vpx/vp9/common/vp9_entropy.c

805 lines
34 KiB
C
Raw Normal View History

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
2010-05-18 17:58:33 +02:00
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
2010-05-18 17:58:33 +02:00
*/
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_entropymode.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx/vpx_integer.h"
2010-05-18 17:58:33 +02:00
// Unconstrained Node Tree
const vpx_tree_index vp9_coef_con_tree[TREE_SIZE(ENTROPY_TOKENS)] = {
2, 6, // 0 = LOW_VAL
-TWO_TOKEN, 4, // 1 = TWO
-THREE_TOKEN, -FOUR_TOKEN, // 2 = THREE
8, 10, // 3 = HIGH_LOW
-CATEGORY1_TOKEN, -CATEGORY2_TOKEN, // 4 = CAT_ONE
12, 14, // 5 = CAT_THREEFOUR
-CATEGORY3_TOKEN, -CATEGORY4_TOKEN, // 6 = CAT_THREE
-CATEGORY5_TOKEN, -CATEGORY6_TOKEN // 7 = CAT_FIVE
};
const vpx_prob vp9_cat1_prob[] = { 159 };
const vpx_prob vp9_cat2_prob[] = { 165, 145 };
const vpx_prob vp9_cat3_prob[] = { 173, 148, 140 };
const vpx_prob vp9_cat4_prob[] = { 176, 155, 140, 135 };
const vpx_prob vp9_cat5_prob[] = { 180, 157, 141, 134, 130 };
const vpx_prob vp9_cat6_prob[] = {
254, 254, 254, 252, 249, 243, 230, 196, 177, 153, 140, 133, 130, 129
};
#if CONFIG_VP9_HIGHBITDEPTH
const vpx_prob vp9_cat6_prob_high12[] = {
255, 255, 255, 255, 254, 254, 254, 252, 249,
243, 230, 196, 177, 153, 140, 133, 130, 129
};
#endif
const uint8_t vp9_coefband_trans_8x8plus[1024] = {
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 5,
// beyond MAXBAND_INDEX+1 all values are filled as 5
5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
};
const uint8_t vp9_coefband_trans_4x4[16] = {
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5,
};
const uint8_t vp9_pt_energy_class[ENTROPY_TOKENS] = {
0, 1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5
};
// Model obtained from a 2-sided zero-centerd distribuition derived
// from a Pareto distribution. The cdf of the distribution is:
// cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta]
//
// For a given beta and a given probablity of the 1-node, the alpha
// is first solved, and then the {alpha, beta} pair is used to generate
// the probabilities for the rest of the nodes.
// beta = 8
// Every odd line in this table can be generated from the even lines
// by averaging :
// vp9_pareto8_full[l][node] = (vp9_pareto8_full[l-1][node] +
// vp9_pareto8_full[l+1][node] ) >> 1;
const vpx_prob vp9_pareto8_full[COEFF_PROB_MODELS][MODEL_NODES] = {
{ 3, 86, 128, 6, 86, 23, 88, 29},
{ 6, 86, 128, 11, 87, 42, 91, 52},
{ 9, 86, 129, 17, 88, 61, 94, 76},
{ 12, 86, 129, 22, 88, 77, 97, 93},
{ 15, 87, 129, 28, 89, 93, 100, 110},
{ 17, 87, 129, 33, 90, 105, 103, 123},
{ 20, 88, 130, 38, 91, 118, 106, 136},
{ 23, 88, 130, 43, 91, 128, 108, 146},
{ 26, 89, 131, 48, 92, 139, 111, 156},
{ 28, 89, 131, 53, 93, 147, 114, 163},
{ 31, 90, 131, 58, 94, 156, 117, 171},
{ 34, 90, 131, 62, 94, 163, 119, 177},
{ 37, 90, 132, 66, 95, 171, 122, 184},
{ 39, 90, 132, 70, 96, 177, 124, 189},
{ 42, 91, 132, 75, 97, 183, 127, 194},
{ 44, 91, 132, 79, 97, 188, 129, 198},
{ 47, 92, 133, 83, 98, 193, 132, 202},
{ 49, 92, 133, 86, 99, 197, 134, 205},
{ 52, 93, 133, 90, 100, 201, 137, 208},
{ 54, 93, 133, 94, 100, 204, 139, 211},
{ 57, 94, 134, 98, 101, 208, 142, 214},
{ 59, 94, 134, 101, 102, 211, 144, 216},
{ 62, 94, 135, 105, 103, 214, 146, 218},
{ 64, 94, 135, 108, 103, 216, 148, 220},
{ 66, 95, 135, 111, 104, 219, 151, 222},
{ 68, 95, 135, 114, 105, 221, 153, 223},
