openssl/crypto/rc4/asm/rc4-x86_64.pl

365 lines
8.3 KiB
Perl
Raw Normal View History

#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
# "hand-coded assembler"] doesn't stand for the whole improvement
# coefficient. It turned out that eliminating RC4_CHAR from config
# line results in ~40% improvement (yes, even for C implementation).
# Presumably it has everything to do with AMD cache architecture and
# RAW or whatever penalties. Once again! The module *requires* config
# line *without* RC4_CHAR! As for coding "secret," I bet on partial
# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
# I simply 'inc %r8b'. Even though optimization manual discourages
# to operate on partial registers, it turned out to be the best bet.
# At least for AMD... How IA32E would perform remains to be seen...
# As was shown by Marc Bevand reordering of couple of load operations
# results in even higher performance gain of 3.3x:-) At least on
# Opteron... For reference, 1x in this case is RC4_CHAR C-code
# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
# Latter means that if you want to *estimate* what to expect from
# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
# Intel P4 EM64T core was found to run the AMD64 code really slow...
# The only way to achieve comparable performance on P4 was to keep
# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
# compose blended code, which would perform even within 30% marginal
# on either AMD and Intel platforms, I implement both cases. See
# rc4_skey.c for further details...
# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
# those with add/sub results in 50% performance improvement of folded
# loop...
# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
# performance by >30% [unlike P4 32-bit case that is]. But this is
# provided that loads are reordered even more aggressively! Both code
# pathes, AMD64 and EM64T, reorder loads in essentially same manner
# as my IA-64 implementation. On Opteron this resulted in modest 5%
# improvement [I had to test it], while final Intel P4 performance
# achieves respectful 432MBps on 2.8GHz processor now. For reference.
# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
2005-05-03 21:16:42 +00:00
# RC4_INT code-path. While if executed on Opteron, it's only 25%
# slower than the RC4_INT one [meaning that if CPU <20>-arch detection
# is not implemented, then this final RC4_CHAR code-path should be
# preferred, as it provides better *all-round* performance].
# Intel Core2 was observed to perform poorly on both code paths:-( It
# apparently suffers from some kind of partial register stall, which
# occurs in 64-bit mode only [as virtually identical 32-bit loop was
# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
# cloop1 boosts its performance by 80%! This loop appears to be optimal
# fit for Core2 and therefore the code was modified to skip cloop8 on
# this CPU.
$output=shift;
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open STDOUT,"| $^X $xlate $output";
$dat="%rdi"; # arg1
$len="%rsi"; # arg2
$inp="%rdx"; # arg3
$out="%rcx"; # arg4
@XX=("%r8","%r10");
@TX=("%r9","%r11");
$YY="%r12";
$TY="%r13";
$code=<<___;
.text
.globl RC4
.type RC4,\@function,4
.align 16
RC4: or $len,$len
jne .Lentry
ret
.Lentry:
push %r12
push %r13
add \$8,$dat
movl -8($dat),$XX[0]#d
movl -4($dat),$YY#d
cmpl \$-1,256($dat)
je .LRC4_CHAR
inc $XX[0]#b
movl ($dat,$XX[0],4),$TX[0]#d
test \$-8,$len
jz .Lloop1
jmp .Lloop8
.align 16
.Lloop8:
___
for ($i=0;$i<8;$i++) {
$code.=<<___;
add $TX[0]#b,$YY#b
mov $XX[0],$XX[1]
movl ($dat,$YY,4),$TY#d
ror \$8,%rax # ror is redundant when $i=0
inc $XX[1]#b
movl ($dat,$XX[1],4),$TX[1]#d
cmp $XX[1],$YY
movl $TX[0]#d,($dat,$YY,4)
cmove $TX[0],$TX[1]
movl $TY#d,($dat,$XX[0],4)
add $TX[0]#b,$TY#b
movb ($dat,$TY,4),%al
___
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
}
$code.=<<___;
ror \$8,%rax
sub \$8,$len
xor ($inp),%rax
add \$8,$inp
mov %rax,($out)
add \$8,$out
test \$-8,$len
jnz .Lloop8
cmp \$0,$len
jne .Lloop1
___
$code.=<<___;
.Lexit:
sub \$1,$XX[0]#b
movl $XX[0]#d,-8($dat)
movl $YY#d,-4($dat)
pop %r13
pop %r12
ret
.align 16
.Lloop1:
add $TX[0]#b,$YY#b
movl ($dat,$YY,4),$TY#d
movl $TX[0]#d,($dat,$YY,4)
movl $TY#d,($dat,$XX[0],4)
add $TY#b,$TX[0]#b
inc $XX[0]#b
movl ($dat,$TX[0],4),$TY#d
movl ($dat,$XX[0],4),$TX[0]#d
xorb ($inp),$TY#b
inc $inp
movb $TY#b,($out)
inc $out
dec $len
jnz .Lloop1
jmp .Lexit
.align 16
.LRC4_CHAR:
add \$1,$XX[0]#b
movzb ($dat,$XX[0]),$TX[0]#d
test \$-8,$len
jz .Lcloop1
cmp \$0,260($dat)
jnz .Lcloop1
push %rbx
jmp .Lcloop8
.align 16
.Lcloop8:
mov ($inp),%eax
mov 4($inp),%ebx
___
# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
for ($i=0;$i<4;$i++) {
$code.=<<___;
add $TX[0]#b,$YY#b
lea 1($XX[0]),$XX[1]
movzb ($dat,$YY),$TY#d
movzb $XX[1]#b,$XX[1]#d
movzb ($dat,$XX[1]),$TX[1]#d
movb $TX[0]#b,($dat,$YY)
cmp $XX[1],$YY
movb $TY#b,($dat,$XX[0])
jne .Lcmov$i # Intel cmov is sloooow...
