197 lines
6.1 KiB
C++
197 lines
6.1 KiB
C++
/*
|
|
* BackgroundSubtractorGBH_test.cpp
|
|
*
|
|
* Created on: Jun 14, 2012
|
|
* Author: andrewgodbehere
|
|
*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
using namespace cv;
|
|
|
|
class CV_BackgroundSubtractorTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
CV_BackgroundSubtractorTest();
|
|
protected:
|
|
void run(int);
|
|
};
|
|
|
|
CV_BackgroundSubtractorTest::CV_BackgroundSubtractorTest()
|
|
{
|
|
}
|
|
|
|
/**
|
|
* This test checks the following:
|
|
* (i) BackgroundSubtractorGMG can operate with matrices of various types and sizes
|
|
* (ii) Training mode returns empty fgmask
|
|
* (iii) End of training mode, and anomalous frame yields every pixel detected as FG
|
|
*/
|
|
void CV_BackgroundSubtractorTest::run(int)
|
|
{
|
|
int code = cvtest::TS::OK;
|
|
RNG& rng = ts->get_rng();
|
|
int type = ((unsigned int)rng)%7; //!< pick a random type, 0 - 6, defined in types_c.h
|
|
int channels = 1 + ((unsigned int)rng)%4; //!< random number of channels from 1 to 4.
|
|
int channelsAndType = CV_MAKETYPE(type,channels);
|
|
int width = 2 + ((unsigned int)rng)%98; //!< Mat will be 2 to 100 in width and height
|
|
int height = 2 + ((unsigned int)rng)%98;
|
|
|
|
Ptr<BackgroundSubtractorGMG> fgbg =
|
|
Algorithm::create<BackgroundSubtractorGMG>("BackgroundSubtractor.GMG");
|
|
Mat fgmask;
|
|
|
|
if (fgbg == NULL)
|
|
CV_Error(CV_StsError,"Failed to create Algorithm\n");
|
|
|
|
/**
|
|
* Set a few parameters
|
|
*/
|
|
fgbg->set("smoothingRadius",7);
|
|
fgbg->set("decisionThreshold",0.7);
|
|
fgbg->set("initializationFrames",120);
|
|
|
|
/**
|
|
* Generate bounds for the values in the matrix for each type
|
|
*/
|
|
uchar maxuc = 0, minuc = 0;
|
|
char maxc = 0, minc = 0;
|
|
unsigned int maxui = 0, minui = 0;
|
|
int maxi=0, mini = 0;
|
|
long int maxli = 0, minli = 0;
|
|
float maxf = 0, minf = 0;
|
|
double maxd = 0, mind = 0;
|
|
|
|
/**
|
|
* Max value for simulated images picked randomly in upper half of type range
|
|
* Min value for simulated images picked randomly in lower half of type range
|
|
*/
|
|
if (type == CV_8U)
|
|
{
|
|
uchar half = UCHAR_MAX/2;
|
|
maxuc = (unsigned char)rng.uniform(half+32, UCHAR_MAX);
|
|
minuc = (unsigned char)rng.uniform(0, half-32);
|
|
}
|
|
else if (type == CV_8S)
|
|
{
|
|
maxc = (char)rng.uniform(32, CHAR_MAX);
|
|
minc = (char)rng.uniform(CHAR_MIN, -32);
|
|
}
|
|
else if (type == CV_16U)
|
|
{
|
|
ushort half = USHRT_MAX/2;
|
|
maxui = (unsigned int)rng.uniform(half+32, USHRT_MAX);
|
|
minui = (unsigned int)rng.uniform(0, half-32);
|
|
}
|
|
else if (type == CV_16S)
|
|
{
|
|
maxi = rng.uniform(32, SHRT_MAX);
|
|
mini = rng.uniform(SHRT_MIN, -32);
|
|
}
|
|
else if (type == CV_32S)
|
|
{
|
|
maxli = rng.uniform(32, INT_MAX);
|
|
minli = rng.uniform(INT_MIN, -32);
|
|
}
|
|
else if (type == CV_32F)
|
|
{
|
|
maxf = rng.uniform(32.0f, FLT_MAX);
|
|
minf = rng.uniform(-FLT_MAX, -32.0f);
|
|
}
|
|
else if (type == CV_64F)
|
|
{
|
|
maxd = rng.uniform(32.0, DBL_MAX);
|
|
mind = rng.uniform(-DBL_MAX, -32.0);
|
|
}
|
|
|
|
Mat simImage = Mat::zeros(height, width, channelsAndType);
|
|
const unsigned int numLearningFrames = 120;
|
|
for (unsigned int i = 0; i < numLearningFrames; ++i)
|
|
{
|
|
/**
|
|
* Genrate simulated "image" for any type. Values always confined to upper half of range.