{ 71, 96, 136, 117, 106, 224, 155, 225},
{ 73, 96, 136, 120, 106, 225, 157, 226},
{ 76, 97, 136, 123, 107, 227, 159, 228},
{ 78, 97, 136, 126, 108, 229, 160, 229},
{ 80, 98, 137, 129, 109, 231, 162, 231},
{ 82, 98, 137, 131, 109, 232, 164, 232},
{ 84, 98, 138, 134, 110, 234, 166, 233},
{ 86, 98, 138, 137, 111, 235, 168, 234},
{ 89, 99, 138, 140, 112, 236, 170, 235},
{ 91, 99, 138, 142, 112, 237, 171, 235},
{ 93, 100, 139, 145, 113, 238, 173, 236},
{ 95, 100, 139, 147, 114, 239, 174, 237},
{ 97, 101, 140, 149, 115, 240, 176, 238},
{ 99, 101, 140, 151, 115, 241, 177, 238},
{101, 102, 140, 154, 116, 242, 179, 239},
{103, 102, 140, 156, 117, 242, 180, 239},
{105, 103, 141, 158, 118, 243, 182, 240},
{107, 103, 141, 160, 118, 243, 183, 240},
{109, 104, 141, 162, 119, 244, 185, 241},
{111, 104, 141, 164, 119, 244, 186, 241},
{113, 104, 142, 166, 120, 245, 187, 242},
{114, 104, 142, 168, 121, 245, 188, 242},
{116, 105, 143, 170, 122, 246, 190, 243},
{118, 105, 143, 171, 122, 246, 191, 243},
{120, 106, 143, 173, 123, 247, 192, 244},
{121, 106, 143, 175, 124, 247, 193, 244},
{123, 107, 144, 177, 125, 248, 195, 244},
{125, 107, 144, 178, 125, 248, 196, 244},
{127, 108, 145, 180, 126, 249, 197, 245},
{128, 108, 145, 181, 127, 249, 198, 245},
{130, 109, 145, 183, 128, 249, 199, 245},
{132, 109, 145, 184, 128, 249, 200, 245},
{134, 110, 146, 186, 129, 250, 201, 246},
{135, 110, 146, 187, 130, 250, 202, 246},
{137, 111, 147, 189, 131, 251, 203, 246},
{138, 111, 147, 190, 131, 251, 204, 246},
{140, 112, 147, 192, 132, 251, 205, 247},
{141, 112, 147, 193, 132, 251, 206, 247},
{143, 113, 148, 194, 133, 251, 207, 247},
{144, 113, 148, 195, 134, 251, 207, 247},
{146, 114, 149, 197, 135, 252, 208, 248},
{147, 114, 149, 198, 135, 252, 209, 248},
{149, 115, 149, 199, 136, 252, 210, 248},
{150, 115, 149, 200, 137, 252, 210, 248},
{152, 115, 150, 201, 138, 252, 211, 248},
{153, 115, 150, 202, 138, 252, 212, 248},
{155, 116, 151, 204, 139, 253, 213, 249},
{156, 116, 151, 205, 139, 253, 213, 249},
{158, 117, 151, 206, 140, 253, 214, 249},
{159, 117, 151, 207, 141, 253, 215, 249},
{161, 118, 152, 208, 142, 253, 216, 249},
{162, 118, 152, 209, 142, 253, 216, 249},
{163, 119, 153, 210, 143, 253, 217, 249},
{164, 119, 153, 211, 143, 253, 217, 249},
{166, 120, 153, 212, 144, 254, 218, 250},
{167, 120, 153, 212, 145, 254, 219, 250},
{168, 121, 154, 213, 146, 254, 220, 250},
{169, 121, 154, 214, 146, 254, 220, 250},
{171, 122, 155, 215, 147, 254, 221, 250},
{172, 122, 155, 216, 147, 254, 221, 250},
{173, 123, 155, 217, 148, 254, 222, 250},
{174, 123, 155, 217, 149, 254, 222, 250},
{176, 124, 156, 218, 150, 254, 223, 250},
{177, 124, 156, 219, 150, 254, 223, 250},
{178, 125, 157, 220, 151, 254, 224, 251},
{179, 125, 157, 220, 151, 254, 224, 251},
{180, 126, 157, 221, 152, 254, 225, 251},
{181, 126, 157, 221, 152, 254, 225, 251},
{183, 127, 158, 222, 153, 254, 226, 251},
{184, 127, 158, 223, 154, 254, 226, 251},
{185, 128, 159, 224, 155, 255, 227, 251},
{186, 128, 159, 224, 155, 255, 227, 251},
{187, 129, 160, 225, 156, 255, 228, 251},
{188, 130, 160, 225, 156, 255, 228, 251},
{189, 131, 160, 226, 157, 255, 228, 251},
{190, 131, 160, 226, 158, 255, 228, 251},
{191, 132, 161, 227, 159, 255, 229, 251},
{192, 132, 161, 227, 159, 255, 229, 251},
{193, 133, 162, 228, 160, 255, 230, 252},
{194, 133, 162, 229, 160, 255, 230, 252},
{195, 134, 163, 230, 161, 255, 231, 252},
