openssl/crypto/asn1/a_int.c

674 lines
18 KiB
C
Raw Normal View History

/* crypto/asn1/a_int.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <stdio.h>
#include "internal/cryptlib.h"
#include "internal/numbers.h"
#include <limits.h>
#include <openssl/asn1.h>
#include <openssl/bn.h>
#include "asn1_locl.h"
2006-03-04 13:55:02 +00:00
ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x)
{
return ASN1_STRING_dup(x);
}
2006-03-04 13:55:02 +00:00
int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
{
int neg, ret;
/* Compare signs */
neg = x->type & V_ASN1_NEG;
if (neg != (y->type & V_ASN1_NEG)) {
if (neg)
return -1;
else
return 1;
}
ret = ASN1_STRING_cmp(x, y);
if (neg)
return -ret;
else
return ret;
}
/*-
* This converts a big endian buffer and sign into its content encoding.
* This is used for INTEGER and ENUMERATED types.
* The internal representation is an ASN1_STRING whose data is a big endian
* representation of the value, ignoring the sign. The sign is determined by
* the type: if type & V_ASN1_NEG is true it is negative, otherwise positive.
*
* Positive integers are no problem: they are almost the same as the DER
* encoding, except if the first byte is >= 0x80 we need to add a zero pad.
*
* Negative integers are a bit trickier...
* The DER representation of negative integers is in 2s complement form.
* The internal form is converted by complementing each octet and finally
* adding one to the result. This can be done less messily with a little trick.
* If the internal form has trailing zeroes then they will become FF by the
* complement and 0 by the add one (due to carry) so just copy as many trailing
* zeros to the destination as there are in the source. The carry will add one
* to the last none zero octet: so complement this octet and add one and finally
* complement any left over until you get to the start of the string.
*
* Padding is a little trickier too. If the first bytes is > 0x80 then we pad
* with 0xff. However if the first byte is 0x80 and one of the following bytes
* is non-zero we pad with 0xff. The reason for this distinction is that 0x80
* followed by optional zeros isn't padded.
*/
static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg,
unsigned char **pp)
{
int pad = 0;
size_t ret, i;
unsigned char *p, pb = 0;
const unsigned char *n;
if (b == NULL || blen == 0)
ret = 1;
else {
ret = blen;
i = b[0];
if (ret == 1 && i == 0)
neg = 0;
if (!neg && (i > 127)) {
pad = 1;
pb = 0;
} else if (neg) {
if (i > 128) {
pad = 1;
pb = 0xFF;
} else if (i == 128) {
/*
* Special case: if any other bytes non zero we pad:
* otherwise we don't.
*/
for (i = 1; i < blen; i++)
if (b[i]) {
pad = 1;
pb = 0xFF;
break;
}
}
}
ret += pad;
}
if (pp == NULL)
return ret;
p = *pp;
if (pad)
*(p++) = pb;
if (blen == 0)
*(p++) = 0;
else if (!neg)
memcpy(p, b, blen);
else {
/* Begin at the end of the encoding */
n = b + blen - 1;
p += blen - 1;
i = blen;
/* Copy zeros to destination as long as source is zero */
while (!*n && i > 1) {
*(p--) = 0;
n--;
i--;
}
/* Complement and increment next octet */
*(p--) = ((*(n--)) ^ 0xff) + 1;
i--;
/* Complement any octets left */
for (; i > 0; i--)
*(p--) = *(n--) ^ 0xff;
}
*pp += ret;
return ret;
}
/*
* convert content octets into a big endian buffer. Returns the length
* of buffer or 0 on error: for malformed INTEGER. If output bufer is
* NULL just return length.
