2000-11-30 00:18:19 +00:00
|
|
|
/* crypto/bn/bn_mod.c */
|
|
|
|
/* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
|
|
|
|
* and Bodo Moeller for the OpenSSL project. */
|
|
|
|
/* ====================================================================
|
|
|
|
* Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
*
|
|
|
|
* 3. All advertising materials mentioning features or use of this
|
|
|
|
* software must display the following acknowledgment:
|
|
|
|
* "This product includes software developed by the OpenSSL Project
|
|
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
|
|
*
|
|
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
|
|
* endorse or promote products derived from this software without
|
|
|
|
* prior written permission. For written permission, please contact
|
|
|
|
* openssl-core@openssl.org.
|
|
|
|
*
|
|
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
|
|
* permission of the OpenSSL Project.
|
|
|
|
*
|
|
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
|
|
* acknowledgment:
|
|
|
|
* "This product includes software developed by the OpenSSL Project
|
|
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
* ====================================================================
|
|
|
|
*
|
|
|
|
* This product includes cryptographic software written by Eric Young
|
|
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
|
|
* Hudson (tjh@cryptsoft.com).
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "cryptlib.h"
|
|
|
|
#include "bn_lcl.h"
|
|
|
|
|
|
|
|
|
|
|
|
BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|
|
|
/* Returns 'ret' such that
|
|
|
|
* ret^2 == a (mod p),
|
|
|
|
* using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
|
|
|
|
* in Algebraic Computational Number Theory", algorithm 1.5.1).
|
|
|
|
* 'p' must be prime!
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
BIGNUM *ret = in;
|
|
|
|
int err = 1;
|
|
|
|
int r;
|
|
|
|
BIGNUM *b, *q, *t, *x, *y;
|
|
|
|
int e, i, j;
|
|
|
|
|
|
|
|
if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
|
|
|
|
{
|
|
|
|
if (BN_abs_is_word(p, 2))
|
|
|
|
{
|
|
|
|
if (ret == NULL)
|
|
|
|
ret = BN_new();
|
|
|
|
if (ret == NULL)
|
|
|
|
goto end;
|
|
|
|
if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
|
|
|
|
{
|
|
|
|
BN_free(ret);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0 /* if BN_mod_sqrt is used with correct input, this just wastes time */
|
|
|
|
r = BN_kronecker(a, p, ctx);
|
|
|
|
if (r < -1) return NULL;
|
|
|
|
if (r == -1)
|
|
|
|
{
|
|
|
|
BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
|
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
BN_CTX_start(ctx);
|
|
|
|
b = BN_CTX_get(ctx);
|
|
|
|
q = BN_CTX_get(ctx);
|
|
|
|
t = BN_CTX_get(ctx);
|
|
|
|
x = BN_CTX_get(ctx);
|
|
|
|
y = BN_CTX_get(ctx);
|
|
|
|
if (y == NULL) goto end;
|
|
|
|
|
|
|
|
if (ret == NULL)
|
|
|
|
ret = BN_new();
|
|
|
|
if (ret == NULL) goto end;
|
|
|
|
|
|
|
|
/* now write |p| - 1 as 2^e*q where q is odd */
|
|
|
|
e = 1;
|
|
|
|
while (!BN_is_bit_set(p, e))
|
|
|
|
e++;
|
|
|
|
if (!BN_rshift(q, p, e)) goto end;
|
|
|
|
q->neg = 0;
|
|
|
|
|
|
|
|
if (e == 1)
|
|
|
|
{
|
|
|
|
/* The easy case: (p-1)/2 is odd, so 2 has an inverse
|
|
|
|
* modulo (p-1)/2, and square roots can be computed
|
|
|
|
* directly by modular exponentiation.
|
|
|
|
* We have
|
|
|
|
* 2 * (p+1)/4 == 1 (mod (p-1)/2),
|
|
|
|
* so we can use exponent (p+1)/4, i.e. (q+1)/2.
|
|
|
|
*/
|
|
|
|
if (!BN_add_word(q,1)) goto end;
|
|
|
|
if (!BN_rshift1(q,q)) goto end;
|
|
|
|
if (!BN_mod_exp(ret, a, q, p, ctx)) goto end;
|
|
|
|
err = 0;
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* e > 1, so we really have to use the Tonelli/Shanks algorithm.
|
|
|
|
* First, find some y that is not a square. */
|
2000-11-30 09:45:26 +00:00
|
|
|
i = 2;
|
2000-11-30 00:18:19 +00:00
|
|
|
do
|
|
|
|
{
|
|
|
|
/* For efficiency, try small numbers first;
|
|
|
|
* if this fails, try random numbers.
