Integrated support for PVK files.
This commit is contained in:
parent
96998822b5
commit
a0156a926f
5
CHANGES
5
CHANGES
@ -4,6 +4,11 @@
|
||||
|
||||
Changes between 0.9.8a and 0.9.9 [xx XXX xxxx]
|
||||
|
||||
*) Integrated support for PVK file format and some related formats such
|
||||
as MS PUBLICKEYBLOB and PRIVATEKEYBLOB. Command line switches to support
|
||||
these in the 'rsa' and 'dsa' utilities.
|
||||
[Steve Henson]
|
||||
|
||||
*) Support for PKCS#1 RSAPublicKey format on rsa utility command line.
|
||||
[Steve Henson]
|
||||
|
||||
|
24
apps/apps.c
24
apps/apps.c
@ -239,11 +239,18 @@ int str2fmt(char *s)
|
||||
else if ((*s == 'T') || (*s == 't'))
|
||||
return(FORMAT_TEXT);
|
||||
else if ((*s == 'P') || (*s == 'p'))
|
||||
return(FORMAT_PEM);
|
||||
else if ((*s == 'N') || (*s == 'n'))
|
||||
return(FORMAT_NETSCAPE);
|
||||
else if ((*s == 'S') || (*s == 's'))
|
||||
return(FORMAT_SMIME);
|
||||
{
|
||||
if (s[1] == 'V' || s[1] == 'v')
|
||||
return FORMAT_PVK;
|
||||
else
|
||||
return(FORMAT_PEM);
|
||||
}
|
||||
else if ((*s == 'N') || (*s == 'n'))
|
||||
return(FORMAT_NETSCAPE);
|
||||
else if ((*s == 'S') || (*s == 's'))
|
||||
return(FORMAT_SMIME);
|
||||
else if ((*s == 'M') || (*s == 'm'))
|
||||
return(FORMAT_MSBLOB);
|
||||
else if ((*s == '1')
|
||||
|| (strcmp(s,"PKCS12") == 0) || (strcmp(s,"pkcs12") == 0)
|
||||
|| (strcmp(s,"P12") == 0) || (strcmp(s,"p12") == 0))
|
||||
@ -879,6 +886,11 @@ EVP_PKEY *load_key(BIO *err, const char *file, int format, int maybe_stdin,
|
||||
&pkey, NULL, NULL))
|
||||
goto end;
|
||||
}
|
||||
else if (format == FORMAT_MSBLOB)
|
||||
pkey = b2i_PrivateKey_bio(key);
|
||||
else if (format == FORMAT_PVK)
|
||||
pkey = b2i_PVK_bio(key, (pem_password_cb *)password_callback,
|
||||
&cb_data);
|
||||
else
|
||||
{
|
||||
BIO_printf(err,"bad input format specified for key file\n");
|
||||
@ -979,6 +991,8 @@ EVP_PKEY *load_pubkey(BIO *err, const char *file, int format, int maybe_stdin,
|
||||
else if (format == FORMAT_NETSCAPE || format == FORMAT_IISSGC)
|
||||
pkey = load_netscape_key(err, key, file, key_descrip, format);
|
||||
#endif
|
||||
else if (format == FORMAT_MSBLOB)
|
||||
pkey = b2i_PublicKey_bio(key);
|
||||
else
|
||||
{
|
||||
BIO_printf(err,"bad input format specified for key file\n");
|
||||
|
@ -333,6 +333,8 @@ void policies_print(BIO *out, X509_STORE_CTX *ctx);
|
||||
* adding yet another param to load_*key() */
|
||||
#define FORMAT_PEMRSA 9 /* PEM RSAPubicKey format */
|
||||
#define FORMAT_ASN1RSA 10 /* DER RSAPubicKey format */
|
||||
#define FORMAT_MSBLOB 11 /* MS Key blob format */
|
||||
#define FORMAT_PVK 12 /* MS PVK file format */
|
||||
|
||||
#define EXT_COPY_NONE 0
|
||||
#define EXT_COPY_ADD 1
|
||||
|
33
apps/dsa.c
33
apps/dsa.c
@ -249,16 +249,22 @@ bad:
|
||||
}
|
||||
|
||||
BIO_printf(bio_err,"read DSA key\n");
|
||||
if (informat == FORMAT_ASN1) {
|
||||
if(pubin) dsa=d2i_DSA_PUBKEY_bio(in,NULL);
|
||||
else dsa=d2i_DSAPrivateKey_bio(in,NULL);
|
||||
} else if (informat == FORMAT_PEM) {
|
||||
if(pubin) dsa=PEM_read_bio_DSA_PUBKEY(in,NULL, NULL, NULL);
|
||||
else dsa=PEM_read_bio_DSAPrivateKey(in,NULL,NULL,passin);
|
||||
} else
|
||||
|
||||
{
|
||||
BIO_printf(bio_err,"bad input format specified for key\n");
|
||||
goto end;
|
||||
EVP_PKEY *pkey;
|
||||
|
||||
if (pubin)
|
||||
pkey = load_pubkey(bio_err, infile, informat, 1,
|
||||
passin, e, "Public Key");
|
||||
else
|
||||
pkey = load_key(bio_err, infile, informat, 1,
|
||||
passin, e, "Private Key");
|
||||
|
||||
if (pkey)
|
||||
{
|
||||
dsa = EVP_PKEY_get1_DSA(pkey);
|
||||
EVP_PKEY_free(pkey);
|
||||
}
|
||||
}
|
||||
if (dsa == NULL)
|
||||
{
|
||||
@ -311,6 +317,15 @@ bad:
|
||||
i=PEM_write_bio_DSA_PUBKEY(out,dsa);
|
||||
else i=PEM_write_bio_DSAPrivateKey(out,dsa,enc,
|
||||
NULL,0,NULL, passout);
|
||||
} else if (outformat == FORMAT_MSBLOB) {
|
||||
EVP_PKEY *pk;
|
||||
pk = EVP_PKEY_new();
|
||||
EVP_PKEY_set1_DSA(pk, dsa);
|
||||
if (pubin || pubout)
|
||||
i = i2b_PublicKey_bio(out, pk);
|
||||
else
|
||||
i = i2b_PrivateKey_bio(out, pk);
