openssl/crypto/bn/bn_sqrt.c

386 lines
9.7 KiB
C
Raw Normal View History

2000-11-30 00:18:19 +00:00
/* crypto/bn/bn_mod.c */
/* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
* and Bodo Moeller for the OpenSSL project. */
/* ====================================================================
* Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include "cryptlib.h"
#include "bn_lcl.h"
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
/* Returns 'ret' such that
* ret^2 == a (mod p),
* using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
* in Algebraic Computational Number Theory", algorithm 1.5.1).
* 'p' must be prime!
*/
{
BIGNUM *ret = in;
int err = 1;
int r;
BIGNUM *b, *q, *t, *x, *y;
int e, i, j;
if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
{
if (BN_abs_is_word(p, 2))
{
if (ret == NULL)
ret = BN_new();
if (ret == NULL)
goto end;
if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
{
BN_free(ret);
return NULL;
}
return ret;
}
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
return(NULL);
}
if (BN_is_zero(a) || BN_is_one(a))
{
if (ret == NULL)
ret = BN_new();
if (ret == NULL)
goto end;
if (!BN_set_word(ret, BN_is_one(a)))
{
BN_free(ret);
return NULL;
}
return ret;
}
2000-11-30 00:18:19 +00:00
#if 0 /* if BN_mod_sqrt is used with correct input, this just wastes time */
r = BN_kronecker(a, p, ctx);
if (r < -1) return NULL;
if (r == -1)
{
BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
return(NULL);
}
#endif
BN_CTX_start(ctx);
b = BN_CTX_get(ctx);
q = BN_CTX_get(ctx);
t = BN_CTX_get(ctx);
x = BN_CTX_get(ctx);
y = BN_CTX_get(ctx);
if (y == NULL) goto end;
if (ret == NULL)
ret = BN_new();
if (ret == NULL) goto end;
/* now write |p| - 1 as 2^e*q where q is odd */
e = 1;
while (!BN_is_bit_set(p, e))
e++;
/* we'll set q later (if needed) */
2000-11-30 00:18:19 +00:00
if (e == 1)
{
/* The easy case: (|p|-1)/2 is odd, so 2 has an inverse
* modulo (|p|-1)/2, and square roots can be computed
2000-11-30 00:18:19 +00:00
* directly by modular exponentiation.
* We have
* 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
* so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
2000-11-30 00:18:19 +00:00
*/
if (!BN_rshift(q, p, 2)) goto end;
q->neg = 0;
if (!BN_add_word(q, 1)) goto end;
2000-11-30 00:18:19 +00:00
if (!BN_mod_exp(ret, a, q, p, ctx)) goto end;
err = 0;
goto end;
}
if (e == 2)
{
/* |p| == 5 (mod 8)
*
* In this case 2 is always a non-square since
* Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
* So if a really is a square, then 2*a is a non-square.
* Thus for
* b := (2*a)^((|p|-5)/8),
* i := (2*a)*b^2
* we have
* i^2 = (2*a)^((1 + (|p|-5)/4)*2)
* = (2*a)^((p-1)/2)
* = -1;
* so if we set
* x := a*b*(i-1),
* then
* x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
* = a^2 * b^2 * (-2*i)
* = a*(-i)*(2*a*b^2)
* = a*(-i)*i
* = a.
*
* (This is due to A.O.L. Atkin,
* <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
* November 1992.)
*/
/* make sure that a is reduced modulo p */
if (a->neg || BN_ucmp(a, p) >= 0)
{
if (!BN_nnmod(x, a, p, ctx)) goto end;
a = x; /* use x as temporary variable */
}
/* t := 2*a */
if (!BN_mod_lshift1_quick(t, a, p)) goto end;
/* b := (2*a)^((|p|-5)/8) */
if (!BN_rshift(q, p, 3)) goto end;
q->neg = 0;
if (!BN_mod_exp(b, t, q, p, ctx)) goto end;
/* y := b^2 */
if (!BN_mod_sqr(y, b, p, ctx)) goto end;
/* t := (2*a)*b^2 - 1*/
if (!BN_mod_mul(t, t, y, p, ctx)) goto end;
2000-12-06 21:33:58 +00:00
if (!BN_sub_word(t, 1)) goto end;
/* x = a*b*t */
if (!BN_mod_mul(x, a, b, p, ctx)) goto end;
if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
if (!BN_copy(ret, x)) goto end;
err = 0;
goto end;
}
/* e > 2, so we really have to use the Tonelli/Shanks algorithm.