*/
static size_t c2i_ibuf(unsigned char *b, int *pneg,
const unsigned char *p, size_t plen)
{
size_t i;
int neg, pad;
/* Zero content length is illegal */
if (plen == 0) {
ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT);
return 0;
}
neg = p[0] & 0x80;
if (pneg)
*pneg = neg;
/* Handle common case where length is 1 octet separately */
if (plen == 1) {
if (b) {
if (neg)
b[0] = (p[0] ^ 0xFF) + 1;
else
b[0] = p[0];
}
return 1;
}
if (p[0] == 0 || p[0] == 0xFF)
pad = 1;
else
pad = 0;
/* reject illegal padding: first two octets MSB can't match */
if (pad && (neg == (p[1] & 0x80))) {
ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING);
return 0;
}
/* If positive just copy across */
if (neg == 0) {
if (b)
memcpy(b, p + pad, plen - pad);
return plen - pad;
}
if (neg && pad) {
/* check is any following octets are non zero */
for (i = 1; i < plen; i++) {
if (p[i] != 0)
break;
}
/* if all bytes are zero handle as special case */
if (i == plen) {
if (b) {
b[0] = 1;
memset(b + 1, 0, plen - 1);
}
return plen;
}
}
plen -= pad;
/* Must be negative: calculate twos complement */
if (b) {
const unsigned char *from = p + plen - 1 + pad;
unsigned char *to = b + plen - 1;
i = plen;
while (*from == 0 && i) {
*to-- = 0;
i--;
from--;
}
*to-- = (*from-- ^ 0xff) + 1;
OPENSSL_assert(i != 0);
i--;
for (; i > 0; i--)
*to-- = *from-- ^ 0xff;
}
return plen;
}
int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
{
return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp);
}
/* Convert big endian buffer into uint64_t, return 0 on error */
static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen)
{
size_t i;
if (blen > sizeof(*pr)) {
ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE);
return 0;
}
*pr = 0;
if (b == NULL)
return 0;
for (i = 0; i < blen; i++) {
*pr <<= 8;
*pr |= b[i];
}
return 1;
}
static size_t asn1_put_uint64(unsigned char *b, uint64_t r)
{
if (r >= 0x100) {
unsigned char *p;
uint64_t rtmp = r;
size_t i = 0;
/* Work out how many bytes we need */
while (rtmp) {
rtmp >>= 8;
i++;
}
/* Copy from end to beginning */
p = b + i - 1;
do {
*p-- = r & 0xFF;
r >>= 8;
} while (p >= b);
return i;
}
b[0] = (unsigned char)r;
return 1;
}
/*
* Absolute value of INT64_MIN: we can't just use -INT64_MIN as it produces
* overflow warnings.
*/
#define ABS_INT64_MIN \
((uint64_t)INT64_MAX + (uint64_t)(-(INT64_MIN + INT64_MAX)))
/* signed version of asn1_get_uint64 */
static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen,
int neg)
{
uint64_t r;
if (asn1_get_uint64(&r, b, blen) == 0)
return 0;
if (neg) {
if (r > ABS_INT64_MIN) {
ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL);
return 0;
}
*pr = (int64_t)-r;
} else {
if (r > INT64_MAX) {
ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE);
return 0;
}
*pr = (int64_t)r;
}
return 1;
}
/* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */
ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp,
long len)
{
ASN1_INTEGER *ret = NULL;
size_t r;
int neg;
r = c2i_ibuf(NULL, NULL, *pp, len);
if (r == 0)
return NULL;
if ((a == NULL) || ((*a) == NULL)) {
ret = ASN1_INTEGER_new();
if (ret == NULL)
return NULL;
ret->type = V_ASN1_INTEGER;
} else
ret = *a;
if (ASN1_STRING_set(ret, NULL, r) == 0)
goto err;
c2i_ibuf(ret->data, &neg, *pp, len);
if (neg)
ret->type |= V_ASN1_NEG;
*pp += len;
if (a != NULL)
(*a) = ret;
return ret;
err:
ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE);
if ((a == NULL) || (*a != ret))
ASN1_INTEGER_free(ret);
return NULL;
}
static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype)
{
if (a == NULL) {
ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if ((a->type & ~V_ASN1_NEG) != itype) {
ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE);
return 0;
}
return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG);
}
static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype)
{
unsigned char tbuf[sizeof(r)];
size_t l;
a->type = itype;
if (r < 0) {
l = asn1_put_uint64(tbuf, -r);
a->type |= V_ASN1_NEG;
} else {
l = asn1_put_uint64(tbuf, r);
a->type &= ~V_ASN1_NEG;
}
if (l == 0)
return 0;
return ASN1_STRING_set(a, tbuf, l);
}
static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a,
int itype)
{
if (a == NULL) {
ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if ((a->type & ~V_ASN1_NEG) != itype) {
ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_WRONG_INTEGER_TYPE);
return 0;
}
if (a->type & V_ASN1_NEG) {
ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_ILLEGAL_NEGATIVE_VALUE);
return 0;
}
return asn1_get_uint64(pr, a->data, a->length);
}
static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype)
{
unsigned char tbuf[sizeof(r)];
size_t l;
a->type = itype;
l = asn1_put_uint64(tbuf, r);
if (l == 0)
return 0;
return ASN1_STRING_set(a, tbuf, l);
}
/*
* This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1
* integers: some broken software can encode a positive INTEGER with its MSB
* set as negative (it doesn't add a padding zero).