|
||||
EVP_PKEY_free(pk);
|
||||
} else {
|
||||
BIO_printf(bio_err,"bad output format specified for outfile\n");
|
||||
goto end;
|
||||
|
19
apps/rsa.c
19
apps/rsa.c
@ -111,6 +111,8 @@ int MAIN(int argc, char **argv)
|
||||
#endif
|
||||
int modulus=0;
|
||||
|
||||
int pvk_encr = 2;
|
||||
|
||||
apps_startup();
|
||||
|
||||
if (bio_err == NULL)
|
||||
@ -177,6 +179,12 @@ int MAIN(int argc, char **argv)
|
||||
pubin = 2;
|
||||
else if (strcmp(*argv,"-RSAPublicKey_out") == 0)
|
||||
pubout = 2;
|
||||
else if (strcmp(*argv,"-pvk-strong") == 0)
|
||||
pvk_encr=2;
|
||||
else if (strcmp(*argv,"-pvk-weak") == 0)
|
||||
pvk_encr=1;
|
||||
else if (strcmp(*argv,"-pvk-none") == 0)
|
||||
pvk_encr=0;
|
||||
else if (strcmp(*argv,"-noout") == 0)
|
||||
noout=1;
|
||||
else if (strcmp(*argv,"-text") == 0)
|
||||
@ -390,6 +398,17 @@ bad:
|
||||
}
|
||||
else i=PEM_write_bio_RSAPrivateKey(out,rsa,
|
||||
enc,NULL,0,NULL,passout);
|
||||
} else if (outformat == FORMAT_MSBLOB || outformat == FORMAT_PVK) {
|
||||
EVP_PKEY *pk;
|
||||
pk = EVP_PKEY_new();
|
||||
EVP_PKEY_set1_RSA(pk, rsa);
|
||||
if (outformat == FORMAT_PVK)
|
||||
i = i2b_PVK_bio(out, pk, pvk_encr, 0, passout);
|
||||
else if (pubin || pubout)
|
||||
i = i2b_PublicKey_bio(out, pk);
|
||||
else
|
||||
i = i2b_PrivateKey_bio(out, pk);
|
||||
EVP_PKEY_free(pk);
|
||||
} else {
|
||||
BIO_printf(bio_err,"bad output format specified for outfile\n");
|
||||
goto end;
|
||||
|
@ -18,10 +18,10 @@ APPS=
|
||||
|
||||
LIB=$(TOP)/libcrypto.a
|
||||
LIBSRC= pem_sign.c pem_seal.c pem_info.c pem_lib.c pem_all.c pem_err.c \
|
||||
pem_x509.c pem_xaux.c pem_oth.c pem_pk8.c pem_pkey.c
|
||||
pem_x509.c pem_xaux.c pem_oth.c pem_pk8.c pem_pkey.c pvkfmt.c
|
||||
|
||||
LIBOBJ= pem_sign.o pem_seal.o pem_info.o pem_lib.o pem_all.o pem_err.o \
|
||||
pem_x509.o pem_xaux.o pem_oth.o pem_pk8.o pem_pkey.o
|
||||
pem_x509.o pem_xaux.o pem_oth.o pem_pk8.o pem_pkey.o pvkfmt.o
|
||||
|
||||
SRC= $(LIBSRC)
|
||||
|
||||
|
@ -677,6 +677,18 @@ int PEM_write_PKCS8PrivateKey(FILE *fp,EVP_PKEY *x,const EVP_CIPHER *enc,
|
||||
#endif /* SSLEAY_MACROS */
|
||||
|
||||
|
||||
EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length);
|
||||
EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length);
|
||||
EVP_PKEY *b2i_PrivateKey_bio(BIO *in);
|
||||
EVP_PKEY *b2i_PublicKey_bio(BIO *in);
|
||||
int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk);
|
||||
int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk);
|
||||
|
||||
EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u);
|
||||
int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
|
||||
/* BEGIN ERROR CODES */
|
||||
/* The following lines are auto generated by the script mkerr.pl. Any changes
|
||||
* made after this point may be overwritten when the script is next run.
|
||||
@ -686,10 +698,22 @@ void ERR_load_PEM_strings(void);
|
||||
/* Error codes for the PEM functions. */
|
||||
|
||||
/* Function codes. */
|
||||
#define PEM_F_B2I_DSS 127
|
||||
#define PEM_F_B2I_PVK_BIO 128
|
||||
#define PEM_F_B2I_RSA 129
|
||||
#define PEM_F_CHECK_BITLEN_DSA 130
|
||||
#define PEM_F_CHECK_BITLEN_RSA 131
|
||||
#define PEM_F_D2I_PKCS8PRIVATEKEY_BIO 120
|
||||
#define PEM_F_D2I_PKCS8PRIVATEKEY_FP 121
|
||||
#define PEM_F_DO_B2I 132
|
||||
#define PEM_F_DO_B2I_BIO 133
|
||||
#define PEM_F_DO_BLOB_HEADER 134
|
||||
#define PEM_F_DO_PK8PKEY 126
|
||||
#define PEM_F_DO_PK8PKEY_FP 125
|
||||
#define PEM_F_DO_PVK_BODY 135
|
||||
#define PEM_F_DO_PVK_HEADER 136
|
||||
#define PEM_F_I2B_PVK 137
|
||||
#define PEM_F_I2B_PVK_BIO 138
|
||||
#define PEM_F_LOAD_IV 101
|
||||
#define PEM_F_PEM_ASN1_READ 102
|
||||
#define PEM_F_PEM_ASN1_READ_BIO 103
|
||||
@ -718,18 +742,29 @@ void ERR_load_PEM_strings(void);
|
||||
#define PEM_R_BAD_DECRYPT 101
|
||||
#define PEM_R_BAD_END_LINE 102
|
||||
#define PEM_R_BAD_IV_CHARS 103
|
||||
#define PEM_R_BAD_MAGIC_NUMBER 116
|
||||
#define PEM_R_BAD_PASSWORD_READ 104
|
||||
#define PEM_R_BAD_VERSION_NUMBER 117
|
||||
#define PEM_R_BIO_WRITE_FAILURE 118
|
||||