mov $TX[0],$TX[1]
.Lcmov$i:
add $TX[0]#b,$TY#b
xor ($dat,$TY),%al
ror \$8,%eax
___
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
}
for ($i=4;$i<8;$i++) {
$code.=<<___;
add $TX[0]#b,$YY#b
lea 1($XX[0]),$XX[1]
movzb ($dat,$YY),$TY#d
movzb $XX[1]#b,$XX[1]#d
movzb ($dat,$XX[1]),$TX[1]#d
movb $TX[0]#b,($dat,$YY)
cmp $XX[1],$YY
movb $TY#b,($dat,$XX[0])
jne .Lcmov$i # Intel cmov is sloooow...
mov $TX[0],$TX[1]
.Lcmov$i:
add $TX[0]#b,$TY#b
xor ($dat,$TY),%bl
ror \$8,%ebx
___
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
}
$code.=<<___;
lea -8($len),$len
mov %eax,($out)
lea 8($inp),$inp
mov %ebx,4($out)
lea 8($out),$out
test \$-8,$len
jnz .Lcloop8
pop %rbx
cmp \$0,$len
jne .Lcloop1
jmp .Lexit
___
$code.=<<___;
.align 16
.Lcloop1:
add $TX[0]#b,$YY#b
movzb ($dat,$YY),$TY#d
movb $TX[0]#b,($dat,$YY)
movb $TY#b,($dat,$XX[0])
add $TX[0]#b,$TY#b
add \$1,$XX[0]#b
movzb $TY#b,$TY#d
movzb $XX[0]#b,$XX[0]#d
movzb ($dat,$TY),$TY#d
movzb ($dat,$XX[0]),$TX[0]#d
xorb ($inp),$TY#b
lea 1($inp),$inp
movb $TY#b,($out)
lea 1($out),$out
sub \$1,$len
jnz .Lcloop1
jmp .Lexit
.size RC4,.-RC4
___
$idx="%r8";
$ido="%r9";
$code.=<<___;
.extern OPENSSL_ia32cap_P
.globl RC4_set_key
.type RC4_set_key,\@function,3
.align 16
RC4_set_key:
lea 8($dat),$dat
lea ($inp,$len),$inp
neg $len
mov $len,%rcx
xor %eax,%eax
xor $ido,$ido
xor %r10,%r10
xor %r11,%r11
mov OPENSSL_ia32cap_P(%rip),$idx#d
bt \$20,$idx#d
jnc .Lw1stloop
bt \$30,$idx#d
setc $ido#b
mov $ido#d,260($dat)
jmp .Lc1stloop
.align 16
.Lw1stloop:
mov %eax,($dat,%rax,4)
add \$1,%al
jnc .Lw1stloop
xor $ido,$ido
xor $idx,$idx
.align 16
.Lw2ndloop:
mov ($dat,$ido,4),%r10d
add ($inp,$len,1),$idx#b
add %r10b,$idx#b
add \$1,$len
mov ($dat,$idx,4),%r11d
cmovz %rcx,$len
mov %r10d,($dat,$idx,4)
mov %r11d,($dat,$ido,4)
add \$1,$ido#b
jnc .Lw2ndloop
jmp .Lexit_key
.align 16
.Lc1stloop:
mov %al,($dat,%rax)
add \$1,%al
jnc .Lc1stloop
xor $ido,$ido
xor $idx,$idx
.align 16
.Lc2ndloop:
mov ($dat,$ido),%r10b
add ($inp,$len),$idx#b
add %r10b,$idx#b
add \$1,$len
mov ($dat,$idx),%r11b
jnz .Lcnowrap
mov %rcx,$len
.Lcnowrap:
mov %r10b,($dat,$idx)
mov %r11b,($dat,$ido)
add \$1,$ido#b
jnc .Lc2ndloop
movl \$-1,256($dat)
.align 16
.Lexit_key:
xor %eax,%eax
mov %eax,-8($dat)
mov %eax,-4($dat)
ret
.size RC4_set_key,.-RC4_set_key
.globl RC4_options
.type RC4_options,\@function,0
.align 16
RC4_options:
.picmeup %rax
lea .Lopts-.(%rax),%rax
mov OPENSSL_ia32cap_P(%rip),%edx
bt \$20,%edx
jnc .Ldone
add \$12,%rax
bt \$30,%edx
jnc .Ldone
add \$13,%rax
.Ldone:
ret
.align 64
.Lopts:
.asciz "rc4(8x,int)"
.asciz "rc4(8x,char)"
.asciz "rc4(1x,char)"
.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
.align 64
.size RC4_options,.-RC4_options
___
$code =~ s/#([bwd])/$1/gm;
print $code;
close STDOUT;