{196, 134, 163, 230, 161, 255, 231, 252},
{197, 135, 163, 231, 162, 255, 231, 252},
{198, 135, 163, 231, 162, 255, 231, 252},
{199, 136, 164, 232, 163, 255, 232, 252},
{200, 136, 164, 232, 164, 255, 232, 252},
{201, 137, 165, 233, 165, 255, 233, 252},
{201, 137, 165, 233, 165, 255, 233, 252},
{202, 138, 166, 233, 166, 255, 233, 252},
{203, 138, 166, 233, 166, 255, 233, 252},
{204, 139, 166, 234, 167, 255, 234, 252},
{205, 139, 166, 234, 167, 255, 234, 252},
{206, 140, 167, 235, 168, 255, 235, 252},
{206, 140, 167, 235, 168, 255, 235, 252},
{207, 141, 168, 236, 169, 255, 235, 252},
{208, 141, 168, 236, 170, 255, 235, 252},
{209, 142, 169, 237, 171, 255, 236, 252},
{209, 143, 169, 237, 171, 255, 236, 252},
{210, 144, 169, 237, 172, 255, 236, 252},
{211, 144, 169, 237, 172, 255, 236, 252},
{212, 145, 170, 238, 173, 255, 237, 252},
{213, 145, 170, 238, 173, 255, 237, 252},
{214, 146, 171, 239, 174, 255, 237, 253},
{214, 146, 171, 239, 174, 255, 237, 253},
{215, 147, 172, 240, 175, 255, 238, 253},
{215, 147, 172, 240, 175, 255, 238, 253},
{216, 148, 173, 240, 176, 255, 238, 253},
{217, 148, 173, 240, 176, 255, 238, 253},
{218, 149, 173, 241, 177, 255, 239, 253},
{218, 149, 173, 241, 178, 255, 239, 253},
{219, 150, 174, 241, 179, 255, 239, 253},
{219, 151, 174, 241, 179, 255, 239, 253},
{220, 152, 175, 242, 180, 255, 240, 253},
{221, 152, 175, 242, 180, 255, 240, 253},
{222, 153, 176, 242, 181, 255, 240, 253},
{222, 153, 176, 242, 181, 255, 240, 253},
{223, 154, 177, 243, 182, 255, 240, 253},
{223, 154, 177, 243, 182, 255, 240, 253},
{224, 155, 178, 244, 183, 255, 241, 253},
{224, 155, 178, 244, 183, 255, 241, 253},
{225, 156, 178, 244, 184, 255, 241, 253},
{225, 157, 178, 244, 184, 255, 241, 253},
{226, 158, 179, 244, 185, 255, 242, 253},
{227, 158, 179, 244, 185, 255, 242, 253},
{228, 159, 180, 245, 186, 255, 242, 253},
{228, 159, 180, 245, 186, 255, 242, 253},
{229, 160, 181, 245, 187, 255, 242, 253},
{229, 160, 181, 245, 187, 255, 242, 253},
{230, 161, 182, 246, 188, 255, 243, 253},
{230, 162, 182, 246, 188, 255, 243, 253},
{231, 163, 183, 246, 189, 255, 243, 253},
{231, 163, 183, 246, 189, 255, 243, 253},
{232, 164, 184, 247, 190, 255, 243, 253},
{232, 164, 184, 247, 190, 255, 243, 253},
{233, 165, 185, 247, 191, 255, 244, 253},
{233, 165, 185, 247, 191, 255, 244, 253},
{234, 166, 185, 247, 192, 255, 244, 253},
{234, 167, 185, 247, 192, 255, 244, 253},
{235, 168, 186, 248, 193, 255, 244, 253},
{235, 168, 186, 248, 193, 255, 244, 253},
{236, 169, 187, 248, 194, 255, 244, 253},
{236, 169, 187, 248, 194, 255, 244, 253},
{236, 170, 188, 248, 195, 255, 245, 253},
{236, 170, 188, 248, 195, 255, 245, 253},
{237, 171, 189, 249, 196, 255, 245, 254},
{237, 172, 189, 249, 196, 255, 245, 254},
{238, 173, 190, 249, 197, 255, 245, 254},
{238, 173, 190, 249, 197, 255, 245, 254},
{239, 174, 191, 249, 198, 255, 245, 254},
{239, 174, 191, 249, 198, 255, 245, 254},
{240, 175, 192, 249, 199, 255, 246, 254},
{240, 176, 192, 249, 199, 255, 246, 254},
{240, 177, 193, 250, 200, 255, 246, 254},
{240, 177, 193, 250, 200, 255, 246, 254},
{241, 178, 194, 250, 201, 255, 246, 254},
{241, 178, 194, 250, 201, 255, 246, 254},
{242, 179, 195, 250, 202, 255, 246, 254},
{242, 180, 195, 250, 202, 255, 246, 254},
{242, 181, 196, 250, 203, 255, 247, 254},
{242, 181, 196, 250, 203, 255, 247, 254},
{243, 182, 197, 251, 204, 255, 247, 254},
{243, 183, 197, 251, 204, 255, 247, 254},
{244, 184, 198, 251, 205, 255, 247, 254},
