s[4]);
x[5] = _mm_sub_epi16(s[1], s[5]);
x[6] = _mm_sub_epi16(s[2], s[6]);
x[7] = _mm_sub_epi16(s[3], s[7]);
x[8] = _mm_packs_epi32(u[0], u[1]);
x[9] = _mm_packs_epi32(u[2], u[3]);
x[10] = _mm_packs_epi32(u[4], u[5]);
x[11] = _mm_packs_epi32(u[6], u[7]);
x[12] = _mm_packs_epi32(u[8], u[9]);
x[13] = _mm_packs_epi32(u[10], u[11]);
x[14] = _mm_packs_epi32(u[12], u[13]);
x[15] = _mm_packs_epi32(u[14], u[15]);
// stage 3
u[0] = _mm_unpacklo_epi16(x[4], x[5]);
u[1] = _mm_unpackhi_epi16(x[4], x[5]);
u[2] = _mm_unpacklo_epi16(x[6], x[7]);
u[3] = _mm_unpackhi_epi16(x[6], x[7]);
u[4] = _mm_unpacklo_epi16(x[12], x[13]);
u[5] = _mm_unpackhi_epi16(x[12], x[13]);
u[6] = _mm_unpacklo_epi16(x[14], x[15]);
u[7] = _mm_unpackhi_epi16(x[14], x[15]);
v[0] = _mm_madd_epi16(u[0], k__cospi_p08_p24);
v[1] = _mm_madd_epi16(u[1], k__cospi_p08_p24);
v[2] = _mm_madd_epi16(u[0], k__cospi_p24_m08);
v[3] = _mm_madd_epi16(u[1], k__cospi_p24_m08);
v[4] = _mm_madd_epi16(u[2], k__cospi_m24_p08);
v[5] = _mm_madd_epi16(u[3], k__cospi_m24_p08);
v[6] = _mm_madd_epi16(u[2], k__cospi_p08_p24);
v[7] = _mm_madd_epi16(u[3], k__cospi_p08_p24);
v[8] = _mm_madd_epi16(u[4], k__cospi_p08_p24);
v[9] = _mm_madd_epi16(u[5], k__cospi_p08_p24);
v[10] = _mm_madd_epi16(u[4], k__cospi_p24_m08);
v[11] = _mm_madd_epi16(u[5], k__cospi_p24_m08);
v[12] = _mm_madd_epi16(u[6], k__cospi_m24_p08);
v[13] = _mm_madd_epi16(u[7], k__cospi_m24_p08);
v[14] = _mm_madd_epi16(u[6], k__cospi_p08_p24);
v[15] = _mm_madd_epi16(u[7], k__cospi_p08_p24);
u[0] = _mm_add_epi32(v[0], v[4]);
u[1] = _mm_add_epi32(v[1], v[5]);
u[2] = _mm_add_epi32(v[2], v[6]);
u[3] = _mm_add_epi32(v[3], v[7]);
u[4] = _mm_sub_epi32(v[0], v[4]);
u[5] = _mm_sub_epi32(v[1], v[5]);
u[6] = _mm_sub_epi32(v[2], v[6]);
u[7] = _mm_sub_epi32(v[3], v[7]);
u[8] = _mm_add_epi32(v[8], v[12]);
u[9] = _mm_add_epi32(v[9], v[13]);
u[10] = _mm_add_epi32(v[10], v[14]);
u[11] = _mm_add_epi32(v[11], v[15]);
u[12] = _mm_sub_epi32(v[8], v[12]);
u[13] = _mm_sub_epi32(v[9], v[13]);
u[14] = _mm_sub_epi32(v[10], v[14]);
u[15] = _mm_sub_epi32(v[11], v[15]);
u[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING);
u[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING);
u[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING);
u[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING);
u[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING);
u[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING);
u[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING);
u[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING);
u[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING);
u[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING);
u[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING);
u[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING);
u[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING);
u[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING);
u[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING);
u[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING);
v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
s[0] = _mm_add_epi16(x[0], x[2]);
s[1] = _mm_add_epi16(x[1], x[3]);
s[2] = _mm_sub_epi16(x[0], x[2]);
s[3] = _mm_sub_epi16(x[1], x[3]);
s[4] = _mm_packs_epi32(v[0], v[1]);
s[5] = _mm_packs_epi32(v[2], v[3]);
s[6] = _mm_packs_epi32(v[4], v[5]);
s[7] = _mm_packs_epi32(v[6], v[7]);
s[8] = _mm_add_epi16(x[8], x[10]);
s[9] = _mm_add_epi16(x[9], x[11]);
s[10] = _mm_sub_epi16(x[8], x[10]);
s[11] = _mm_sub_epi16(x[9], x[11]);
