/* crypto/asn1/a_int.c */ /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include #include #include #include "asn1_locl.h" ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x) { return ASN1_STRING_dup(x); } int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y) { int neg, ret; /* Compare signs */ neg = x->type & V_ASN1_NEG; if (neg != (y->type & V_ASN1_NEG)) { if (neg) return -1; else return 1; } ret = ASN1_STRING_cmp(x, y); if (neg) return -ret; else return ret; } /*- * This converts a big endian buffer and sign into its content encoding. * This is used for INTEGER and ENUMERATED types. * The internal representation is an ASN1_STRING whose data is a big endian * representation of the value, ignoring the sign. The sign is determined by * the type: if type & V_ASN1_NEG is true it is negative, otherwise positive. * * Positive integers are no problem: they are almost the same as the DER * encoding, except if the first byte is >= 0x80 we need to add a zero pad. * * Negative integers are a bit trickier... * The DER representation of negative integers is in 2s complement form. * The internal form is converted by complementing each octet and finally * adding one to the result. This can be done less messily with a little trick. * If the internal form has trailing zeroes then they will become FF by the * complement and 0 by the add one (due to carry) so just copy as many trailing * zeros to the destination as there are in the source. The carry will add one * to the last none zero octet: so complement this octet and add one and finally * complement any left over until you get to the start of the string. * * Padding is a little trickier too. If the first bytes is > 0x80 then we pad * with 0xff. However if the first byte is 0x80 and one of the following bytes * is non-zero we pad with 0xff. The reason for this distinction is that 0x80 * followed by optional zeros isn't padded. */ static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg, unsigned char **pp) { int pad = 0; size_t ret, i; unsigned char *p, pb = 0; const unsigned char *n; if (b == NULL || blen == 0) ret = 1; else { ret = blen; i = b[0]; if (ret == 1 && i == 0) neg = 0; if (!neg && (i > 127)) { pad = 1; pb = 0; } else if (neg) { if (i > 128) { pad = 1; pb = 0xFF; } else if (i == 128) { /* * Special case: if any other bytes non zero we pad: * otherwise we don't. */ for (i = 1; i < blen; i++) if (b[i]) { pad = 1; pb = 0xFF; break; } } } ret += pad; } if (pp == NULL) return ret; p = *pp; if (pad) *(p++) = pb; if (blen == 0) *(p++) = 0; else if (!neg) memcpy(p, b, blen); else { /* Begin at the end of the encoding */ n = b + blen - 1; p += blen - 1; i = blen; /* Copy zeros to destination as long as source is zero */ while (!*n && i > 1) { *(p--) = 0; n--; i--; } /* Complement and increment next octet */ *(p--) = ((*(n--)) ^ 0xff) + 1; i--; /* Complement any octets left */ for (; i > 0; i--) *(p--) = *(n--) ^ 0xff; } *pp += ret; return ret; } /* * convert content octets into a big endian buffer. Returns the length * of buffer or 0 on error: for malformed INTEGER. If output bufer is * NULL just return length. */ static size_t c2i_ibuf(unsigned char *b, int *pneg, const unsigned char *p, size_t plen) { size_t i; int neg, pad; /* Zero content length is illegal */ if (plen == 0) { ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT); return 0; } neg = p[0] & 0x80; if (pneg) *pneg = neg; /* Handle common case where length is 1 octet separately */ if (plen == 1) { if (b) { if (neg) b[0] = (p[0] ^ 0xFF) + 1; else b[0] = p[0]; } return 1; } if (p[0] == 0 || p[0] == 0xFF) pad = 1; else pad = 0; /* reject illegal padding: first two octets MSB can't match */ if (pad && (neg == (p[1] & 0x80))) { ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING); return 0; } /* If positive just copy across */ if (neg == 0) { if (b) memcpy(b, p + pad, plen - pad); return plen - pad; } if (neg && pad) { /* check is any following octets are non zero */ for (i = 1; i < plen; i++) { if (p[i] != 0) break; } /* if all bytes are zero handle as special case */ if (i == plen) { if (b) { b[0] = 1; memset(b + 1, 0, plen - 1); } return plen; } } plen -= pad; /* Must be negative: calculate twos complement */ if (b) { const unsigned char *from = p + plen - 1 + pad; unsigned char *to = b + plen - 1; i = plen; while (*from == 0 && i) { *to-- = 0; i--; from--; } *to-- = (*from-- ^ 0xff) + 1; OPENSSL_assert(i != 0); i--; for (; i > 0; i--) *to-- = *from-- ^ 0xff; } return plen; } int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp) { return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp); } /* Convert big endian buffer into uint64_t, return 0 on error */ static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen) { size_t i; if (blen > sizeof(*pr)) { ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE); return 0; } *pr = 0; if (b == NULL) return 0; for (i = 0; i < blen; i++) { *pr <<= 8; *pr |= b[i]; } return 1; } static size_t asn1_put_uint64(unsigned char *b, uint64_t r) { if (r >= 0x100) { unsigned char *p; uint64_t rtmp = r; size_t i = 0; /* Work out how many bytes we need */ while (rtmp) { rtmp >>= 8; i++; } /* Copy from end to beginning */ p = b + i - 1; do { *p-- = r & 0xFF; r >>= 8; } while (p >= b); return i; } b[0] = (unsigned char)r; return 1; } /* * Absolute value of INT64_MIN: we can't just use -INT64_MIN as it produces * overflow warnings. */ #define ABS_INT64_MIN \ ((uint64_t)INT64_MAX + (uint64_t)(-(INT64_MIN + INT64_MAX))) /* signed version of asn1_get_uint64 */ static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen, int neg) { uint64_t r; if (asn1_get_uint64(&r, b, blen) == 0) return 0; if (neg) { if (r > ABS_INT64_MIN) { ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL); return 0; } *pr = (int64_t)-r; } else { if (r > INT64_MAX) { ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE); return 0; } *pr = (int64_t)r; } return 1; } /* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */ ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp, long len) { ASN1_INTEGER *ret = NULL; size_t r; int neg; r = c2i_ibuf(NULL, NULL, *pp, len); if (r == 0) return NULL; if ((a == NULL) || ((*a) == NULL)) { ret = ASN1_INTEGER_new(); if (ret == NULL) return NULL; ret->type = V_ASN1_INTEGER; } else ret = *a; if (ASN1_STRING_set(ret, NULL, r) == 0) goto err; c2i_ibuf(ret->data, &neg, *pp, len); if (neg) ret->type |= V_ASN1_NEG; *pp += len; if (a != NULL) (*a) = ret; return ret; err: ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE); if ((a == NULL) || (*a != ret)) ASN1_INTEGER_free(ret); return NULL; } static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype) { if (a == NULL) { ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER); return 0; } if ((a->type & ~V_ASN1_NEG) != itype) { ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE); return 0; } return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG); } static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype) { unsigned char tbuf[sizeof(r)]; size_t l; a->type = itype; if (r < 0) { l = asn1_put_uint64(tbuf, -r); a->type |= V_ASN1_NEG; } else { l = asn1_put_uint64(tbuf, r); a->type &= ~V_ASN1_NEG; } if (l == 0) return 0; return ASN1_STRING_set(a, tbuf, l); } static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a, int itype) { if (a == NULL) { ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ERR_R_PASSED_NULL_PARAMETER); return 0; } if ((a->type & ~V_ASN1_NEG) != itype) { ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_WRONG_INTEGER_TYPE); return 0; } if (a->type & V_ASN1_NEG) { ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_ILLEGAL_NEGATIVE_VALUE); return 0; } return asn1_get_uint64(pr, a->data, a->length); } static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype) { unsigned char tbuf[sizeof(r)]; size_t l; a->type = itype; l = asn1_put_uint64(tbuf, r); if (l == 0) return 0; return ASN1_STRING_set(a, tbuf, l); } /* * This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1 * integers: some broken software can encode a positive INTEGER with its MSB * set as negative (it doesn't add a padding zero). */ ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp, long