#define PEM_R_ERROR_CONVERTING_PRIVATE_KEY 115
|
||||
#define PEM_R_EXPECTING_PRIVATE_KEY_BLOB 119
|
||||
#define PEM_R_EXPECTING_PUBLIC_KEY_BLOB 120
|
||||
#define PEM_R_INCONSISTENT_HEADER 121
|
||||
#define PEM_R_KEYBLOB_HEADER_PARSE_ERROR 122
|
||||
#define PEM_R_KEYBLOB_TOO_SHORT 123
|
||||
#define PEM_R_NOT_DEK_INFO 105
|
||||
#define PEM_R_NOT_ENCRYPTED 106
|
||||
#define PEM_R_NOT_PROC_TYPE 107
|
||||
#define PEM_R_NO_START_LINE 108
|
||||
#define PEM_R_PROBLEMS_GETTING_PASSWORD 109
|
||||
#define PEM_R_PUBLIC_KEY_NO_RSA 110
|
||||
#define PEM_R_PVK_DATA_TOO_SHORT 124
|
||||
#define PEM_R_PVK_TOO_SHORT 125
|
||||
#define PEM_R_READ_KEY 111
|
||||
#define PEM_R_SHORT_HEADER 112
|
||||
#define PEM_R_UNSUPPORTED_CIPHER 113
|
||||
#define PEM_R_UNSUPPORTED_ENCRYPTION 114
|
||||
#define PEM_R_UNSUPPORTED_KEY_COMPONENTS 126
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -70,10 +70,22 @@
|
||||
|
||||
static ERR_STRING_DATA PEM_str_functs[]=
|
||||
{
|
||||
{ERR_FUNC(PEM_F_B2I_DSS), "B2I_DSS"},
|
||||
{ERR_FUNC(PEM_F_B2I_PVK_BIO), "B2I_PVK_BIO"},
|
||||
{ERR_FUNC(PEM_F_B2I_RSA), "B2I_RSA"},
|
||||
{ERR_FUNC(PEM_F_CHECK_BITLEN_DSA), "CHECK_BITLEN_DSA"},
|
||||
{ERR_FUNC(PEM_F_CHECK_BITLEN_RSA), "CHECK_BITLEN_RSA"},
|
||||
{ERR_FUNC(PEM_F_D2I_PKCS8PRIVATEKEY_BIO), "d2i_PKCS8PrivateKey_bio"},
|
||||
{ERR_FUNC(PEM_F_D2I_PKCS8PRIVATEKEY_FP), "d2i_PKCS8PrivateKey_fp"},
|
||||
{ERR_FUNC(PEM_F_DO_B2I), "DO_B2I"},
|
||||
{ERR_FUNC(PEM_F_DO_B2I_BIO), "DO_B2I_BIO"},
|
||||
{ERR_FUNC(PEM_F_DO_BLOB_HEADER), "DO_BLOB_HEADER"},
|
||||
{ERR_FUNC(PEM_F_DO_PK8PKEY), "DO_PK8PKEY"},
|
||||
{ERR_FUNC(PEM_F_DO_PK8PKEY_FP), "DO_PK8PKEY_FP"},
|
||||
{ERR_FUNC(PEM_F_DO_PVK_BODY), "DO_PVK_BODY"},
|
||||
{ERR_FUNC(PEM_F_DO_PVK_HEADER), "DO_PVK_HEADER"},
|
||||
{ERR_FUNC(PEM_F_I2B_PVK), "I2B_PVK"},
|
||||
{ERR_FUNC(PEM_F_I2B_PVK_BIO), "I2B_PVK_BIO"},
|
||||
{ERR_FUNC(PEM_F_LOAD_IV), "LOAD_IV"},
|
||||
{ERR_FUNC(PEM_F_PEM_ASN1_READ), "PEM_ASN1_read"},
|
||||
{ERR_FUNC(PEM_F_PEM_ASN1_READ_BIO), "PEM_ASN1_read_bio"},
|
||||
@ -105,18 +117,29 @@ static ERR_STRING_DATA PEM_str_reasons[]=
|
||||
{ERR_REASON(PEM_R_BAD_DECRYPT) ,"bad decrypt"},
|
||||
{ERR_REASON(PEM_R_BAD_END_LINE) ,"bad end line"},
|
||||
{ERR_REASON(PEM_R_BAD_IV_CHARS) ,"bad iv chars"},
|
||||
{ERR_REASON(PEM_R_BAD_MAGIC_NUMBER) ,"bad magic number"},
|
||||
{ERR_REASON(PEM_R_BAD_PASSWORD_READ) ,"bad password read"},
|
||||
{ERR_REASON(PEM_R_BAD_VERSION_NUMBER) ,"bad version number"},
|
||||
{ERR_REASON(PEM_R_BIO_WRITE_FAILURE) ,"bio write failure"},
|
||||
{ERR_REASON(PEM_R_ERROR_CONVERTING_PRIVATE_KEY),"error converting private key"},
|
||||
{ERR_REASON(PEM_R_EXPECTING_PRIVATE_KEY_BLOB),"expecting private key blob"},
|
||||
{ERR_REASON(PEM_R_EXPECTING_PUBLIC_KEY_BLOB),"expecting public key blob"},
|
||||
{ERR_REASON(PEM_R_INCONSISTENT_HEADER) ,"inconsistent header"},
|
||||
{ERR_REASON(PEM_R_KEYBLOB_HEADER_PARSE_ERROR),"keyblob header parse error"},
|
||||
{ERR_REASON(PEM_R_KEYBLOB_TOO_SHORT) ,"keyblob too short"},
|
||||
{ERR_REASON(PEM_R_NOT_DEK_INFO) ,"not dek info"},
|
||||
{ERR_REASON(PEM_R_NOT_ENCRYPTED) ,"not encrypted"},
|
||||
{ERR_REASON(PEM_R_NOT_PROC_TYPE) ,"not proc type"},
|
||||
{ERR_REASON(PEM_R_NO_START_LINE) ,"no start line"},
|
||||
{ERR_REASON(PEM_R_PROBLEMS_GETTING_PASSWORD),"problems getting password"},
|
||||
{ERR_REASON(PEM_R_PUBLIC_KEY_NO_RSA) ,"public key no rsa"},
|
||||
{ERR_REASON(PEM_R_PVK_DATA_TOO_SHORT) ,"pvk data too short"},
|
||||
{ERR_REASON(PEM_R_PVK_TOO_SHORT) ,"pvk too short"},
|
||||
{ERR_REASON(PEM_R_READ_KEY) ,"read key"},
|
||||
{ERR_REASON(PEM_R_SHORT_HEADER) ,"short header"},
|
||||
{ERR_REASON(PEM_R_UNSUPPORTED_CIPHER) ,"unsupported cipher"},
|
||||
{ERR_REASON(PEM_R_UNSUPPORTED_ENCRYPTION),"unsupported encryption"},
|
||||
{ERR_REASON(PEM_R_UNSUPPORTED_KEY_COMPONENTS),"unsupported key components"},
|
||||
{0,NULL}
|
||||
};
|
||||
|
||||
|
930
crypto/pem/pvkfmt.c
Normal file
930
crypto/pem/pvkfmt.c
Normal file
@ -0,0 +1,930 @@
|
||||
/* Written by Dr Stephen N Henson (shenson@bigfoot.com) for the OpenSSL
|
||||
* project 2005.