{244, 184, 198, 251, 205, 255, 247, 254},
{244, 185, 199, 251, 206, 255, 247, 254},
{244, 185, 199, 251, 206, 255, 247, 254},
{245, 186, 200, 251, 207, 255, 247, 254},
{245, 187, 200, 251, 207, 255, 247, 254},
{246, 188, 201, 252, 207, 255, 248, 254},
{246, 188, 201, 252, 207, 255, 248, 254},
{246, 189, 202, 252, 208, 255, 248, 254},
{246, 190, 202, 252, 208, 255, 248, 254},
{247, 191, 203, 252, 209, 255, 248, 254},
{247, 191, 203, 252, 209, 255, 248, 254},
{247, 192, 204, 252, 210, 255, 248, 254},
{247, 193, 204, 252, 210, 255, 248, 254},
{248, 194, 205, 252, 211, 255, 248, 254},
{248, 194, 205, 252, 211, 255, 248, 254},
{248, 195, 206, 252, 212, 255, 249, 254},
{248, 196, 206, 252, 212, 255, 249, 254},
{249, 197, 207, 253, 213, 255, 249, 254},
{249, 197, 207, 253, 213, 255, 249, 254},
{249, 198, 208, 253, 214, 255, 249, 254},
{249, 199, 209, 253, 214, 255, 249, 254},
{250, 200, 210, 253, 215, 255, 249, 254},
{250, 200, 210, 253, 215, 255, 249, 254},
{250, 201, 211, 253, 215, 255, 249, 254},
{250, 202, 211, 253, 215, 255, 249, 254},
{250, 203, 212, 253, 216, 255, 249, 254},
{250, 203, 212, 253, 216, 255, 249, 254},
{251, 204, 213, 253, 217, 255, 250, 254},
{251, 205, 213, 253, 217, 255, 250, 254},
{251, 206, 214, 254, 218, 255, 250, 254},
{251, 206, 215, 254, 218, 255, 250, 254},
{252, 207, 216, 254, 219, 255, 250, 254},
{252, 208, 216, 254, 219, 255, 250, 254},
{252, 209, 217, 254, 220, 255, 250, 254},
{252, 210, 217, 254, 220, 255, 250, 254},
{252, 211, 218, 254, 221, 255, 250, 254},
{252, 212, 218, 254, 221, 255, 250, 254},
{253, 213, 219, 254, 222, 255, 250, 254},
{253, 213, 220, 254, 222, 255, 250, 254},
{253, 214, 221, 254, 223, 255, 250, 254},
{253, 215, 221, 254, 223, 255, 250, 254},
{253, 216, 222, 254, 224, 255, 251, 254},
{253, 217, 223, 254, 224, 255, 251, 254},
{253, 218, 224, 254, 225, 255, 251, 254},
{253, 219, 224, 254, 225, 255, 251, 254},
{254, 220, 225, 254, 225, 255, 251, 254},
{254, 221, 226, 254, 225, 255, 251, 254},
{254, 222, 227, 255, 226, 255, 251, 254},
{254, 223, 227, 255, 226, 255, 251, 254},
{254, 224, 228, 255, 227, 255, 251, 254},
{254, 225, 229, 255, 227, 255, 251, 254},
{254, 226, 230, 255, 228, 255, 251, 254},
{254, 227, 230, 255, 229, 255, 251, 254},
{255, 228, 231, 255, 230, 255, 251, 254},
{255, 229, 232, 255, 230, 255, 251, 254},
{255, 230, 233, 255, 231, 255, 252, 254},
{255, 231, 234, 255, 231, 255, 252, 254},
{255, 232, 235, 255, 232, 255, 252, 254},
{255, 233, 236, 255, 232, 255, 252, 254},
{255, 235, 237, 255, 233, 255, 252, 254},
{255, 236, 238, 255, 234, 255, 252, 254},
{255, 238, 240, 255, 235, 255, 252, 255},
{255, 239, 241, 255, 235, 255, 252, 254},
{255, 241, 243, 255, 236, 255, 252, 254},
{255, 243, 245, 255, 237, 255, 252, 254},
{255, 246, 247, 255, 239, 255, 253, 255},
};
static const vp9_coeff_probs_model default_coef_probs_4x4[PLANE_TYPES] = {
{ // Y plane
{ // Intra
{ // Band 0
{ 195, 29, 183 }, { 84, 49, 136 }, { 8, 42, 71 }
}, { // Band 1
{ 31, 107, 169 }, { 35, 99, 159 }, { 17, 82, 140 },
{ 8, 66, 114 }, { 2, 44, 76 }, { 1, 19, 32 }
}, { // Band 2
{ 40, 132, 201 }, { 29, 114, 187 }, { 13, 91, 157 },
{ 7, 75, 127 }, { 3, 58, 95 }, { 1, 28, 47 }
}, { // Band 3
{ 69, 142, 221 }, { 42, 122, 201 }, { 15, 91, 159 },
{ 6, 67, 121 }, { 1, 42, 77 }, { 1, 17, 31 }
}, { // Band 4
{ 102, 148, 228 }, { 67, 117, 204 }, { 17, 82, 154 },
{ 6, 59, 114 }, { 2, 39, 75 }, { 1, 15, 29 }
}, { // Band 5
