More method functions for elliptic curves,
and an ectest.c that actually tests something.
This commit is contained in:
@@ -1,4 +1,3 @@
|
||||
/* TODO */
|
||||
/* crypto/ec/ectest.c */
|
||||
/* ====================================================================
|
||||
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
|
||||
@@ -57,26 +56,164 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
|
||||
#ifdef OPENSSL_NO_EC
|
||||
int main(int argc, char * argv[]) { puts("Elliptic curves are disabled."); return 0; }
|
||||
#else
|
||||
|
||||
|
||||
#include <openssl/ec.h>
|
||||
#include <openssl/err.h>
|
||||
|
||||
|
||||
#define ABORT do { \
|
||||
fprintf(stderr, "%s:%d: Error\n", __FILE__, __LINE__); \
|
||||
fprintf(stderr, "%s:%d: ABORT\n", __FILE__, __LINE__); \
|
||||
ERR_print_errors_fp(stderr); \
|
||||
exit(1); \
|
||||
} while (0)
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
BN_CTX *ctx = NULL;
|
||||
BIGNUM *p, *a, *b;
|
||||
EC_GROUP *group;
|
||||
|
||||
EC_POINT *P, *Q, *R;
|
||||
BIGNUM *x, *y, *z;
|
||||
unsigned char buf[100];
|
||||
size_t i, len;
|
||||
|
||||
CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON);
|
||||
ERR_load_crypto_strings();
|
||||
|
||||
#if 0
|
||||
group = EC_GROUP_new(NULL);
|
||||
if (!group) ABORT;
|
||||
#if 0 /* optional */
|
||||
ctx = BN_CTX_new();
|
||||
if (!ctx) ABORT;
|
||||
#endif
|
||||
|
||||
p = BN_new();
|
||||
a = BN_new();
|
||||
b = BN_new();
|
||||
if (!p || !a || !b) ABORT;
|
||||
|
||||
if (!BN_hex2bn(&p, "D")) ABORT;
|
||||
if (!BN_hex2bn(&a, "7")) ABORT;
|
||||
if (!BN_hex2bn(&b, "C")) ABORT;
|
||||
|
||||
group = EC_GROUP_new_curve_GFp(p, a, b, NULL);
|
||||
if (!group) ABORT;
|
||||
|
||||
fprintf(stdout, "Curve defined by Weierstrass equation\n y^2 = x^3 + a*x + b (mod 0x");
|
||||
BN_print_fp(stdout, p);
|
||||
fprintf(stdout, ")\n a = 0x");
|
||||
BN_print_fp(stdout, a);
|
||||
fprintf(stdout, "\n b = 0x");
|
||||
BN_print_fp(stdout, b);
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
P = EC_POINT_new(group);
|
||||
Q = EC_POINT_new(group);
|
||||
R = EC_POINT_new(group);
|
||||
if (!P || !Q || !R) ABORT;
|
||||
|
||||
if (!EC_POINT_set_to_infinity(group, P)) ABORT;
|
||||
if (!EC_POINT_is_at_infinity(group, P)) ABORT;
|
||||
|
||||
buf[0] = 0;
|
||||
if (!EC_POINT_oct2point(group, Q, buf, 1, ctx)) ABORT;
|
||||
|
||||
if (!EC_POINT_add(group, P, P, Q, ctx)) ABORT;
|
||||
if (!EC_POINT_is_at_infinity(group, P)) ABORT;
|
||||
|
||||
x = BN_new();
|
||||
y = BN_new();
|
||||
z = BN_new();
|
||||
if (!x || !y || !z) ABORT;
|
||||
|
||||
if (!BN_hex2bn(&x, "C")) ABORT;
|
||||
if (!EC_POINT_set_compressed_coordinates_GFp(group, Q, x, 1, ctx)) ABORT;
|
||||
if (!EC_POINT_is_on_curve(group, Q, ctx))
|
||||
{
|
||||
fprintf(stderr, "Point is not on curve, x = 0x");
|
||||
BN_print_fp(stderr, x);
|
||||
fprintf(stderr, "\n");
|
||||
ABORT;
|
||||
}
|
||||
|
||||
fprintf(stdout, "A cyclic subgroup:\n");