|
||||
*/
|
||||
/* ====================================================================
|
||||
* Copyright (c) 2005 The OpenSSL Project. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
*
|
||||
* 3. All advertising materials mentioning features or use of this
|
||||
* software must display the following acknowledgment:
|
||||
* "This product includes software developed by the OpenSSL Project
|
||||
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
||||
*
|
||||
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
||||
* endorse or promote products derived from this software without
|
||||
* prior written permission. For written permission, please contact
|
||||
* licensing@OpenSSL.org.
|
||||
*
|
||||
* 5. Products derived from this software may not be called "OpenSSL"
|
||||
* nor may "OpenSSL" appear in their names without prior written
|
||||
* permission of the OpenSSL Project.
|
||||
*
|
||||
* 6. Redistributions of any form whatsoever must retain the following
|
||||
* acknowledgment:
|
||||
* "This product includes software developed by the OpenSSL Project
|
||||
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
||||
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
||||
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||||
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
* ====================================================================
|
||||
*
|
||||
* This product includes cryptographic software written by Eric Young
|
||||
* (eay@cryptsoft.com). This product includes software written by Tim
|
||||
* Hudson (tjh@cryptsoft.com).
|
||||
*
|
||||
*/
|
||||
|
||||
/* Support for PVK format keys and related structures (such a PUBLICKEYBLOB
|
||||
* and PRIVATEKEYBLOB).
|
||||
*/
|
||||
|
||||
#include "cryptlib.h"
|
||||
#include <openssl/pem.h>
|
||||
#include <openssl/rand.h>
|
||||
|
||||
/* Utility function: read a DWORD (4 byte unsigned integer) in little endian
|
||||
* format
|
||||
*/
|
||||
|
||||
static unsigned int read_ledword(const unsigned char **in)
|
||||
{
|
||||
const unsigned char *p = *in;
|
||||
unsigned int ret;
|
||||
ret = *p++;
|
||||
ret |= (*p++ << 8);
|
||||
ret |= (*p++ << 16);
|
||||
ret |= (*p++ << 24);
|
||||
*in = p;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Read a BIGNUM in little endian format. The docs say that this should take up
|
||||
* bitlen/8 bytes.
|
||||
*/
|
||||
|
||||
static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r)
|
||||
{
|
||||
const unsigned char *p;
|
||||
unsigned char *tmpbuf, *q;
|
||||
unsigned int i;
|
||||
p = *in + nbyte - 1;
|
||||
tmpbuf = OPENSSL_malloc(nbyte);
|
||||
if (!tmpbuf)
|
||||
return 0;
|
||||
q = tmpbuf;
|
||||
for (i = 0; i < nbyte; i++)
|
||||
*q++ = *p--;
|
||||
*r = BN_bin2bn(tmpbuf, nbyte, NULL);
|
||||
OPENSSL_free(tmpbuf);
|
||||
if (*r)
|
||||
{
|
||||
*in += nbyte;
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */
|
||||
|
||||
#define MS_PUBLICKEYBLOB 0x6
|
||||
#define MS_PRIVATEKEYBLOB 0x7
|
||||
#define MS_RSA1MAGIC 0x31415352L
|
||||
#define MS_RSA2MAGIC 0x32415352L
|
||||
#define MS_DSS1MAGIC 0x31535344L
|
||||
#define MS_DSS2MAGIC 0x32535344L
|
||||
|
||||
#define MS_KEYALG_RSA_KEYX 0xa400
|
||||
#define MS_KEYALG_DSS_SIGN 0x2200
|
||||
|
||||
#define MS_KEYTYPE_KEYX 0x1
|
||||
#define MS_KEYTYPE_SIGN 0x2
|
||||
|
||||
/* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */
|
||||
#define MS_PVKMAGIC 0xb0b5f11eL
|
||||
/* Salt length for PVK files */
|
||||
#define PVK_SALTLEN 0x10
|
||||
|
||||
static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
|
||||
unsigned int bitlen, int ispub);
|
||||
static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
|
||||
unsigned int bitlen, int ispub);
|
||||
|
||||
static int do_blob_header(const unsigned char **in, unsigned int length,
|
||||
unsigned int *pmagic, unsigned int *pbitlen,
|
||||
int *pisdss, int *pispub)
|
||||
{
|
||||
const unsigned char *p = *in;
|
||||
if (length < 16)
|
||||
return 0;
|
||||
/* bType */
|
||||
if (*p == MS_PUBLICKEYBLOB)
|
||||
{
|
||||
if (*pispub == 0)
|
||||
{
|
||||
PEMerr(PEM_F_DO_BLOB_HEADER,
|
||||
PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
|
||||
return 0;
|
||||
}
|
||||
*pispub = 1;
|
||||
}
|
||||
else if (*p == MS_PRIVATEKEYBLOB)
|
||||
{
|
||||
if (*pispub == 1)
|
||||
{
|
||||
PEMerr(PEM_F_DO_BLOB_HEADER,
|
||||
PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
|
||||
return 0;
|
||||
}
|
||||
*pispub = 0;
|
||||
}
|
||||
else
|
||||
return 0;
|
||||
p++;
|
||||
/* Version */
|
||||
if (*p++ != 0x2)
|
||||
{
|
||||
PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER);
|
||||
return 0;
|
||||
}
|
||||
/* Ignore reserved, aiKeyAlg */
|
||||
p+= 6;
|
||||
*pmagic = read_ledword(&p);
|
||||
*pbitlen = read_ledword(&p);
|
||||
*pisdss = 0;
|
||||
switch (*pmagic)
|
||||
{
|
||||
|
||||
case MS_DSS1MAGIC:
|
||||
*pisdss = 1;
|
||||
case MS_RSA1MAGIC:
|
||||
if (*pispub == 0)
|
||||
{
|
||||
PEMerr(PEM_F_DO_BLOB_HEADER,
|
||||
PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
|
||||
return 0;
|
||||
}
|
||||
break;
|
||||
|
||||
case MS_DSS2MAGIC:
|
||||
*pisdss = 1;
|
||||
case MS_RSA2MAGIC:
|
||||
if (*pispub == 1)
|
||||
{
|
||||
PEMerr(PEM_F_DO_BLOB_HEADER,
|
||||
PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
|
||||
return 0;
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER);
|
||||
return -1;
|
||||
}
|
||||
*in = p;
|
||||
return 1;
|
||||
}
|
||||
|
||||
static unsigned int blob_length(unsigned bitlen, int isdss, int ispub)
|
||||
{
|
||||
unsigned int nbyte, hnbyte;
|
||||
nbyte = (bitlen + 7) >> 3;
|
||||
hnbyte = (bitlen + 15) >> 4;
|
||||
if (isdss)
|
||||
{
|
||||
|
||||
/* Expected length: 20 for q + 3 components bitlen each + 24
|
||||
* for seed structure.