{ 156, 57, 233 }, { 119, 57, 212 }, { 58, 48, 163 },
{ 29, 40, 124 }, { 12, 30, 81 }, { 3, 12, 31 }
}
}, { // Inter
{ // Band 0
{ 191, 107, 226 }, { 124, 117, 204 }, { 25, 99, 155 }
}, { // Band 1
{ 29, 148, 210 }, { 37, 126, 194 }, { 8, 93, 157 },
{ 2, 68, 118 }, { 1, 39, 69 }, { 1, 17, 33 }
}, { // Band 2
{ 41, 151, 213 }, { 27, 123, 193 }, { 3, 82, 144 },
{ 1, 58, 105 }, { 1, 32, 60 }, { 1, 13, 26 }
}, { // Band 3
{ 59, 159, 220 }, { 23, 126, 198 }, { 4, 88, 151 },
{ 1, 66, 114 }, { 1, 38, 71 }, { 1, 18, 34 }
}, { // Band 4
{ 114, 136, 232 }, { 51, 114, 207 }, { 11, 83, 155 },
{ 3, 56, 105 }, { 1, 33, 65 }, { 1, 17, 34 }
}, { // Band 5
{ 149, 65, 234 }, { 121, 57, 215 }, { 61, 49, 166 },
{ 28, 36, 114 }, { 12, 25, 76 }, { 3, 16, 42 }
}
}
}, { // UV plane
{ // Intra
{ // Band 0
{ 214, 49, 220 }, { 132, 63, 188 }, { 42, 65, 137 }
}, { // Band 1
{ 85, 137, 221 }, { 104, 131, 216 }, { 49, 111, 192 },
{ 21, 87, 155 }, { 2, 49, 87 }, { 1, 16, 28 }
}, { // Band 2
{ 89, 163, 230 }, { 90, 137, 220 }, { 29, 100, 183 },
{ 10, 70, 135 }, { 2, 42, 81 }, { 1, 17, 33 }
}, { // Band 3
{ 108, 167, 237 }, { 55, 133, 222 }, { 15, 97, 179 },
{ 4, 72, 135 }, { 1, 45, 85 }, { 1, 19, 38 }
}, { // Band 4
{ 124, 146, 240 }, { 66, 124, 224 }, { 17, 88, 175 },
{ 4, 58, 122 }, { 1, 36, 75 }, { 1, 18, 37 }
}, { // Band 5
{ 141, 79, 241 }, { 126, 70, 227 }, { 66, 58, 182 },
{ 30, 44, 136 }, { 12, 34, 96 }, { 2, 20, 47 }
}
}, { // Inter
{ // Band 0
{ 229, 99, 249 }, { 143, 111, 235 }, { 46, 109, 192 }
}, { // Band 1
{ 82, 158, 236 }, { 94, 146, 224 }, { 25, 117, 191 },
{ 9, 87, 149 }, { 3, 56, 99 }, { 1, 33, 57 }
}, { // Band 2
{ 83, 167, 237 }, { 68, 145, 222 }, { 10, 103, 177 },
{ 2, 72, 131 }, { 1, 41, 79 }, { 1, 20, 39 }
}, { // Band 3
{ 99, 167, 239 }, { 47, 141, 224 }, { 10, 104, 178 },
{ 2, 73, 133 }, { 1, 44, 85 }, { 1, 22, 47 }
}, { // Band 4
{ 127, 145, 243 }, { 71, 129, 228 }, { 17, 93, 177 },
{ 3, 61, 124 }, { 1, 41, 84 }, { 1, 21, 52 }
}, { // Band 5
{ 157, 78, 244 }, { 140, 72, 231 }, { 69, 58, 184 },
{ 31, 44, 137 }, { 14, 38, 105 }, { 8, 23, 61 }
}
}
}
};
static const vp9_coeff_probs_model default_coef_probs_8x8[PLANE_TYPES] = {
{ // Y plane
{ // Intra
{ // Band 0
{ 125, 34, 187 }, { 52, 41, 133 }, { 6, 31, 56 }
}, { // Band 1
{ 37, 109, 153 }, { 51, 102, 147 }, { 23, 87, 128 },
{ 8, 67, 101 }, { 1, 41, 63 }, { 1, 19, 29 }
}, { // Band 2
{ 31, 154, 185 }, { 17, 127, 175 }, { 6, 96, 145 },
{ 2, 73, 114 }, { 1, 51, 82 }, { 1, 28, 45 }
}, { // Band 3
{ 23, 163, 200 }, { 10, 131, 185 }, { 2, 93, 148 },
{ 1, 67, 111 }, { 1, 41, 69 }, { 1, 14, 24 }
}, { // Band 4
{ 29, 176, 217 }, { 12, 145, 201 }, { 3, 101, 156 },
{ 1, 69, 111 }, { 1, 39, 63 }, { 1, 14, 23 }
}, { // Band 5
{ 57, 192, 233 }, { 25, 154, 215 }, { 6, 109, 167 },
{ 3, 78, 118 }, { 1, 48, 69 }, { 1, 21, 29 }
}
}, { // Inter
{ // Band 0
{ 202, 105, 245 }, { 108, 106, 216 }, { 18, 90, 144 }
}, { // Band 1
{ 33, 172, 219 }, { 64, 149, 206 }, { 14, 117, 177 },
{ 5, 90, 141 }, { 2, 61, 95 }, { 1, 37, 57 }
}, { // Band 2
{ 33, 179, 220 }, { 11, 140, 198 }, { 1, 89, 148 },
{ 1, 60, 104 }, { 1, 33, 57 }, { 1, 12, 21 }
}, { // Band 3
{ 30, 181, 221 }, { 8, 141, 198 }, { 1, 87, 145 },
{ 1, 58, 100 }, { 1, 31, 55 }, { 1, 12, 20 }
}, { // Band 4
{ 32, 186, 224 }, { 7, 142, 198 }, { 1, 86, 143 },
{ 1, 58, 100 }, { 1, 31, 55 }, { 1, 12, 22 }
}, { // Band 5
{ 57, 192, 227 }, { 20, 143, 204 }, { 3, 96, 154 },