length) { ASN1_INTEGER *ret = NULL; const unsigned char *p; unsigned char *s; long len; int inf, tag, xclass; int i; if ((a == NULL) || ((*a) == NULL)) { if ((ret = ASN1_INTEGER_new()) == NULL) return (NULL); ret->type = V_ASN1_INTEGER; } else ret = (*a); p = *pp; inf = ASN1_get_object(&p, &len, &tag, &xclass, length); if (inf & 0x80) { i = ASN1_R_BAD_OBJECT_HEADER; goto err; } if (tag != V_ASN1_INTEGER) { i = ASN1_R_EXPECTING_AN_INTEGER; goto err; } /* * We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies * a missing NULL parameter. */ s = OPENSSL_malloc((int)len + 1); if (s == NULL) { i = ERR_R_MALLOC_FAILURE; goto err; } ret->type = V_ASN1_INTEGER; if (len) { if ((*p == 0) && (len != 1)) { p++; len--; } memcpy(s, p, (int)len); p += len; } OPENSSL_free(ret->data); ret->data = s; ret->length = (int)len; if (a != NULL) (*a) = ret; *pp = p; return (ret); err: ASN1err(ASN1_F_D2I_ASN1_UINTEGER, i); if ((a == NULL) || (*a != ret)) ASN1_INTEGER_free(ret); return (NULL); } static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai, int atype) { ASN1_INTEGER *ret; int len; if (ai == NULL) { ret = ASN1_STRING_type_new(atype); } else { ret = ai; ret->type = atype; } if (ret == NULL) { ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR); goto err; } if (BN_is_negative(bn) && !BN_is_zero(bn)) ret->type |= V_ASN1_NEG_INTEGER; len = BN_num_bytes(bn); if (len == 0) len = 1; if (ASN1_STRING_set(ret, NULL, len) == 0) { ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE); goto err; } /* Correct zero case */ if (BN_is_zero(bn)) ret->data[0] = 0; else len = BN_bn2bin(bn, ret->data); ret->length = len; return ret; err: if (ret != ai) ASN1_INTEGER_free(ret); return (NULL); } static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn, int itype) { BIGNUM *ret; if ((ai->type & ~V_ASN1_NEG) != itype) { ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE); return NULL; } ret = BN_bin2bn(ai->data, ai->length, bn); if (ret == 0) { ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB); return NULL; } if (ai->type & V_ASN1_NEG) BN_set_negative(ret, 1); return ret; } int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a) { return asn1_string_get_int64(pr, a, V_ASN1_INTEGER); } int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r) { return asn1_string_set_int64(a, r, V_ASN1_INTEGER); } int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a) { return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER); } int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r) { return asn1_string_set_uint64(a, r, V_ASN1_INTEGER); } int ASN1_INTEGER_set(ASN1_INTEGER *a, long v) { return ASN1_INTEGER_set_int64(a, v); } long ASN1_INTEGER_get(const ASN1_INTEGER *a) { int i; int64_t r; if (a == NULL) return 0; i = ASN1_INTEGER_get_int64(&r, a); if (i == 0) return -1; if (r > LONG_MAX || r < LONG_MIN) return -1; return (long)r; } ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai) { return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER); } BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn) { return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER); } int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a) { return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED); } int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r) { return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED); } int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v) { return ASN1_ENUMERATED_set_int64(a, v); } long ASN1_ENUMERATED_get(ASN1_ENUMERATED *a) { int i; int64_t r; if (a == NULL) return 0; if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED) return -1; if (a->length > (int)sizeof(long)) return 0xffffffffL; i = ASN1_ENUMERATED_get_int64(&r, a); if (i == 0) return -1; if (r > LONG_MAX || r < LONG_MIN) return -1; return (long)r; } ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai) { return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED); } BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn) { return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED); }