|
||||
*/
|
||||
if (ispub)
|
||||
return 44 + 3 * nbyte;
|
||||
/* Expected length: 20 for q, priv, 2 bitlen components + 24
|
||||
* for seed structure.
|
||||
*/
|
||||
else
|
||||
return 64 + 2 * nbyte;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Expected length: 4 for 'e' + 'n' */
|
||||
if (ispub)
|
||||
return 4 + nbyte;
|
||||
else
|
||||
/* Expected length: 4 for 'e' and 7 other components.
|
||||
* 2 components are bitlen size, 5 are bitlen/2
|
||||
*/
|
||||
return 4 + 2*nbyte + 5*hnbyte;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length,
|
||||
int ispub)
|
||||
{
|
||||
const unsigned char *p = *in;
|
||||
unsigned int bitlen, magic;
|
||||
int isdss;
|
||||
if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0)
|
||||
{
|
||||
PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR);
|
||||
return NULL;
|
||||
}
|
||||
length -= 16;
|
||||
if (length < blob_length(bitlen, isdss, ispub))
|
||||
{
|
||||
PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT);
|
||||
return NULL;
|
||||
}
|
||||
if (isdss)
|
||||
return b2i_dss(&p, length, bitlen, ispub);
|
||||
else
|
||||
return b2i_rsa(&p, length, bitlen, ispub);
|
||||
}
|
||||
|
||||
static EVP_PKEY *do_b2i_bio(BIO *in, int ispub)
|
||||
{
|
||||
const unsigned char *p;
|
||||
unsigned char hdr_buf[16], *buf = NULL;
|
||||
unsigned int bitlen, magic, length;
|
||||
int isdss;
|
||||
EVP_PKEY *ret = NULL;
|
||||
if (BIO_read(in, hdr_buf, 16) != 16)
|
||||
{
|
||||
PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
|
||||
return NULL;
|
||||
}
|
||||
p = hdr_buf;
|
||||
if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0)
|
||||
return NULL;
|
||||
|
||||
length = blob_length(bitlen, isdss, ispub);
|
||||
buf = OPENSSL_malloc(length);
|
||||
if (!buf)
|
||||
{
|
||||
PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE);
|
||||
goto err;
|
||||
}
|
||||
p = buf;
|
||||
if (BIO_read(in, buf, length) != (int)length)
|
||||
{
|
||||
PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
|
||||
goto err;
|
||||
}
|
||||
|
||||
if (isdss)
|
||||
ret = b2i_dss(&p, length, bitlen, ispub);
|
||||
else
|
||||
ret = b2i_rsa(&p, length, bitlen, ispub);
|
||||
|
||||
err:
|
||||
if (buf)
|
||||
OPENSSL_free(buf);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
|
||||
unsigned int bitlen, int ispub)
|
||||
{
|
||||
const unsigned char *p = *in;
|
||||
EVP_PKEY *ret = NULL;
|
||||
DSA *dsa = NULL;
|
||||
BN_CTX *ctx = NULL;
|
||||
unsigned int nbyte;
|
||||
nbyte = (bitlen + 7) >> 3;
|
||||
|
||||
dsa = DSA_new();
|
||||
ret = EVP_PKEY_new();
|
||||
if (!dsa || !ret)
|
||||
goto memerr;
|
||||
if (!read_lebn(&p, nbyte, &dsa->p))
|
||||
goto memerr;
|
||||
if (!read_lebn(&p, 20, &dsa->q))
|
||||
goto memerr;
|
||||
if (!read_lebn(&p, nbyte, &dsa->g))
|
||||
goto memerr;
|
||||
if (ispub)
|
||||
{
|
||||
if (!read_lebn(&p, nbyte, &dsa->pub_key))
|
||||
goto memerr;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!read_lebn(&p, 20, &dsa->priv_key))
|
||||
goto memerr;
|
||||
/* Calculate public key */
|
||||
if (!(dsa->pub_key = BN_new()))
|
||||
goto memerr;
|
||||
if (!(ctx = BN_CTX_new()))
|
||||
goto memerr;
|
||||
|
||||
if (!BN_mod_exp(dsa->pub_key, dsa->g,
|
||||
dsa->priv_key, dsa->p, ctx))
|
||||
|
||||
goto memerr;
|
||||
BN_CTX_free(ctx);
|
||||
}
|
||||
|
||||
EVP_PKEY_set1_DSA(ret, dsa);
|
||||
DSA_free(dsa);
|
||||
*in = p;
|
||||
return ret;
|
||||
|
||||
memerr:
|
||||
PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE);
|
||||
if (dsa)
|
||||
DSA_free(dsa);
|
||||
if (ret)
|
||||
EVP_PKEY_free(ret);
|
||||
if (ctx)
|
||||
BN_CTX_free(ctx);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
|
||||
unsigned int bitlen, int ispub)
|
||||
|
||||
{
|
||||
const unsigned char *p = *in;
|
||||
EVP_PKEY *ret = NULL;
|
||||
RSA *rsa = NULL;
|
||||
unsigned int nbyte, hnbyte;
|
||||
nbyte = (bitlen + 7) >> 3;
|
||||
hnbyte = (bitlen + 15) >> 4;
|
||||
rsa = RSA_new();
|
||||
ret = EVP_PKEY_new();
|
||||
if (!rsa || !ret)
|
||||
goto memerr;
|
||||
rsa->e = BN_new();
|
||||
if (!rsa->e)
|
||||
goto memerr;
|
||||
if (!BN_set_word(rsa->e, read_ledword(&p)))
|
||||
goto memerr;
|
||||
if (!read_lebn(&p, nbyte, &rsa->n))
|
||||
goto memerr;
|
||||
if (!ispub)
|
||||
{
|
||||
if (!read_lebn(&p, hnbyte, &rsa->p))
|
||||
goto memerr;
|
||||
if (!read_lebn(&p, hnbyte, &rsa->q))
|
||||
goto memerr;
|
||||
if (!read_lebn(&p, hnbyte, &rsa->dmp1))
|
||||
goto memerr;
|
||||
if (!read_lebn(&p, hnbyte, &rsa->dmq1))
|
||||
goto memerr;
|
||||
if (!read_lebn(&p, hnbyte, &rsa->iqmp))
|
||||
goto memerr;
|
||||
if (!read_lebn(&p, nbyte, &rsa->d))
|
||||
goto memerr;
|
||||
}
|
||||
|