s[12] = _mm_packs_epi32(v[8], v[9]);
s[13] = _mm_packs_epi32(v[10], v[11]);
s[14] = _mm_packs_epi32(v[12], v[13]);
s[15] = _mm_packs_epi32(v[14], v[15]);
// stage 4
u[0] = _mm_unpacklo_epi16(s[2], s[3]);
u[1] = _mm_unpackhi_epi16(s[2], s[3]);
u[2] = _mm_unpacklo_epi16(s[6], s[7]);
u[3] = _mm_unpackhi_epi16(s[6], s[7]);
u[4] = _mm_unpacklo_epi16(s[10], s[11]);
u[5] = _mm_unpackhi_epi16(s[10], s[11]);
u[6] = _mm_unpacklo_epi16(s[14], s[15]);
u[7] = _mm_unpackhi_epi16(s[14], s[15]);
v[0] = _mm_madd_epi16(u[0], k__cospi_m16_m16);
v[1] = _mm_madd_epi16(u[1], k__cospi_m16_m16);
v[2] = _mm_madd_epi16(u[0], k__cospi_p16_m16);
v[3] = _mm_madd_epi16(u[1], k__cospi_p16_m16);
v[4] = _mm_madd_epi16(u[2], k__cospi_p16_p16);
v[5] = _mm_madd_epi16(u[3], k__cospi_p16_p16);
v[6] = _mm_madd_epi16(u[2], k__cospi_m16_p16);
v[7] = _mm_madd_epi16(u[3], k__cospi_m16_p16);
v[8] = _mm_madd_epi16(u[4], k__cospi_p16_p16);
v[9] = _mm_madd_epi16(u[5], k__cospi_p16_p16);
v[10] = _mm_madd_epi16(u[4], k__cospi_m16_p16);
v[11] = _mm_madd_epi16(u[5], k__cospi_m16_p16);
v[12] = _mm_madd_epi16(u[6], k__cospi_m16_m16);
v[13] = _mm_madd_epi16(u[7], k__cospi_m16_m16);
v[14] = _mm_madd_epi16(u[6], k__cospi_p16_m16);
v[15] = _mm_madd_epi16(u[7], k__cospi_p16_m16);
u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING);
u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING);
u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING);
u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING);
u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING);
u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING);
u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING);
u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING);
u[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING);
u[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING);
u[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING);
u[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING);
u[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING);
u[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING);
u[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING);
u[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING);
v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS);
v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS);
v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS);
v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS);
v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS);
v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS);
v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS);
v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS);
v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS);
v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS);
v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS);
v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS);
v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS);
v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS);
v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS);
v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS);
in[0] = s[0];
in[1] = _mm_sub_epi16(kZero, s[8]);
in[2] = s[12];
in[3] = _mm_sub_epi16(kZero, s[4]);
in[4] = _mm_packs_epi32(v[4], v[5]);
in[5] = _mm_packs_epi32(v[12], v[13]);
in[6] = _mm_packs_epi32(v[8], v[9]);
in[7] = _mm_packs_epi32(v[0], v[1]);
in[8] = _mm_packs_epi32(v[2], v[3]);
in[9] = _mm_packs_epi32(v[10], v[11]);
in[10] = _mm_packs_epi32(v[14], v[15]);