{ 1, 68, 112 }, { 1, 42, 69 }, { 1, 19, 32 }
}
}
}, { // UV plane
{ // Intra
{ // Band 0
{ 212, 35, 215 }, { 113, 47, 169 }, { 29, 48, 105 }
}, { // Band 1
{ 74, 129, 203 }, { 106, 120, 203 }, { 49, 107, 178 },
{ 19, 84, 144 }, { 4, 50, 84 }, { 1, 15, 25 }
}, { // Band 2
{ 71, 172, 217 }, { 44, 141, 209 }, { 15, 102, 173 },
{ 6, 76, 133 }, { 2, 51, 89 }, { 1, 24, 42 }
}, { // Band 3
{ 64, 185, 231 }, { 31, 148, 216 }, { 8, 103, 175 },
{ 3, 74, 131 }, { 1, 46, 81 }, { 1, 18, 30 }
}, { // Band 4
{ 65, 196, 235 }, { 25, 157, 221 }, { 5, 105, 174 },
{ 1, 67, 120 }, { 1, 38, 69 }, { 1, 15, 30 }
}, { // Band 5
{ 65, 204, 238 }, { 30, 156, 224 }, { 7, 107, 177 },
{ 2, 70, 124 }, { 1, 42, 73 }, { 1, 18, 34 }
}
}, { // Inter
{ // Band 0
{ 225, 86, 251 }, { 144, 104, 235 }, { 42, 99, 181 }
}, { // Band 1
{ 85, 175, 239 }, { 112, 165, 229 }, { 29, 136, 200 },
{ 12, 103, 162 }, { 6, 77, 123 }, { 2, 53, 84 }
}, { // Band 2
{ 75, 183, 239 }, { 30, 155, 221 }, { 3, 106, 171 },
{ 1, 74, 128 }, { 1, 44, 76 }, { 1, 17, 28 }
}, { // Band 3
{ 73, 185, 240 }, { 27, 159, 222 }, { 2, 107, 172 },
{ 1, 75, 127 }, { 1, 42, 73 }, { 1, 17, 29 }
}, { // Band 4
{ 62, 190, 238 }, { 21, 159, 222 }, { 2, 107, 172 },
{ 1, 72, 122 }, { 1, 40, 71 }, { 1, 18, 32 }
}, { // Band 5
{ 61, 199, 240 }, { 27, 161, 226 }, { 4, 113, 180 },
{ 1, 76, 129 }, { 1, 46, 80 }, { 1, 23, 41 }
}
}
}
};
static const vp9_coeff_probs_model default_coef_probs_16x16[PLANE_TYPES] = {
{ // Y plane
{ // Intra
{ // Band 0
{ 7, 27, 153 }, { 5, 30, 95 }, { 1, 16, 30 }
}, { // Band 1
{ 50, 75, 127 }, { 57, 75, 124 }, { 27, 67, 108 },
{ 10, 54, 86 }, { 1, 33, 52 }, { 1, 12, 18 }
}, { // Band 2
{ 43, 125, 151 }, { 26, 108, 148 }, { 7, 83, 122 },
{ 2, 59, 89 }, { 1, 38, 60 }, { 1, 17, 27 }
}, { // Band 3
{ 23, 144, 163 }, { 13, 112, 154 }, { 2, 75, 117 },
{ 1, 50, 81 }, { 1, 31, 51 }, { 1, 14, 23 }
}, { // Band 4
{ 18, 162, 185 }, { 6, 123, 171 }, { 1, 78, 125 },
{ 1, 51, 86 }, { 1, 31, 54 }, { 1, 14, 23 }
}, { // Band 5
{ 15, 199, 227 }, { 3, 150, 204 }, { 1, 91, 146 },
{ 1, 55, 95 }, { 1, 30, 53 }, { 1, 11, 20 }
}
}, { // Inter
{ // Band 0
{ 19, 55, 240 }, { 19, 59, 196 }, { 3, 52, 105 }
}, { // Band 1
{ 41, 166, 207 }, { 104, 153, 199 }, { 31, 123, 181 },
{ 14, 101, 152 }, { 5, 72, 106 }, { 1, 36, 52 }
}, { // Band 2
{ 35, 176, 211 }, { 12, 131, 190 }, { 2, 88, 144 },
{ 1, 60, 101 }, { 1, 36, 60 }, { 1, 16, 28 }
}, { // Band 3
{ 28, 183, 213 }, { 8, 134, 191 }, { 1, 86, 142 },
{ 1, 56, 96 }, { 1, 30, 53 }, { 1, 12, 20 }
}, { // Band 4
{ 20, 190, 215 }, { 4, 135, 192 }, { 1, 84, 139 },
{ 1, 53, 91 }, { 1, 28, 49 }, { 1, 11, 20 }
}, { // Band 5
{ 13, 196, 216 }, { 2, 137, 192 }, { 1, 86, 143 },
{ 1, 57, 99 }, { 1, 32, 56 }, { 1, 13, 24 }
}
}
}, { // UV plane
{ // Intra
{ // Band 0
{ 211, 29, 217 }, { 96, 47, 156 }, { 22, 43, 87 }
}, { // Band 1
{ 78, 120, 193 }, { 111, 116, 186 }, { 46, 102, 164 },
{ 15, 80, 128 }, { 2, 49, 76 }, { 1, 18, 28 }
}, { // Band 2
{ 71, 161, 203 }, { 42, 132, 192 }, { 10, 98, 150 },
{ 3, 69, 109 }, { 1, 44, 70 }, { 1, 18, 29 }
}, { // Band 3
{ 57, 186, 211 }, { 30, 140, 196 }, { 4, 93, 146 },
{ 1, 62, 102 }, { 1, 38, 65 }, { 1, 16, 27 }
}, { // Band 4
{ 47, 199, 217 }, { 14, 145, 196 }, { 1, 88, 142 },
{ 1, 57, 98 }, { 1, 36, 62 }, { 1, 15, 26 }
}, { // Band 5
{ 26, 219, 229 }, { 5, 155, 207 }, { 1, 94, 151 },
{ 1, 60, 104 }, { 1, 36, 62 }, { 1, 16, 28 }
}
}, { // Inter
{ // Band 0