||||
EVP_PKEY_set1_RSA(ret, rsa);
|
||||
RSA_free(rsa);
|
||||
*in = p;
|
||||
return ret;
|
||||
memerr:
|
||||
PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE);
|
||||
if (rsa)
|
||||
RSA_free(rsa);
|
||||
if (ret)
|
||||
EVP_PKEY_free(ret);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length)
|
||||
{
|
||||
return do_b2i(in, length, 0);
|
||||
}
|
||||
|
||||
EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length)
|
||||
{
|
||||
return do_b2i(in, length, 1);
|
||||
}
|
||||
|
||||
|
||||
EVP_PKEY *b2i_PrivateKey_bio(BIO *in)
|
||||
{
|
||||
return do_b2i_bio(in, 0);
|
||||
}
|
||||
|
||||
EVP_PKEY *b2i_PublicKey_bio(BIO *in)
|
||||
{
|
||||
return do_b2i_bio(in, 1);
|
||||
}
|
||||
|
||||
static void write_ledword(unsigned char **out, unsigned int dw)
|
||||
{
|
||||
unsigned char *p = *out;
|
||||
*p++ = dw & 0xff;
|
||||
*p++ = (dw>>8) & 0xff;
|
||||
*p++ = (dw>>16) & 0xff;
|
||||
*p++ = (dw>>24) & 0xff;
|
||||
*out = p;
|
||||
}
|
||||
|
||||
static void write_lebn(unsigned char **out, const BIGNUM *bn, int len)
|
||||
{
|
||||
int nb, i;
|
||||
unsigned char *p = *out, *q, c;
|
||||
nb = BN_num_bytes(bn);
|
||||
BN_bn2bin(bn, p);
|
||||
q = p + nb - 1;
|
||||
/* In place byte order reversal */
|
||||
for (i = 0; i < nb/2; i++)
|
||||
{
|
||||
c = *p;
|
||||
*p++ = *q;
|
||||
*q-- = c;
|
||||
}
|
||||
*out += nb;
|
||||
/* Pad with zeroes if we have to */
|
||||
if (len > 0)
|
||||
{
|
||||
len -= nb;
|
||||
if (len > 0)
|
||||
{
|
||||
memset(*out, 0, len);
|
||||
*out += len;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic);
|
||||
static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic);
|
||||
|
||||
static void write_rsa(unsigned char **out, RSA *rsa, int ispub);
|
||||
static void write_dsa(unsigned char **out, DSA *dsa, int ispub);
|
||||
|
||||
static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub)
|
||||
{
|
||||
unsigned char *p;
|
||||
unsigned int bitlen, magic, keyalg;
|
||||
int outlen, noinc = 0;
|
||||
if (pk->type == EVP_PKEY_DSA)
|
||||
{
|
||||
bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic);
|
||||
keyalg = MS_KEYALG_DSS_SIGN;
|
||||
}
|
||||
else if (pk->type == EVP_PKEY_RSA)
|
||||
{
|
||||
bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic);
|
||||
keyalg = MS_KEYALG_RSA_KEYX;
|
||||
}
|
||||
else
|
||||
return -1;
|
||||
if (bitlen == 0)
|
||||
return -1;
|
||||
outlen = 16 + blob_length(bitlen,
|
||||
keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub);
|
||||
if (out == NULL)
|
||||
return outlen;
|
||||
if (*out)
|
||||
p = *out;
|
||||
else
|
||||
{
|
||||
p = OPENSSL_malloc(outlen);
|
||||
if (!p)
|
||||
return -1;
|
||||
*out = p;
|
||||
noinc = 1;
|
||||
}
|
||||
if (ispub)
|
||||
*p++ = MS_PUBLICKEYBLOB;
|
||||
else
|
||||
*p++ = MS_PRIVATEKEYBLOB;
|
||||
*p++ = 0x2;
|
||||
*p++ = 0;
|
||||
*p++ = 0;
|
||||
write_ledword(&p, keyalg);
|
||||
write_ledword(&p, magic);
|
||||
write_ledword(&p, bitlen);
|
||||
if (keyalg == MS_KEYALG_DSS_SIGN)
|
||||
write_dsa(&p, pk->pkey.dsa, ispub);
|
||||
else
|
||||
write_rsa(&p, pk->pkey.rsa, ispub);
|
||||
if (!noinc)
|
||||
*out += outlen;
|
||||
return outlen;
|
||||
}
|
||||
|
||||
static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub)
|
||||
{
|
||||
unsigned char *tmp = NULL;
|
||||
int outlen, wrlen;
|
||||
outlen = do_i2b(&tmp, pk, ispub);
|
||||
if (outlen < 0)
|
||||
return -1;
|
||||
wrlen = BIO_write(out, tmp, outlen);
|
||||
OPENSSL_free(tmp);
|
||||
if (wrlen == outlen)
|
||||
return outlen;
|
||||
return -1;
|
||||
}
|
||||
|
||||
static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic)
|
||||
{
|
||||
int bitlen;
|
||||
bitlen = BN_num_bits(dsa->p);
|
||||
if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160)
|
||||
|| (BN_num_bits(dsa->g) > bitlen))
|
||||
goto badkey;
|
||||
if (ispub)
|
||||
{
|
||||
if (BN_num_bits(dsa->pub_key) > bitlen)
|
||||
goto badkey;
|
||||
*pmagic = MS_DSS1MAGIC;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (BN_num_bits(dsa->priv_key) > 160)
|
||||
goto badkey;
|
||||
*pmagic = MS_DSS2MAGIC;
|
||||
}
|
||||
|
||||
return bitlen;
|
||||
badkey:
|
||||
PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic)
|
||||
{
|
||||
int nbyte, hnbyte, bitlen;
|
||||
if (BN_num_bits(rsa->e) > 32)
|
||||
goto badkey;
|
||||
bitlen = BN_num_bits(rsa->n);
|
||||
nbyte = BN_num_bytes(rsa->n);
|
||||
hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
|
||||
if (ispub)
|
||||
{
|
||||
*pmagic = MS_RSA1MAGIC;
|
||||
return bitlen;
|
||||
}
|
||||
else
|
||||
{
|
||||
*pmagic = MS_RSA2MAGIC;
|
||||
/* For private key each component must fit within nbyte or
|
||||
* hnbyte.