|
|
|
|
*/
|
2000-11-30 09:45:26 +00:00
|
|
|
if (i < 22)
|
2000-11-30 00:18:19 +00:00
|
|
|
{
|
|
|
|
if (!BN_set_word(y, i)) goto end;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
|
|
|
|
if (BN_ucmp(y, p) >= 0)
|
|
|
|
{
|
|
|
|
if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end;
|
|
|
|
}
|
|
|
|
/* now 0 <= y < |p| */
|
|
|
|
if (BN_is_zero(y))
|
|
|
|
if (!BN_set_word(y, i)) goto end;
|
|
|
|
}
|
|
|
|
|
|
|
|
r = BN_kronecker(y, p, ctx);
|
|
|
|
if (r < -1) goto end;
|
|
|
|
if (r == 0)
|
|
|
|
{
|
|
|
|
/* m divides p */
|
|
|
|
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
}
|
2000-11-30 09:45:26 +00:00
|
|
|
while (r == 1 && ++i < 82);
|
2000-11-30 00:18:19 +00:00
|
|
|
|
|
|
|
if (r != -1)
|
|
|
|
{
|
|
|
|
/* Many rounds and still no non-square -- this is more likely
|
|
|
|
* a bug than just bad luck.
|
|
|
|
* Even if p is not prime, we should have found some y
|
|
|
|
* such that r == -1.
|
|
|
|
*/
|
|
|
|
BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Now that we have some non-square, we can find an element
|
|
|
|
* of order 2^e by computing its q'th power. */
|
|
|
|
if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
|
|
|
|
if (BN_is_one(y))
|
|
|
|
{
|
|
|
|
BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now we know that (if p is indeed prime) there is an integer
|
|
|
|
* k, 0 <= k < 2^e, such that
|
|
|
|
*
|
|
|
|
* a^q * y^k == 1 (mod p).
|
|
|
|
*
|
|
|
|
* As a^q is a square and y is not, k must be even.
|
|
|
|
* q+1 is even, too, so there is an element
|
|
|
|
*
|
|
|
|
* X := a^((q+1)/2) * y^(k/2),
|
|
|
|
*
|
|
|
|
* and it satisfies
|
|
|
|
*
|
|
|
|
* X^2 = a^q * a * y^k
|
|
|
|
* = a,
|
|
|
|
*
|
|
|
|
* so it is the square root that we are looking for.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* t := (q-1)/2 (note that q is odd) */
|
|
|
|
if (!BN_rshift1(t, q)) goto end;
|
|
|
|
|
|
|
|
/* x := a^((q-1)/2) */
|
|
|
|
if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
|
|
|
|
{
|
|
|
|
if (!BN_nnmod(t, a, p, ctx)) goto end;
|
|
|
|
if (BN_is_zero(t))
|
|
|
|
{
|
|
|
|
/* special case: a == 0 (mod p) */
|
|
|
|
if (!BN_zero(ret)) goto end;
|
|
|
|
err = 0;
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
if (!BN_one(x)) goto end;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (!BN_mod_exp(x, a, t, p, ctx)) goto end;
|
|
|
|
if (BN_is_zero(x))
|
|
|
|
{
|
|
|
|
/* special case: a == 0 (mod p) */
|
|
|
|
if (!BN_zero(ret)) goto end;
|
|
|
|
err = 0;
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* b := a*x^2 (= a^q) */
|
|
|
|
if (!BN_mod_sqr(b, x, p, ctx)) goto end;
|
|
|
|
if (!BN_mod_mul(b, b, a, p, ctx)) goto end;
|
|
|
|
|
|
|
|
/* x := a*x (= a^((q+1)/2)) */
|
|
|
|
if (!BN_mod_mul(x, x, a, p, ctx)) goto end;
|
|
|
|
|
|
|
|
while (1)
|
|
|
|
{
|
|
|
|
/* Now b is a^q * y^k for some even k (0 <= k < 2^E
|
|
|
|
* where E refers to the original value of e, which we
|
|
|
|
* don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
|
|
|
|
*
|
|
|
|
* We have a*b = x^2,
|
|
|
|
* y^2^(e-1) = -1,
|
|
|
|
* b^2^(e-1) = 1.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (BN_is_one(b))
|
|
|
|
{
|
|
|
|
if (!BN_copy(ret, x)) goto end;
|
|
|
|
err = 0;
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* find smallest i such that b^(2^i) = 1 */
|
|
|
|
i = 1;
|
|
|
|
if (!BN_mod_sqr(t, b, p, ctx)) goto end;
|
|
|
|
while (!BN_is_one(t))
|
|
|
|
{
|
|
|
|
i++;
|
|
|
|
if (i == e)
|
|
|
|
{
|
|
|
|
BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* t := y^2^(e - i - 1) */
|
|
|
|
if (!BN_copy(t, y)) goto end;
|
|
|
|
for (j = e - i - 1; j > 0; j--)
|
|
|
|
{
|
|
|
|
if (!BN_mod_sqr(t, t, p, ctx)) goto end;
|
|
|
|
}
|
|
|
|
if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
|
|
|
|
if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
|
|
|
|
if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
|
|
|
|
e = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
end:
|
|
|
|
if (err)
|
|
|
|
{
|
|
|
|
if (ret != NULL && ret != in)
|
|
|
|
{
|
|
|
|
BN_clear_free(ret);
|
|
|
|
}
|
|
|
|
ret = NULL;
|
|
|
|
}
|
|
|
|
BN_CTX_end(ctx);
|
|
|
|
return ret;
|
|
|
|
}
|