*/
ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
long length)
{
ASN1_INTEGER *ret = NULL;
const unsigned char *p;
unsigned char *s;
long len;
int inf, tag, xclass;
int i;
if ((a == NULL) || ((*a) == NULL)) {
if ((ret = ASN1_INTEGER_new()) == NULL)
return (NULL);
ret->type = V_ASN1_INTEGER;
} else
ret = (*a);
p = *pp;
inf = ASN1_get_object(&p, &len, &tag, &xclass, length);
if (inf & 0x80) {
i = ASN1_R_BAD_OBJECT_HEADER;
goto err;
}
if (tag != V_ASN1_INTEGER) {
i = ASN1_R_EXPECTING_AN_INTEGER;
goto err;
}
/*
* We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies
* a missing NULL parameter.
*/
s = OPENSSL_malloc((int)len + 1);
if (s == NULL) {
i = ERR_R_MALLOC_FAILURE;
goto err;
}
ret->type = V_ASN1_INTEGER;
if (len) {
if ((*p == 0) && (len != 1)) {
p++;
len--;
}
memcpy(s, p, (int)len);
p += len;
}
OPENSSL_free(ret->data);
ret->data = s;
ret->length = (int)len;
if (a != NULL)
(*a) = ret;
*pp = p;
return (ret);
err:
ASN1err(ASN1_F_D2I_ASN1_UINTEGER, i);
if ((a == NULL) || (*a != ret))
ASN1_INTEGER_free(ret);
return (NULL);
}
static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai,
int atype)
{
ASN1_INTEGER *ret;
int len;
if (ai == NULL) {
ret = ASN1_STRING_type_new(atype);
} else {
ret = ai;
ret->type = atype;
}
if (ret == NULL) {
ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR);
goto err;
}
if (BN_is_negative(bn) && !BN_is_zero(bn))
ret->type |= V_ASN1_NEG_INTEGER;
len = BN_num_bytes(bn);
if (len == 0)
len = 1;
if (ASN1_STRING_set(ret, NULL, len) == 0) {
ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE);
goto err;
}
/* Correct zero case */
if (BN_is_zero(bn))
ret->data[0] = 0;
else
len = BN_bn2bin(bn, ret->data);
ret->length = len;
return ret;
err:
if (ret != ai)
ASN1_INTEGER_free(ret);
return (NULL);
}
static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn,
int itype)
{
BIGNUM *ret;
if ((ai->type & ~V_ASN1_NEG) != itype) {
ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE);
return NULL;
}
ret = BN_bin2bn(ai->data, ai->length, bn);
if (ret == 0) {
ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB);
return NULL;
}
if (ai->type & V_ASN1_NEG)
BN_set_negative(ret, 1);
return ret;
}
int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a)
{
return asn1_string_get_int64(pr, a, V_ASN1_INTEGER);
}
int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r)
{
return asn1_string_set_int64(a, r, V_ASN1_INTEGER);
}
int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a)
{
return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER);
}
int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r)
{
return asn1_string_set_uint64(a, r, V_ASN1_INTEGER);
}
int ASN1_INTEGER_set(ASN1_INTEGER *a, long v)
{
return ASN1_INTEGER_set_int64(a, v);
}
long ASN1_INTEGER_get(const ASN1_INTEGER *a)
{
int i;
int64_t r;
if (a == NULL)
return 0;
i = ASN1_INTEGER_get_int64(&r, a);
if (i == 0)
return -1;
if (r > LONG_MAX || r < LONG_MIN)
return -1;
return (long)r;
}
ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai)
{
return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER);
}
BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn)
{
return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER);
}
int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a)
{
return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED);
}
int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r)
{
return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED);
}
int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v)
{
return ASN1_ENUMERATED_set_int64(a, v);
}
long ASN1_ENUMERATED_get(ASN1_ENUMERATED *a)
{
int i;
int64_t r;
if (a == NULL)
return 0;
if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED)
return -1;
if (a->length > (int)sizeof(long))
return 0xffffffffL;
i = ASN1_ENUMERATED_get_int64(&r, a);
if (i == 0)
return -1;
if (r > LONG_MAX || r < LONG_MIN)
return -1;
return (long)r;
}
ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai)
{
return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED);
}
BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn)
{
return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED);
}