|
||||
*/
|
||||
if (BN_num_bytes(rsa->d) > nbyte)
|
||||
goto badkey;
|
||||
if ((BN_num_bytes(rsa->iqmp) > hnbyte)
|
||||
|| (BN_num_bytes(rsa->p) > hnbyte)
|
||||
|| (BN_num_bytes(rsa->q) > hnbyte)
|
||||
|| (BN_num_bytes(rsa->dmp1) > hnbyte)
|
||||
|| (BN_num_bytes(rsa->dmq1) > hnbyte))
|
||||
goto badkey;
|
||||
}
|
||||
return bitlen;
|
||||
badkey:
|
||||
PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static void write_rsa(unsigned char **out, RSA *rsa, int ispub)
|
||||
{
|
||||
int nbyte, hnbyte;
|
||||
nbyte = BN_num_bytes(rsa->n);
|
||||
hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
|
||||
write_lebn(out, rsa->e, 4);
|
||||
write_lebn(out, rsa->n, -1);
|
||||
if (ispub)
|
||||
return;
|
||||
write_lebn(out, rsa->p, hnbyte);
|
||||
write_lebn(out, rsa->q, hnbyte);
|
||||
write_lebn(out, rsa->dmp1, hnbyte);
|
||||
write_lebn(out, rsa->dmq1, hnbyte);
|
||||
write_lebn(out, rsa->iqmp, hnbyte);
|
||||
write_lebn(out, rsa->d, nbyte);
|
||||
}
|
||||
|
||||
|
||||
static void write_dsa(unsigned char **out, DSA *dsa, int ispub)
|
||||
{
|
||||
int nbyte;
|
||||
nbyte = BN_num_bytes(dsa->p);
|
||||
write_lebn(out, dsa->p, nbyte);
|
||||
write_lebn(out, dsa->q, 20);
|
||||
write_lebn(out, dsa->g, nbyte);
|
||||
if (ispub)
|
||||
write_lebn(out, dsa->pub_key, nbyte);
|
||||
else
|
||||
write_lebn(out, dsa->priv_key, 20);
|
||||
/* Set "invalid" for seed structure values */
|
||||
memset(*out, 0xff, 24);
|
||||
*out += 24;
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk)
|
||||
{
|
||||
return do_i2b_bio(out, pk, 0);
|
||||
}
|
||||
|
||||
int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk)
|
||||
{
|
||||
return do_i2b_bio(out, pk, 1);
|
||||
}
|
||||
|
||||
static int do_PVK_header(const unsigned char **in, unsigned int length,
|
||||
int skip_magic,
|
||||
unsigned int *psaltlen, unsigned int *pkeylen)
|
||||
|
||||
{
|
||||
const unsigned char *p = *in;
|
||||
unsigned int pvk_magic, keytype, is_encrypted;
|
||||
if (skip_magic)
|
||||
{
|
||||
if (length < 20)
|
||||
{
|
||||
PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
|
||||
return 0;
|
||||
}
|
||||
length -= 20;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (length < 24)
|
||||
{
|
||||
PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
|
||||
return 0;
|
||||
}
|
||||
length -= 24;
|
||||
pvk_magic = read_ledword(&p);
|
||||
if (pvk_magic != MS_PVKMAGIC)
|
||||
{
|
||||
PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
/* Skip reserved */
|
||||
p += 4;
|
||||
keytype = read_ledword(&p);
|
||||
is_encrypted = read_ledword(&p);
|
||||
*psaltlen = read_ledword(&p);
|
||||
*pkeylen = read_ledword(&p);
|
||||
|
||||
if (is_encrypted && !*psaltlen)
|
||||
{
|
||||
PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER);
|
||||
return 0;
|
||||
}
|
||||
|
||||
*in = p;
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int derive_pvk_key(unsigned char *key,
|
||||
const unsigned char *salt, unsigned int saltlen,
|
||||
const unsigned char *pass, int passlen)
|
||||
{
|
||||
EVP_MD_CTX mctx;
|
||||
EVP_MD_CTX_init(&mctx);
|
||||
EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL);
|
||||
EVP_DigestUpdate(&mctx, salt, saltlen);
|
||||
EVP_DigestUpdate(&mctx, pass, passlen);
|
||||
EVP_DigestFinal_ex(&mctx, key, NULL);
|
||||
EVP_MD_CTX_cleanup(&mctx);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
static EVP_PKEY *do_PVK_body(const unsigned char **in,
|
||||
unsigned int saltlen, unsigned int keylen,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
EVP_PKEY *ret = NULL;
|
||||
const unsigned char *p = *in;
|
||||
unsigned int magic;
|
||||
unsigned char *enctmp = NULL, *q;
|
||||
if (saltlen)
|
||||
{
|
||||
char psbuf[PEM_BUFSIZE];
|
||||
unsigned char keybuf[20];
|
||||
EVP_CIPHER_CTX cctx;
|
||||
int enctmplen, inlen;
|
||||
if (cb)
|
||||
inlen=cb(psbuf,PEM_BUFSIZE,0,u);
|
||||
else
|
||||
inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u);
|
||||
if (inlen <= 0)
|
||||
{
|
||||
PEMerr(PEM_F_DO_PVK_BODY,PEM_R_BAD_PASSWORD_READ);
|
||||
return NULL;
|
||||
}
|
||||
enctmp = OPENSSL_malloc(keylen + 8);
|
||||
if (!enctmp)
|
||||
{
|
||||
PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE);
|
||||
return NULL;
|
||||
}
|
||||
if (!derive_pvk_key(keybuf, p, saltlen, psbuf, inlen))
|
||||
return NULL;
|
||||
p += saltlen;
|
||||
/* Copy BLOBHEADER across, decrypt rest */
|
||||
memcpy(enctmp, p, 8);
|
||||
p += 8;
|
||||
inlen = keylen - 8;
|
||||
q = enctmp + 8;
|
||||
EVP_CIPHER_CTX_init(&cctx);
|
||||
EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL);
|
||||
EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen);
|
||||
EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen);
