Background subtractor GMG: removed flexitype, fixed build errors.
This commit is contained in:
parent
afe11f69fb
commit
dec38e5949
@ -199,75 +199,7 @@ protected:
|
||||
*/
|
||||
class CV_EXPORTS BackgroundSubtractorGMG: public cv::BackgroundSubtractor
|
||||
{
|
||||
private:
|
||||
/**
|
||||
* A general flexible datatype.
|
||||
*
|
||||
* Used internally to enable background subtraction algorithm to be robust to any input Mat type.
|
||||
* Datatype can be char, unsigned char, int, unsigned int, long int, float, or double.
|
||||
*/
|
||||
union flexitype{
|
||||
char c;
|
||||
uchar uc;
|
||||
int i;
|
||||
unsigned int ui;
|
||||
long int li;
|
||||
float f;
|
||||
double d;
|
||||
|
||||
flexitype(){d = 0.0;} //!< Default constructor, set all bits of the union to 0.
|
||||
flexitype(char cval){c = cval;} //!< Char type constructor
|
||||
|
||||
bool operator ==(flexitype& rhs)
|
||||
{
|
||||
return d == rhs.d;
|
||||
}
|
||||
|
||||
//! Char type assignment operator
|
||||
flexitype& operator =(char cval){
|
||||
if (this->c == cval){return *this;}
|
||||
c = cval; return *this;
|
||||
}
|
||||
flexitype(unsigned char ucval){uc = ucval;} //!< unsigned char type constructor
|
||||
|
||||
//! unsigned char type assignment operator
|
||||
flexitype& operator =(unsigned char ucval){
|
||||
if (this->uc == ucval){return *this;}
|
||||
uc = ucval; return *this;
|
||||
}
|
||||
flexitype(int ival){i = ival;} //!< int type constructor
|
||||
//! int type assignment operator
|
||||
flexitype& operator =(int ival){
|
||||
if (this->i == ival){return *this;}
|
||||
i = ival; return *this;
|
||||
}
|
||||
flexitype(unsigned int uival){ui = uival;} //!< unsigned int type constructor
|
||||
|
||||
//! unsigned int type assignment operator
|
||||
flexitype& operator =(unsigned int uival){
|
||||
if (this->ui == uival){return *this;}
|
||||
ui = uival; return *this;
|
||||
}
|
||||
flexitype(float fval){f = fval;} //!< float type constructor
|
||||
//! float type assignment operator
|
||||
flexitype& operator =(float fval){
|
||||
if (this->f == fval){return *this;}
|
||||
f = fval; return *this;
|
||||
}
|
||||
flexitype(long int lival){li = lival;} //!< long int type constructor
|
||||
//! long int type assignment operator
|
||||
flexitype& operator =(long int lival){
|
||||
if (this->li == lival){return *this;}
|
||||
li = lival; return *this;
|
||||
}
|
||||
|
||||
flexitype(double dval){d=dval;} //!< double type constructor
|
||||
//! double type assignment operator
|
||||
flexitype& operator =(double dval){
|
||||
if (this->d == dval){return *this;}
|
||||
d = dval; return *this;
|
||||
}
|
||||
};
|
||||
protected:
|
||||
/**
|
||||
* Used internally to represent a single feature in a histogram.
|
||||
* Feature is a color and an associated likelihood (weight in the histogram).
|
||||
@ -387,7 +319,7 @@ public:
|
||||
* @param min minimum value taken on by pixels in image sequence. Usually 0
|
||||
* @param max maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
|
||||
*/
|
||||
void initializeType(InputArray image, flexitype min, flexitype max);
|
||||
void initializeType(InputArray image, double min, double max);
|
||||
/**
|
||||
* Selectively update the background model. Only update background model for pixels identified
|
||||
* as background.
|
||||
@ -417,24 +349,20 @@ protected:
|
||||
double decisionThreshold; //!< value above which pixel is determined to be FG.
|
||||
int smoothingRadius; //!< smoothing radius, in pixels, for cleaning up FG image.