{ 233, 29, 248 }, { 146, 47, 220 }, { 43, 52, 140 }
}, { // Band 1
{ 100, 163, 232 }, { 179, 161, 222 }, { 63, 142, 204 },
{ 37, 113, 174 }, { 26, 89, 137 }, { 18, 68, 97 }
}, { // Band 2
{ 85, 181, 230 }, { 32, 146, 209 }, { 7, 100, 164 },
{ 3, 71, 121 }, { 1, 45, 77 }, { 1, 18, 30 }
}, { // Band 3
{ 65, 187, 230 }, { 20, 148, 207 }, { 2, 97, 159 },
{ 1, 68, 116 }, { 1, 40, 70 }, { 1, 14, 29 }
}, { // Band 4
{ 40, 194, 227 }, { 8, 147, 204 }, { 1, 94, 155 },
{ 1, 65, 112 }, { 1, 39, 66 }, { 1, 14, 26 }
}, { // Band 5
{ 16, 208, 228 }, { 3, 151, 207 }, { 1, 98, 160 },
{ 1, 67, 117 }, { 1, 41, 74 }, { 1, 17, 31 }
}
}
}
};
static const vp9_coeff_probs_model default_coef_probs_32x32[PLANE_TYPES] = {
{ // Y plane
{ // Intra
{ // Band 0
{ 17, 38, 140 }, { 7, 34, 80 }, { 1, 17, 29 }
}, { // Band 1
{ 37, 75, 128 }, { 41, 76, 128 }, { 26, 66, 116 },
{ 12, 52, 94 }, { 2, 32, 55 }, { 1, 10, 16 }
}, { // Band 2
{ 50, 127, 154 }, { 37, 109, 152 }, { 16, 82, 121 },
{ 5, 59, 85 }, { 1, 35, 54 }, { 1, 13, 20 }
}, { // Band 3
{ 40, 142, 167 }, { 17, 110, 157 }, { 2, 71, 112 },
{ 1, 44, 72 }, { 1, 27, 45 }, { 1, 11, 17 }
}, { // Band 4
{ 30, 175, 188 }, { 9, 124, 169 }, { 1, 74, 116 },
{ 1, 48, 78 }, { 1, 30, 49 }, { 1, 11, 18 }
}, { // Band 5
{ 10, 222, 223 }, { 2, 150, 194 }, { 1, 83, 128 },
{ 1, 48, 79 }, { 1, 27, 45 }, { 1, 11, 17 }
}
}, { // Inter
{ // Band 0
{ 36, 41, 235 }, { 29, 36, 193 }, { 10, 27, 111 }
}, { // Band 1
{ 85, 165, 222 }, { 177, 162, 215 }, { 110, 135, 195 },
{ 57, 113, 168 }, { 23, 83, 120 }, { 10, 49, 61 }
}, { // Band 2
{ 85, 190, 223 }, { 36, 139, 200 }, { 5, 90, 146 },
{ 1, 60, 103 }, { 1, 38, 65 }, { 1, 18, 30 }
}, { // Band 3
{ 72, 202, 223 }, { 23, 141, 199 }, { 2, 86, 140 },
{ 1, 56, 97 }, { 1, 36, 61 }, { 1, 16, 27 }
}, { // Band 4
{ 55, 218, 225 }, { 13, 145, 200 }, { 1, 86, 141 },
{ 1, 57, 99 }, { 1, 35, 61 }, { 1, 13, 22 }
}, { // Band 5
{ 15, 235, 212 }, { 1, 132, 184 }, { 1, 84, 139 },
{ 1, 57, 97 }, { 1, 34, 56 }, { 1, 14, 23 }
}
}
}, { // UV plane
{ // Intra
{ // Band 0
{ 181, 21, 201 }, { 61, 37, 123 }, { 10, 38, 71 }
}, { // Band 1
{ 47, 106, 172 }, { 95, 104, 173 }, { 42, 93, 159 },
{ 18, 77, 131 }, { 4, 50, 81 }, { 1, 17, 23 }
}, { // Band 2
{ 62, 147, 199 }, { 44, 130, 189 }, { 28, 102, 154 },
{ 18, 75, 115 }, { 2, 44, 65 }, { 1, 12, 19 }
}, { // Band 3
{ 55, 153, 210 }, { 24, 130, 194 }, { 3, 93, 146 },
{ 1, 61, 97 }, { 1, 31, 50 }, { 1, 10, 16 }
}, { // Band 4
{ 49, 186, 223 }, { 17, 148, 204 }, { 1, 96, 142 },
{ 1, 53, 83 }, { 1, 26, 44 }, { 1, 11, 17 }
}, { // Band 5
{ 13, 217, 212 }, { 2, 136, 180 }, { 1, 78, 124 },
{ 1, 50, 83 }, { 1, 29, 49 }, { 1, 14, 23 }
}
}, { // Inter
{ // Band 0
{ 197, 13, 247 }, { 82, 17, 222 }, { 25, 17, 162 }
}, { // Band 1
{ 126, 186, 247 }, { 234, 191, 243 }, { 176, 177, 234 },
{ 104, 158, 220 }, { 66, 128, 186 }, { 55, 90, 137 }
}, { // Band 2
{ 111, 197, 242 }, { 46, 158, 219 }, { 9, 104, 171 },
{ 2, 65, 125 }, { 1, 44, 80 }, { 1, 17, 91 }
}, { // Band 3
{ 104, 208, 245 }, { 39, 168, 224 }, { 3, 109, 162 },
{ 1, 79, 124 }, { 1, 50, 102 }, { 1, 43, 102 }
}, { // Band 4
{ 84, 220, 246 }, { 31, 177, 231 }, { 2, 115, 180 },
{ 1, 79, 134 }, { 1, 55, 77 }, { 1, 60, 79 }
}, { // Band 5
{ 43, 243, 240 }, { 8, 180, 217 }, { 1, 115, 166 },
{ 1, 84, 121 }, { 1, 51, 67 }, { 1, 16, 6 }
}
}
}
};
static void extend_to_full_distribution(vpx_prob *probs, vpx_prob p) {
// TODO(aconverse): model[PIVOT_NODE] should never be zero.