2000-11-30 00:18:19 +00:00
* First, find some y that is not a square. */
if (!BN_copy(q, p)) goto end; /* use 'q' as temp */
q->neg = 0;
i = 2;
2000-11-30 00:18:19 +00:00
do
{
/* For efficiency, try small numbers first;
* if this fails, try random numbers.
*/
if (i < 22)
2000-11-30 00:18:19 +00:00
{
if (!BN_set_word(y, i)) goto end;
}
else
{
if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
if (BN_ucmp(y, p) >= 0)
{
if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
}
/* now 0 <= y < |p| */
if (BN_is_zero(y))
if (!BN_set_word(y, i)) goto end;
}
r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
2000-11-30 00:18:19 +00:00
if (r < -1) goto end;
if (r == 0)
{
/* m divides p */
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
goto end;
}
}
while (r == 1 && ++i < 82);
2000-11-30 00:18:19 +00:00
if (r != -1)
{
/* Many rounds and still no non-square -- this is more likely
* a bug than just bad luck.
* Even if p is not prime, we should have found some y
* such that r == -1.
*/
BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
goto end;
}
/* Here's our actual 'q': */
if (!BN_rshift(q, q, e)) goto end;
2000-11-30 00:18:19 +00:00
/* Now that we have some non-square, we can find an element
* of order 2^e by computing its q'th power. */
if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
if (BN_is_one(y))
{
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
goto end;
}
/* Now we know that (if p is indeed prime) there is an integer
* k, 0 <= k < 2^e, such that
*
* a^q * y^k == 1 (mod p).
*
* As a^q is a square and y is not, k must be even.
* q+1 is even, too, so there is an element
*
* X := a^((q+1)/2) * y^(k/2),
*
* and it satisfies
*
* X^2 = a^q * a * y^k
* = a,
*
* so it is the square root that we are looking for.
*/
/* t := (q-1)/2 (note that q is odd) */
if (!BN_rshift1(t, q)) goto end;
/* x := a^((q-1)/2) */
if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
{
if (!BN_nnmod(t, a, p, ctx)) goto end;
if (BN_is_zero(t))
{
/* special case: a == 0 (mod p) */
if (!BN_zero(ret)) goto end;
err = 0;
goto end;
}
else
if (!BN_one(x)) goto end;
}
else
{
if (!BN_mod_exp(x, a, t, p, ctx)) goto end;
if (BN_is_zero(x))
{
/* special case: a == 0 (mod p) */
if (!BN_zero(ret)) goto end;
err = 0;
goto end;
}
}
/* b := a*x^2 (= a^q) */
if (!BN_mod_sqr(b, x, p, ctx)) goto end;
if (!BN_mod_mul(b, b, a, p, ctx)) goto end;
/* x := a*x (= a^((q+1)/2)) */
if (!BN_mod_mul(x, x, a, p, ctx)) goto end;
while (1)
{
/* Now b is a^q * y^k for some even k (0 <= k < 2^E
* where E refers to the original value of e, which we
* don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
*
* We have a*b = x^2,
* y^2^(e-1) = -1,
* b^2^(e-1) = 1.
*/
if (BN_is_one(b))
{
if (!BN_copy(ret, x)) goto end;
err = 0;
goto end;
}
/* find smallest i such that b^(2^i) = 1 */
i = 1;
if (!BN_mod_sqr(t, b, p, ctx)) goto end;
while (!BN_is_one(t))
{
i++;
if (i == e)
{
BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
goto end;
}
if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
}
/* t := y^2^(e - i - 1) */
if (!BN_copy(t, y)) goto end;
for (j = e - i - 1; j > 0; j--)
{
if (!BN_mod_sqr(t, t, p, ctx)) goto end;
}
if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
e = i;
}
end:
if (err)
{
if (ret != NULL && ret != in)
{
BN_clear_free(ret);
}
ret = NULL;
}
BN_CTX_end(ctx);
return ret;
}