|
||||
magic = read_ledword((const unsigned char **)&q);
|
||||
if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC)
|
||||
{
|
||||
q = enctmp + 8;
|
||||
memset(keybuf + 5, 0, 11);
|
||||
EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf,
|
||||
NULL);
|
||||
OPENSSL_cleanse(keybuf, 20);
|
||||
EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen);
|
||||
EVP_DecryptFinal_ex(&cctx, q + enctmplen,
|
||||
&enctmplen);
|
||||
magic = read_ledword((const unsigned char **)&q);
|
||||
if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC)
|
||||
{
|
||||
EVP_CIPHER_CTX_cleanup(&cctx);
|
||||
PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT);
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
else
|
||||
OPENSSL_cleanse(keybuf, 20);
|
||||
EVP_CIPHER_CTX_cleanup(&cctx);
|
||||
p = enctmp;
|
||||
}
|
||||
|
||||
ret = b2i_PrivateKey(&p, keylen);
|
||||
err:
|
||||
if (enctmp && saltlen)
|
||||
OPENSSL_free(enctmp);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u)
|
||||
{
|
||||
unsigned char pvk_hdr[24], *buf = NULL;
|
||||
const unsigned char *p;
|
||||
int buflen;
|
||||
EVP_PKEY *ret = NULL;
|
||||
unsigned int saltlen, keylen;
|
||||
if (BIO_read(in, pvk_hdr, 24) != 24)
|
||||
{
|
||||
PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
|
||||
return NULL;
|
||||
}
|
||||
p = pvk_hdr;
|
||||
|
||||
if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen))
|
||||
return 0;
|
||||
buflen = (int) keylen + saltlen;
|
||||
buf = OPENSSL_malloc(buflen);
|
||||
if (!buf)
|
||||
{
|
||||
PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE);
|
||||
return 0;
|
||||
}
|
||||
p = buf;
|
||||
if (BIO_read(in, buf, buflen) != buflen)
|
||||
{
|
||||
PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
|
||||
goto err;
|
||||
}
|
||||
ret = do_PVK_body(&p, saltlen, keylen, cb, u);
|
||||
|
||||
err:
|
||||
if (buf)
|
||||
{
|
||||
OPENSSL_cleanse(buf, buflen);
|
||||
OPENSSL_free(buf);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
|
||||
static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
int outlen = 24, noinc, pklen;
|
||||
unsigned char *p, *salt = NULL;
|
||||
if (enclevel)
|
||||
outlen += PVK_SALTLEN;
|
||||
pklen = do_i2b(NULL, pk, 0);
|
||||
if (pklen < 0)
|
||||
return -1;
|
||||
outlen += pklen;
|
||||
if (!out)
|
||||
return outlen;
|
||||
if (*out)
|
||||
{
|
||||
p = *out;
|
||||
noinc = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
p = OPENSSL_malloc(outlen);
|
||||
if (!p)
|
||||
{
|
||||
PEMerr(PEM_F_I2B_PVK,ERR_R_MALLOC_FAILURE);
|
||||
return -1;
|
||||
}
|
||||
*out = p;
|
||||
noinc = 1;
|
||||
}
|
||||
|
||||
write_ledword(&p, MS_PVKMAGIC);
|
||||
write_ledword(&p, 0);
|
||||
if (pk->type == EVP_PKEY_DSA)
|
||||
write_ledword(&p, MS_KEYTYPE_SIGN);
|
||||
else
|
||||
write_ledword(&p, MS_KEYTYPE_KEYX);
|
||||
write_ledword(&p, enclevel ? 1 : 0);
|
||||
write_ledword(&p, enclevel ? PVK_SALTLEN: 0);
|
||||
write_ledword(&p, pklen);
|
||||
if (enclevel)
|
||||
{
|
||||
if (RAND_bytes(p, PVK_SALTLEN) <= 0)
|
||||
goto error;
|
||||
salt = p;
|
||||
p += PVK_SALTLEN;
|
||||
}
|
||||
do_i2b(&p, pk, 0);
|
||||
if (enclevel == 0)
|
||||
return outlen;
|
||||
else
|
||||
{
|
||||
char psbuf[PEM_BUFSIZE];
|
||||
unsigned char keybuf[20];
|
||||
EVP_CIPHER_CTX cctx;
|
||||
int enctmplen, inlen;
|
||||
if (cb)
|
||||
inlen=cb(psbuf,PEM_BUFSIZE,1,u);
|
||||
else
|
||||
inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,1,u);
|
||||
if (inlen <= 0)
|
||||
{
|
||||
PEMerr(PEM_F_I2B_PVK,PEM_R_BAD_PASSWORD_READ);
|
||||
goto error;
|
||||
}
|
||||
if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN, psbuf, inlen))
|
||||
goto error;
|
||||
if (enclevel == 1)
|
||||
memset(keybuf + 5, 0, 11);
|
||||
p = salt + PVK_SALTLEN + 8;
|
||||
EVP_CIPHER_CTX_init(&cctx);
|
||||
EVP_EncryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL);
|
||||
OPENSSL_cleanse(keybuf, 20);
|
||||
EVP_DecryptUpdate(&cctx, p, &enctmplen, p, pklen - 8);
|
||||
EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen);
|
||||
EVP_CIPHER_CTX_cleanup(&cctx);
|
||||
}
|
||||
return outlen;
|
||||
|
||||
error:
|
||||
return -1;
|
||||
}
|
||||
|
||||
int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel,
|
||||
pem_password_cb *cb, void *u)
|
||||
{
|
||||
unsigned char *tmp = NULL;
|
||||
int outlen, wrlen;
|
||||
outlen = i2b_PVK(&tmp, pk, enclevel, cb, u);
|
||||
if (outlen < 0)
|
||||
return -1;
|
||||
wrlen = BIO_write(out, tmp, outlen);
|
||||
OPENSSL_free(tmp);
|
||||
if (wrlen == outlen)
|
||||
{
|
||||
PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE);
|
||||
return outlen;
|
||||
}
|
||||
return -1;
|
||||
}
|
Loading…
Reference in New Issue
Block a user