// https://code.google.com/p/webm/issues/detail?id=1089
memcpy(probs, vp9_pareto8_full[p == 0 ? 254 : p - 1],
MODEL_NODES * sizeof(vpx_prob));
Modeling default coef probs with distribution Replaces the default tables for single coefficient magnitudes with those obtained from an appropriate distribution. The EOB node is left unchanged. The model is represeted as a 256-size codebook where the index corresponds to the probability of the Zero or the One node. Two variations are implemented corresponding to whether the Zero node or the One-node is used as the peg. The main advantage is that the default prob tables will become considerably smaller and manageable. Besides there is substantially less risk of over-fitting for a training set. Various distributions are tried and the one that gives the best results is the family of Generalized Gaussian distributions with shape parameter 0.75. The results are within about 0.2% of fully trained tables for the Zero peg variant, and within 0.1% of the One peg variant. The forward updates are optionally (controlled by a macro) model-based, i.e. restricted to only convey probabilities from the codebook. Backward updates can also be optionally (controlled by another macro) model-based, but is turned off by default. Currently model-based forward updates work about the same as unconstrained updates, but there is a drop in performance with backward-updates being model based. The model based approach also allows the probabilities for the key frames to be adjusted from the defaults based on the base_qindex of the frame. Currently the adjustment function is a placeholder that adjusts the prob of EOB and Zero node from the nominal one at higher quality (lower qindex) or lower quality (higher qindex) ends of the range. The rest of the probabilities are then derived based on the model from the adjusted prob of zero. Change-Id: Iae050f3cbcc6d8b3f204e8dc395ae47b3b2192c9
2013-03-13 19:03:17 +01:00
}
void vp9_model_to_full_probs(const vpx_prob *model, vpx_prob *full) {
if (full != model)
memcpy(full, model, sizeof(vpx_prob) * UNCONSTRAINED_NODES);
extend_to_full_distribution(&full[UNCONSTRAINED_NODES], model[PIVOT_NODE]);
}
void vp9_default_coef_probs(VP9_COMMON *cm) {
vp9_copy(cm->fc->coef_probs[TX_4X4], default_coef_probs_4x4);
vp9_copy(cm->fc->coef_probs[TX_8X8], default_coef_probs_8x8);
vp9_copy(cm->fc->coef_probs[TX_16X16], default_coef_probs_16x16);
vp9_copy(cm->fc->coef_probs[TX_32X32], default_coef_probs_32x32);
}
2010-05-18 17:58:33 +02:00
#define COEF_COUNT_SAT 24
#define COEF_MAX_UPDATE_FACTOR 112
#define COEF_COUNT_SAT_KEY 24
#define COEF_MAX_UPDATE_FACTOR_KEY 112
#define COEF_COUNT_SAT_AFTER_KEY 24
#define COEF_MAX_UPDATE_FACTOR_AFTER_KEY 128
static void adapt_coef_probs(VP9_COMMON *cm, TX_SIZE tx_size,
unsigned int count_sat,
unsigned int update_factor) {
const FRAME_CONTEXT *pre_fc = &cm->frame_contexts[cm->frame_context_idx];
vp9_coeff_probs_model *const probs = cm->fc->coef_probs[tx_size];
const vp9_coeff_probs_model *const pre_probs = pre_fc->coef_probs[tx_size];
vp9_coeff_count_model *counts = cm->counts.coef[tx_size];
unsigned int (*eob_counts)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
cm->counts.eob_branch[tx_size];
int i, j, k, l, m;
for (i = 0; i < PLANE_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
const int n0 = counts[i][j][k][l][ZERO_TOKEN];
const int n1 = counts[i][j][k][l][ONE_TOKEN];
const int n2 = counts[i][j][k][l][TWO_TOKEN];
const int neob = counts[i][j][k][l][EOB_MODEL_TOKEN];
const unsigned int branch_ct[UNCONSTRAINED_NODES][2] = {
{ neob, eob_counts[i][j][k][l] - neob },
{ n0, n1 + n2 },
{ n1, n2 }
};
for (m = 0; m < UNCONSTRAINED_NODES; ++m)
probs[i][j][k][l][m] = merge_probs(pre_probs[i][j][k][l][m],
branch_ct[m],
count_sat, update_factor);
}
}
void vp9_adapt_coef_probs(VP9_COMMON *cm) {
TX_SIZE t;
unsigned int count_sat, update_factor;
if (frame_is_intra_only(cm)) {
update_factor = COEF_MAX_UPDATE_FACTOR_KEY;
count_sat = COEF_COUNT_SAT_KEY;
} else if (cm->last_frame_type == KEY_FRAME) {
update_factor = COEF_MAX_UPDATE_FACTOR_AFTER_KEY; /* adapt quickly */
count_sat = COEF_COUNT_SAT_AFTER_KEY;
} else {
update_factor = COEF_MAX_UPDATE_FACTOR;
count_sat = COEF_COUNT_SAT;
}
for (t = TX_4X4; t <= TX_32X32; t++)
adapt_coef_probs(cm, t, count_sat, update_factor);
}