|
||||
do
|
||||
{
|
||||
if (EC_POINT_is_at_infinity(group, P))
|
||||
fprintf(stdout, " point at infinity\n");
|
||||
else
|
||||
{
|
||||
if (!EC_POINT_get_affine_coordinates_GFp(group, P, x, y, ctx)) ABORT;
|
||||
|
||||
fprintf(stdout, " x = 0x");
|
||||
BN_print_fp(stdout, x);
|
||||
fprintf(stdout, ", y = 0x");
|
||||
BN_print_fp(stdout, y);
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
|
||||
if (!EC_POINT_copy(R, P)) ABORT;
|
||||
if (!EC_POINT_add(group, P, P, Q, ctx)) ABORT;
|
||||
|
||||
#if 0 /* optional */
|
||||
if (!EC_POINT_make_affine(group, P, ctx)) ABORT;
|
||||
#endif
|
||||
}
|
||||
while (!EC_POINT_is_at_infinity(group, P));
|
||||
|
||||
if (!EC_POINT_add(group, P, Q, R, ctx)) ABORT;
|
||||
if (!EC_POINT_is_at_infinity(group, P)) ABORT;
|
||||
|
||||
len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_COMPRESSED, buf, sizeof buf, ctx);
|
||||
if (len == 0) ABORT;
|
||||
if (!EC_POINT_oct2point(group, P, buf, len, ctx)) ABORT;
|
||||
if (0 != EC_POINT_cmp(group, P, Q, ctx)) ABORT;
|
||||
fprintf(stdout, "Generator as octect string, compressed form:\n ");
|
||||
for (i = 0; i < len; i++) fprintf(stdout, "%02X", buf[i]);
|
||||
|
||||
len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_UNCOMPRESSED, buf, sizeof buf, ctx);
|
||||
if (len == 0) ABORT;
|
||||
if (!EC_POINT_oct2point(group, P, buf, len, ctx)) ABORT;
|
||||
if (0 != EC_POINT_cmp(group, P, Q, ctx)) ABORT;
|
||||
fprintf(stdout, "\nGenerator as octect string, uncompressed form:\n ");
|
||||
for (i = 0; i < len; i++) fprintf(stdout, "%02X", buf[i]);
|
||||
|
||||
len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_HYBRID, buf, sizeof buf, ctx);
|
||||
if (len == 0) ABORT;
|
||||
if (!EC_POINT_oct2point(group, P, buf, len, ctx)) ABORT;
|
||||
if (0 != EC_POINT_cmp(group, P, Q, ctx)) ABORT;
|
||||
fprintf(stdout, "\nGenerator as octect string, hybrid form:\n ");
|
||||
for (i = 0; i < len; i++) fprintf(stdout, "%02X", buf[i]);
|
||||
|
||||
if (!EC_POINT_get_Jprojective_coordinates_GFp(group, R, x, y, z, ctx)) ABORT;
|
||||
fprintf(stdout, "\nA representation of the inverse of that generator in\nJacobian projective coordinates:\n X = 0x");
|
||||
BN_print_fp(stdout, x);
|
||||
fprintf(stdout, ", Y = 0x");
|
||||
BN_print_fp(stdout, y);
|
||||
fprintf(stdout, ", Z = 0x");
|
||||
BN_print_fp(stdout, z);
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
if (!EC_POINT_invert(group, P, ctx)) ABORT;
|
||||
if (0 != EC_POINT_cmp(group, P, R, ctx)) ABORT;
|
||||
|
||||
/* ... */
|
||||
|
||||
if (ctx)
|
||||
BN_CTX_free(ctx);
|
||||
BN_free(p); BN_free(a); BN_free(b);
|
||||
EC_GROUP_free(group);
|
||||
EC_POINT_free(P);
|
||||
EC_POINT_free(Q);
|
||||
EC_POINT_free(R);
|
||||
BN_free(x); BN_free(y); BN_free(z);
|
||||
|
||||
ERR_free_strings();
|
||||
ERR_remove_state(0);
|
||||
CRYPTO_mem_leaks_fp(stderr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user