|
||||
|
||||
flexitype maxVal, minVal;
|
||||
double maxVal, minVal;
|
||||
|
||||
/*
|
||||
* General Parameters
|
||||
*/
|
||||
size_t imWidth; //!< width of image.
|
||||
size_t imHeight; //!< height of image.
|
||||
size_t numPixels;
|
||||
int imWidth; //!< width of image.
|
||||
int imHeight; //!< height of image.
|
||||
size_t numPixels;
|
||||
|
||||
int imageDepth; //!< Depth of image, e.g. CV_8U
|
||||
unsigned int numChannels; //!< Number of channels in image.
|
||||
unsigned int numChannels; //!< Number of channels in image.
|
||||
|
||||
bool isDataInitialized;
|
||||
//!< After general parameters are set, data structures must be initialized.
|
||||
|
||||
size_t elemSize; //!< store image mat element sizes
|
||||
size_t elemSize1;
|
||||
|
||||
/*
|
||||
* Data Structures
|
||||
*/
|
||||
|
@ -67,7 +67,7 @@ BackgroundSubtractorGMG::BackgroundSubtractorGMG()
|
||||
smoothingRadius = 7;
|
||||
}
|
||||
|
||||
void BackgroundSubtractorGMG::initializeType(InputArray _image,flexitype min, flexitype max)
|
||||
void BackgroundSubtractorGMG::initializeType(InputArray _image, double min, double max)
|
||||
{
|
||||
minVal = min;
|
||||
maxVal = max;
|
||||
@ -114,7 +114,6 @@ void BackgroundSubtractorGMG::initializeType(InputArray _image,flexitype min, fl
|
||||
* Detect and accommodate the image depth
|
||||
*/
|
||||
Mat image = _image.getMat();
|
||||
imageDepth = image.depth(); // 32f, 8u, etc.
|
||||
numChannels = image.channels();
|
||||
|
||||
/*
|
||||
@ -127,16 +126,15 @@ void BackgroundSubtractorGMG::initializeType(InputArray _image,flexitype min, fl
|
||||
/*
|
||||
* Data Structure Initialization
|
||||
*/
|
||||
Size imsize = image.size();
|
||||
imWidth = imsize.width;
|
||||
imHeight = imsize.height;
|
||||
numPixels = imWidth*imHeight;
|
||||
imWidth = image.cols;
|
||||
imHeight = image.rows;
|
||||
numPixels = image.total();
|
||||
pixels.resize(numPixels);
|
||||
frameNum = 0;
|
||||
|
||||
// used to iterate through matrix of type unknown at compile time
|
||||
elemSize = image.elemSize();
|
||||
elemSize1 = image.elemSize1();
|
||||
//elemSize = image.elemSize();
|
||||
//elemSize1 = image.elemSize1();
|
||||
|
||||
vector<PixelModelGMG>::iterator pixel;
|
||||
vector<PixelModelGMG>::iterator pixel_end = pixels.end();
|
||||
@ -145,8 +143,8 @@ void BackgroundSubtractorGMG::initializeType(InputArray _image,flexitype min, fl
|
||||
pixel->setMaxFeatures(maxFeatures);
|
||||
}
|
||||
|
||||
fgMaskImage = Mat::zeros(imHeight,imWidth,CV_8UC1); // 8-bit unsigned mask. 255 for FG, 0 for BG
|
||||
posteriorImage = Mat::zeros(imHeight,imWidth,CV_32FC1); // float for storing probabilities. Can be viewed directly with imshow.
|
||||
fgMaskImage = Mat::zeros(imHeight, imWidth, CV_8UC1); // 8-bit unsigned mask. 255 for FG, 0 for BG
|
||||
posteriorImage = Mat::zeros(imHeight, imWidth, CV_32FC1); // float for storing probabilities. Can be viewed directly with imshow.
