add X9.31 prime generation routines from 0.9.8 branch

This commit is contained in:
Dr. Stephen Henson 2011-01-09 13:22:47 +00:00
parent 6e101bebb1
commit 8ed8454115
3 changed files with 285 additions and 2 deletions

View File

@ -26,13 +26,13 @@ LIBSRC= bn_add.c bn_div.c bn_exp.c bn_lib.c bn_ctx.c bn_mul.c bn_mod.c \
bn_print.c bn_rand.c bn_shift.c bn_word.c bn_blind.c \
bn_kron.c bn_sqrt.c bn_gcd.c bn_prime.c bn_err.c bn_sqr.c bn_asm.c \
bn_recp.c bn_mont.c bn_mpi.c bn_exp2.c bn_gf2m.c bn_nist.c \
bn_depr.c bn_const.c
bn_depr.c bn_const.c bn_x931p.c
LIBOBJ= bn_add.o bn_div.o bn_exp.o bn_lib.o bn_ctx.o bn_mul.o bn_mod.o \
bn_print.o bn_rand.o bn_shift.o bn_word.o bn_blind.o \
bn_kron.o bn_sqrt.o bn_gcd.o bn_prime.o bn_err.o bn_sqr.o $(BN_ASM) \
bn_recp.o bn_mont.o bn_mpi.o bn_exp2.o bn_gf2m.o bn_nist.o \
bn_depr.o bn_const.o
bn_depr.o bn_const.o bn_x931p.o
SRC= $(LIBSRC)

View File

@ -540,6 +540,17 @@ int BN_is_prime_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx, BN_GENCB *cb);
int BN_is_prime_fasttest_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb);
int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx);
int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2,
const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb);
int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
BIGNUM *Xp1, BIGNUM *Xp2,
const BIGNUM *Xp,
const BIGNUM *e, BN_CTX *ctx,
BN_GENCB *cb);
BN_MONT_CTX *BN_MONT_CTX_new(void );
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
int BN_mod_mul_montgomery(BIGNUM *r,const BIGNUM *a,const BIGNUM *b,

272
crypto/bn/bn_x931p.c Normal file
View File

@ -0,0 +1,272 @@
/* bn_x931p.c */
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project 2005.
*/
/* ====================================================================
* Copyright (c) 2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#include <openssl/bn.h>
/* X9.31 routines for prime derivation */
/* X9.31 prime derivation. This is used to generate the primes pi
* (p1, p2, q1, q2) from a parameter Xpi by checking successive odd
* integers.
*/
static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx,
BN_GENCB *cb)
{
int i = 0;
if (!BN_copy(pi, Xpi))
return 0;
if (!BN_is_odd(pi) && !BN_add_word(pi, 1))
return 0;
for(;;)
{
i++;
BN_GENCB_call(cb, 0, i);
/* NB 27 MR is specificed in X9.31 */
if (BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb))
break;
if (!BN_add_word(pi, 2))
return 0;
}
BN_GENCB_call(cb, 2, i);
return 1;
}
/* This is the main X9.31 prime derivation function. From parameters
* Xp1, Xp2 and Xp derive the prime p. If the parameters p1 or p2 are
* not NULL they will be returned too: this is needed for testing.
*/
int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2,
const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
{
int ret = 0;
BIGNUM *t, *p1p2, *pm1;
/* Only even e supported */
if (!BN_is_odd(e))
return 0;
BN_CTX_start(ctx);
if (!p1)
p1 = BN_CTX_get(ctx);
if (!p2)
p2 = BN_CTX_get(ctx);
t = BN_CTX_get(ctx);
p1p2 = BN_CTX_get(ctx);
pm1 = BN_CTX_get(ctx);
if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
goto err;
if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
goto err;
if (!BN_mul(p1p2, p1, p2, ctx))
goto err;
/* First set p to value of Rp */
if (!BN_mod_inverse(p, p2, p1, ctx))
goto err;
if (!BN_mul(p, p, p2, ctx))
goto err;
if (!BN_mod_inverse(t, p1, p2, ctx))
goto err;
if (!BN_mul(t, t, p1, ctx))
goto err;
if (!BN_sub(p, p, t))
goto err;
if (p->neg && !BN_add(p, p, p1p2))
goto err;
/* p now equals Rp */
if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
goto err;
if (!BN_add(p, p, Xp))
goto err;
/* p now equals Yp0 */
for (;;)
{
int i = 1;
BN_GENCB_call(cb, 0, i++);
if (!BN_copy(pm1, p))
goto err;
if (!BN_sub_word(pm1, 1))
goto err;
if (!BN_gcd(t, pm1, e, ctx))
goto err;
if (BN_is_one(t)
/* X9.31 specifies 8 MR and 1 Lucas test or any prime test
* offering similar or better guarantees 50 MR is considerably
* better.
*/
&& BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb))
break;
if (!BN_add(p, p, p1p2))
goto err;
}
BN_GENCB_call(cb, 3, 0);
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
/* Generate pair of paramters Xp, Xq for X9.31 prime generation.
* Note: nbits paramter is sum of number of bits in both.
*/
int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx)
{
BIGNUM *t;
int i;
/* Number of bits for each prime is of the form
* 512+128s for s = 0, 1, ...
*/
if ((nbits < 1024) || (nbits & 0xff))
return 0;
nbits >>= 1;
/* The random value Xp must be between sqrt(2) * 2^(nbits-1) and
* 2^nbits - 1. By setting the top two bits we ensure that the lower
* bound is exceeded.
*/
if (!BN_rand(Xp, nbits, 1, 0))
return 0;
BN_CTX_start(ctx);
t = BN_CTX_get(ctx);
for (i = 0; i < 1000; i++)
{
if (!BN_rand(Xq, nbits, 1, 0))
return 0;
/* Check that |Xp - Xq| > 2^(nbits - 100) */
BN_sub(t, Xp, Xq);
if (BN_num_bits(t) > (nbits - 100))
break;
}
BN_CTX_end(ctx);
if (i < 1000)
return 1;
return 0;
}
/* Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1
* and Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL
* the relevant parameter will be stored in it.
*
* Due to the fact that |Xp - Xq| > 2^(nbits - 100) must be satisfied Xp and Xq
* are generated using the previous function and supplied as input.
*/
int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
BIGNUM *Xp1, BIGNUM *Xp2,
const BIGNUM *Xp,
const BIGNUM *e, BN_CTX *ctx,
BN_GENCB *cb)
{
int ret = 0;
BN_CTX_start(ctx);
if (!Xp1)
Xp1 = BN_CTX_get(ctx);
if (!Xp2)
Xp2 = BN_CTX_get(ctx);
if (!BN_rand(Xp1, 101, 0, 0))
goto error;
if (!BN_rand(Xp2, 101, 0, 0))
goto error;
if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb))
goto error;
ret = 1;
error:
BN_CTX_end(ctx);
return ret;
}