Arm assembly has got two variants of the syntax, the old legacy
syntax, and the new modern UAL (unified assembly language) syntax.
Most arm assembly is the same in the both syntaxes, but some
uncommon cases change the order of suffixes - the "subscs"
instruction would be written "subcss" in the old syntax.
The apple tools default to UAL, while the GNU tools (e.g. in
android) require you to specify ".syntax unified" to enable the
new syntax. When enabling the new syntax with the GNU tools, some
cases of "sub r0, r1, lsl #1" needs to be written explicitly as
"sub r0, r0, r1, lsl #1", handled in the previous commit.
This allows using the same, modern syntax for things like subscs,
without needing to have two alternate forms of writing it.
There's a different version of the same function in the encoder,
but they're not identical - the encoder version has got stricter
alignment requirements.
If someone can confirm that it is ok to use the function from the
encoder, pixel_sad_neon.S in processing could be deleted, and the
encoder version moved to codec/common instead.
On arm, the exact same detection is done in WelsCPUFeatureDetect,
but in the x86 version of that function we use x86 cpuid for getting
the core count, and this is not available on all processors. For the
case when cpuid can't tell the core count, use the NDK function as
higher level API.
The thread lib itself doesn't build properly on android yet, but will
do so soon.
In 70360cb11, the ASM variable was moved to the x86-common file
even though the android build file didn't include neither
platform-arch.mk nor platform-x86-common.mk.
Instead of explicitly declaring ASM here, include platform-arch.mk
and remove setting of the flags that platform-arch.mk sets.
This is inspired by and based on a patch by Licai Guo.
This avoids having to hardcode the names of devices that don't
support neon.
The devices that don't support neon don't run the armv7 variants
of iOS binaries at all - they would need to be built for the armv6
architecture. (Building for armv6 isn't supported at all in
modern iOS SDKs.)
Therefore we can simply use the __ARM_NEON__ built-in compiler
define to check if NEON code is allowed in the current build,
and have the WelsCPUFeatureDetect function return flags accordingly.
The only thing this disallows is doing an armv6 build which would
optionally enable neon code at runtime if run on an armv7 capable
device, but since Apple allows you to build the same binary for
armv7 separately in the same app bundle, and since armv6 building
isn't even possible in the current iOS SDKs, this isn't really a loss.
This is in contrast to the android builds where the armv7 baseline
does not include NEON.
This avoids the risk of namespace collisions for named semaphores
(where the names are global for the whole machine), on platforms
where we strictly don't need to use the named semaphores.
This unifies the event creation interface, even if the event
name itself is unused on windows, allowing use the exact same
code to initialize events regardless of the actual platform.
Some ifdefs still remain in the event initialization code, since
some events are only used on windows.
The new iOS configuration file welsenc_ios.cfg was committed with
dos newlines originally, while welsenc.cfg was accidentally changed
to dos newlines in f5cd56ea74.