|
|
*/
|
|
if (type == CV_8U)
|
|
{
|
|
rng.fill(simImage,RNG::UNIFORM,(unsigned char)(minuc/2+maxuc/2),maxuc);
|
|
if (i == 0)
|
|
fgbg->initializeType(simImage,minuc,maxuc);
|
|
}
|
|
else if (type == CV_8S)
|
|
{
|
|
rng.fill(simImage,RNG::UNIFORM,(char)(minc/2+maxc/2),maxc);
|
|
if (i==0)
|
|
fgbg->initializeType(simImage,minc,maxc);
|
|
}
|
|
else if (type == CV_16U)
|
|
{
|
|
rng.fill(simImage,RNG::UNIFORM,(unsigned int)(minui/2+maxui/2),maxui);
|
|
if (i==0)
|
|
fgbg->initializeType(simImage,minui,maxui);
|
|
}
|
|
else if (type == CV_16S)
|
|
{
|
|
rng.fill(simImage,RNG::UNIFORM,(int)(mini/2+maxi/2),maxi);
|
|
if (i==0)
|
|
fgbg->initializeType(simImage,mini,maxi);
|
|
}
|
|
else if (type == CV_32F)
|
|
{
|
|
rng.fill(simImage,RNG::UNIFORM,(float)(minf/2.0+maxf/2.0),maxf);
|
|
if (i==0)
|
|
fgbg->initializeType(simImage,minf,maxf);
|
|
}
|
|
else if (type == CV_32S)
|
|
{
|
|
rng.fill(simImage,RNG::UNIFORM,(long int)(minli/2+maxli/2),maxli);
|
|
if (i==0)
|
|
fgbg->initializeType(simImage,minli,maxli);
|
|
}
|
|
else if (type == CV_64F)
|
|
{
|
|
rng.fill(simImage,RNG::UNIFORM,(double)(mind/2.0+maxd/2.0),maxd);
|
|
if (i==0)
|
|
fgbg->initializeType(simImage,mind,maxd);
|
|
}
|
|
|
|
/**
|
|
* Feed simulated images into background subtractor
|
|
*/
|
|
(*fgbg)(simImage,fgmask);
|
|
Mat fullbg = Mat::zeros(simImage.rows, simImage.cols, CV_8U);
|
|
fgbg->updateBackgroundModel(fullbg);
|
|
|
|
//! fgmask should be entirely background during training
|
|
code = cvtest::cmpEps2( ts, fgmask, fullbg, 0, false, "The training foreground mask" );
|
|
if (code < 0)
|
|
ts->set_failed_test_info( code );
|
|
}
|
|
//! generate last image, distinct from training images
|
|
if (type == CV_8U)
|
|
rng.fill(simImage,RNG::UNIFORM,minuc,minuc);
|
|
else if (type == CV_8S)
|
|
rng.fill(simImage,RNG::UNIFORM,minc,minc);
|
|
else if (type == CV_16U)
|
|
rng.fill(simImage,RNG::UNIFORM,minui,minui);
|
|
else if (type == CV_16S)
|
|
rng.fill(simImage,RNG::UNIFORM,mini,mini);
|
|
else if (type == CV_32F)
|
|
rng.fill(simImage,RNG::UNIFORM,minf,minf);
|
|
else if (type == CV_32S)
|
|
rng.fill(simImage,RNG::UNIFORM,minli,minli);
|
|
else if (type == CV_64F)
|
|
rng.fill(simImage,RNG::UNIFORM,mind,mind);
|
|
|
|
(*fgbg)(simImage,fgmask);
|
|
//! now fgmask should be entirely foreground
|
|
Mat fullfg = 255*Mat::ones(simImage.rows, simImage.cols, CV_8U);
|
|
code = cvtest::cmpEps2( ts, fgmask, fullfg, 255, false, "The final foreground mask" );
|
|
if (code < 0)
|
|
{
|
|
ts->set_failed_test_info( code );
|
|
}
|
|
|
|
}
|
|
|
|
TEST(VIDEO_BGSUBGMG, accuracy) { CV_BackgroundSubtractorTest test; test.safe_run(); }
|