in[11] = _mm_packs_epi32(v[6], v[7]);
in[12] = s[5];
in[13] = _mm_sub_epi16(kZero, s[13]);
in[14] = s[9];
in[15] = _mm_sub_epi16(kZero, s[1]);
}
void fdct16_sse2(__m128i *in0, __m128i *in1) {
fdct16_8col(in0);
fdct16_8col(in1);
array_transpose_16x16(in0, in1);
}
void fadst16_sse2(__m128i *in0, __m128i *in1) {
fadst16_8col(in0);
fadst16_8col(in1);
array_transpose_16x16(in0, in1);
}
void vp9_fht16x16_sse2(const int16_t *input, int16_t *output,
int stride, int tx_type) {
__m128i in0[16], in1[16];
switch (tx_type) {
case DCT_DCT:
vp9_fdct16x16_sse2(input, output, stride);
break;
case ADST_DCT:
load_buffer_16x16(input, in0, in1, stride);
fadst16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fdct16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case DCT_ADST:
load_buffer_16x16(input, in0, in1, stride);
fdct16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fadst16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
case ADST_ADST:
load_buffer_16x16(input, in0, in1, stride);
fadst16_sse2(in0, in1);
right_shift_16x16(in0, in1);
fadst16_sse2(in0, in1);
write_buffer_16x16(output, in0, in1, 16);
break;
default:
assert(0);
break;
}
}
void vp9_fdct32x32_1_sse2(const int16_t *input, int16_t *output, int stride) {
__m128i in0, in1, in2, in3;
__m128i u0, u1;
__m128i sum = _mm_setzero_si128();
int i;
for (i = 0; i < 8; ++i) {
in0 = _mm_load_si128((const __m128i *)(input + 0));
in1 = _mm_load_si128((const __m128i *)(input + 8));
in2 = _mm_load_si128((const __m128i *)(input + 16));
in3 = _mm_load_si128((const __m128i *)(input + 24));
input += stride;
u0 = _mm_add_epi16(in0, in1);
u1 = _mm_add_epi16(in2, in3);
sum = _mm_add_epi16(sum, u0);
in0 = _mm_load_si128((const __m128i *)(input + 0));
in1 = _mm_load_si128((const __m128i *)(input + 8));
in2 = _mm_load_si128((const __m128i *)(input + 16));
in3 = _mm_load_si128((const __m128i *)(input + 24));
input += stride;
sum = _mm_add_epi16(sum, u1);
u0 = _mm_add_epi16(in0, in1);
u1 = _mm_add_epi16(in2, in3);
sum = _mm_add_epi16(sum, u0);
in0 = _mm_load_si128((const __m128i *)(input + 0));
in1 = _mm_load_si128((const __m128i *)(input + 8));
in2 = _mm_load_si128((const __m128i *)(input + 16));
in3 = _mm_load_si128((const __m128i *)(input + 24));
input += stride;
sum = _mm_add_epi16(sum, u1);
u0 = _mm_add_epi16(in0, in1);
u1 = _mm_add_epi16(in2, in3);
sum = _mm_add_epi16(sum, u0);
in0 = _mm_load_si128((const __m128i *)(input + 0));
in1 = _mm_load_si128((const __m128i *)(input + 8));
in2 = _mm_load_si128((const __m128i *)(input + 16));
in3 = _mm_load_si128((const __m128i *)(input + 24));
input += stride;
sum = _mm_add_epi16(sum, u1);
u0 = _mm_add_epi16(in0, in1);
u1 = _mm_add_epi16(in2, in3);
sum = _mm_add_epi16(sum, u0);
sum = _mm_add_epi16(sum, u1);
}
u0 = _mm_setzero_si128();
in0 = _mm_unpacklo_epi16(u0, sum);
in1 = _mm_unpackhi_epi16(u0, sum);
in0 = _mm_srai_epi32(in0, 16);
in1 = _mm_srai_epi32(in1, 16);
sum = _mm_add_epi32(in0, in1);
in0 = _mm_unpacklo_epi32(sum, u0);
in1 = _mm_unpackhi_epi32(sum, u0);
sum = _mm_add_epi32(in0, in1);
in0 = _mm_srli_si128(sum, 8);
in1 = _mm_add_epi32(sum, in0);
in1 = _mm_srai_epi32(in1, 3);
_mm_store_si128((__m128i *)(output), in1);
}
#define FDCT32x32_2D vp9_fdct32x32_rd_sse2
#define FDCT32x32_HIGH_PRECISION 0
#include "vp9/encoder/x86/vp9_dct32x32_sse2.c"
#undef FDCT32x32_2D
#undef FDCT32x32_HIGH_PRECISION
#define FDCT32x32_2D vp9_fdct32x32_sse2
#define FDCT32x32_HIGH_PRECISION 1
#include "vp9/encoder/x86/vp9_dct32x32_sse2.c" // NOLINT
#undef FDCT32x32_2D
#undef FDCT32x32_HIGH_PRECISION