openssl/crypto/ec/ectest.c
Bodo Möller bb62a8b0c5 More method functions for elliptic curves,
and an ectest.c that actually tests something.
2001-03-08 19:14:52 +00:00

220 lines
6.9 KiB
C

/* crypto/ec/ectest.c */
/* ====================================================================
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#include <stdlib.h>
#ifdef OPENSSL_NO_EC
int main(int argc, char * argv[]) { puts("Elliptic curves are disabled."); return 0; }
#else
#include <openssl/ec.h>
#include <openssl/err.h>
#define ABORT do { \
fprintf(stderr, "%s:%d: ABORT\n", __FILE__, __LINE__); \
ERR_print_errors_fp(stderr); \
exit(1); \
} while (0)
int main(int argc, char *argv[])
{
BN_CTX *ctx = NULL;
BIGNUM *p, *a, *b;
EC_GROUP *group;
EC_POINT *P, *Q, *R;
BIGNUM *x, *y, *z;
unsigned char buf[100];
size_t i, len;
CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON);
ERR_load_crypto_strings();
#if 0 /* optional */
ctx = BN_CTX_new();
if (!ctx) ABORT;
#endif
p = BN_new();
a = BN_new();
b = BN_new();
if (!p || !a || !b) ABORT;
if (!BN_hex2bn(&p, "D")) ABORT;
if (!BN_hex2bn(&a, "7")) ABORT;
if (!BN_hex2bn(&b, "C")) ABORT;
group = EC_GROUP_new_curve_GFp(p, a, b, NULL);
if (!group) ABORT;
fprintf(stdout, "Curve defined by Weierstrass equation\n y^2 = x^3 + a*x + b (mod 0x");
BN_print_fp(stdout, p);
fprintf(stdout, ")\n a = 0x");
BN_print_fp(stdout, a);
fprintf(stdout, "\n b = 0x");
BN_print_fp(stdout, b);
fprintf(stdout, "\n");
P = EC_POINT_new(group);
Q = EC_POINT_new(group);
R = EC_POINT_new(group);
if (!P || !Q || !R) ABORT;
if (!EC_POINT_set_to_infinity(group, P)) ABORT;
if (!EC_POINT_is_at_infinity(group, P)) ABORT;
buf[0] = 0;
if (!EC_POINT_oct2point(group, Q, buf, 1, ctx)) ABORT;
if (!EC_POINT_add(group, P, P, Q, ctx)) ABORT;
if (!EC_POINT_is_at_infinity(group, P)) ABORT;
x = BN_new();
y = BN_new();
z = BN_new();
if (!x || !y || !z) ABORT;
if (!BN_hex2bn(&x, "C")) ABORT;
if (!EC_POINT_set_compressed_coordinates_GFp(group, Q, x, 1, ctx)) ABORT;
if (!EC_POINT_is_on_curve(group, Q, ctx))
{
fprintf(stderr, "Point is not on curve, x = 0x");
BN_print_fp(stderr, x);
fprintf(stderr, "\n");
ABORT;
}
fprintf(stdout, "A cyclic subgroup:\n");
do
{
if (EC_POINT_is_at_infinity(group, P))
fprintf(stdout, " point at infinity\n");
else
{
if (!EC_POINT_get_affine_coordinates_GFp(group, P, x, y, ctx)) ABORT;
fprintf(stdout, " x = 0x");
BN_print_fp(stdout, x);
fprintf(stdout, ", y = 0x");
BN_print_fp(stdout, y);
fprintf(stdout, "\n");
}
if (!EC_POINT_copy(R, P)) ABORT;
if (!EC_POINT_add(group, P, P, Q, ctx)) ABORT;
#if 0 /* optional */
if (!EC_POINT_make_affine(group, P, ctx)) ABORT;
#endif
}
while (!EC_POINT_is_at_infinity(group, P));
if (!EC_POINT_add(group, P, Q, R, ctx)) ABORT;
if (!EC_POINT_is_at_infinity(group, P)) ABORT;
len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_COMPRESSED, buf, sizeof buf, ctx);
if (len == 0) ABORT;
if (!EC_POINT_oct2point(group, P, buf, len, ctx)) ABORT;
if (0 != EC_POINT_cmp(group, P, Q, ctx)) ABORT;
fprintf(stdout, "Generator as octect string, compressed form:\n ");
for (i = 0; i < len; i++) fprintf(stdout, "%02X", buf[i]);
len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_UNCOMPRESSED, buf, sizeof buf, ctx);
if (len == 0) ABORT;
if (!EC_POINT_oct2point(group, P, buf, len, ctx)) ABORT;
if (0 != EC_POINT_cmp(group, P, Q, ctx)) ABORT;
fprintf(stdout, "\nGenerator as octect string, uncompressed form:\n ");
for (i = 0; i < len; i++) fprintf(stdout, "%02X", buf[i]);
len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_HYBRID, buf, sizeof buf, ctx);
if (len == 0) ABORT;
if (!EC_POINT_oct2point(group, P, buf, len, ctx)) ABORT;
if (0 != EC_POINT_cmp(group, P, Q, ctx)) ABORT;
fprintf(stdout, "\nGenerator as octect string, hybrid form:\n ");
for (i = 0; i < len; i++) fprintf(stdout, "%02X", buf[i]);
if (!EC_POINT_get_Jprojective_coordinates_GFp(group, R, x, y, z, ctx)) ABORT;
fprintf(stdout, "\nA representation of the inverse of that generator in\nJacobian projective coordinates:\n X = 0x");
BN_print_fp(stdout, x);
fprintf(stdout, ", Y = 0x");
BN_print_fp(stdout, y);
fprintf(stdout, ", Z = 0x");
BN_print_fp(stdout, z);
fprintf(stdout, "\n");
if (!EC_POINT_invert(group, P, ctx)) ABORT;
if (0 != EC_POINT_cmp(group, P, R, ctx)) ABORT;
/* ... */
if (ctx)
BN_CTX_free(ctx);
BN_free(p); BN_free(a); BN_free(b);
EC_GROUP_free(group);
EC_POINT_free(P);
EC_POINT_free(Q);
EC_POINT_free(R);
BN_free(x); BN_free(y); BN_free(z);
ERR_free_strings();
ERR_remove_state(0);
CRYPTO_mem_leaks_fp(stderr);
return 0;
}
#endif