|
||||
isDataInitialized = true;
|
||||
}
|
||||
|
||||
@ -171,7 +169,7 @@ void BackgroundSubtractorGMG::operator()(InputArray _image, OutputArray _fgmask,
|
||||
|
||||
Mat image = _image.getMat();
|
||||
|
||||
_fgmask.create(Size(imHeight,imWidth),CV_8U);
|
||||
_fgmask.create(imHeight,imWidth,CV_8U);
|
||||
fgMaskImage = _fgmask.getMat(); // 8-bit unsigned mask. 255 for FG, 0 for BG
|
||||
|
||||
/*
|
||||
@ -183,54 +181,32 @@ void BackgroundSubtractorGMG::operator()(InputArray _image, OutputArray _fgmask,
|
||||
vector<PixelModelGMG>::iterator pixel;
|
||||
vector<PixelModelGMG>::iterator pixel_end = pixels.end();
|
||||
size_t i;
|
||||
//#pragma omp parallel
|
||||
//#pragma omp parallel
|
||||
for (i = 0, pixel=pixels.begin(); pixel != pixel_end; ++i,++pixel)
|
||||
{
|
||||
HistogramFeatureGMG newFeature;
|
||||
newFeature.color.clear();
|
||||
int irow = int(i / imWidth);
|
||||
int icol = i % imWidth;
|
||||
for (size_t c = 0; c < numChannels; ++c)
|
||||
{
|
||||
/*
|
||||
* Perform quantization. in each channel. (color-min)*(levels)/(max-min).
|
||||
* Shifts min to 0 and scales, finally casting to an int.
|
||||
*/
|
||||
size_t quantizedColor;
|
||||
// pixel at data+elemSize*i. Individual channel c at data+elemSize*i+elemSize1*c
|
||||
if (imageDepth == CV_8U)
|
||||
double color;
|
||||
switch(image.depth())
|
||||
{
|
||||
uchar *color = (uchar*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.uc)*quantizationLevels/(maxVal.uc-minVal.uc));
|
||||
}
|
||||
else if (imageDepth == CV_8S)
|
||||
{
|
||||
char *color = (char*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.c)*quantizationLevels/(maxVal.c-minVal.c));
|
||||
}
|
||||
else if (imageDepth == CV_16U)
|
||||
{
|
||||
unsigned int *color = (unsigned int*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui));
|
||||
}
|
||||
else if (imageDepth == CV_16S)
|
||||
{
|
||||
int *color = (int*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.i)*quantizationLevels/(maxVal.i-minVal.i));
|
||||
}
|
||||
else if (imageDepth == CV_32F)
|
||||
{
|
||||
float *color = (float*)image.data+elemSize*i+elemSize1*c;
|
||||
quantizedColor = (size_t)((double)(*color-minVal.ui)*quantizationLevels/(maxVal.ui-minVal.ui));
|
||||
}
|
||||
else if (imageDepth == CV_32S)
|
||||
{
|
||||
long int *color = (long int*)(image.data+elemSize*i+elemSize1*c);
|
||||
quantizedColor = (size_t)((double)(*color-minVal.li)*quantizationLevels/(maxVal.li-minVal.li));
|
||||
}
|
||||
else if (imageDepth == CV_64F)
|
||||
{
|
||||
double *color = (double*)image.data+elemSize*i+elemSize1*c;
|
||||
quantizedColor = (size_t)((double)(*color-minVal.d)*quantizationLevels/(maxVal.d-minVal.d));
|
||||
case CV_8U: color = image.ptr<uchar>(irow)[icol * numChannels + c]; break;
|
||||
case CV_8S: color = image.ptr<schar>(irow)[icol * numChannels + c]; break;
|
||||
case CV_16U: color = image.ptr<ushort>(irow)[icol * numChannels + c]; break;
|
||||
case CV_16S: color = image.ptr<short>(irow)[icol * numChannels + c]; break;
|
||||
case CV_32S: color = image.ptr<int>(irow)[icol * numChannels + c]; break;
|
||||
case CV_32F: color = image.ptr<float>(irow)[icol * numChannels + c]; break;
|
||||
case CV_64F: color = image.ptr<double>(irow)[icol * numChannels + c]; break;
|
||||
default: color = 0; break;
|
||||
}
|
||||
size_t quantizedColor = (size_t)((color-minVal)*quantizationLevels/(maxVal-minVal));
|
||||
newFeature.color.push_back(quantizedColor);
|
||||
}
|
||||
// now that the feature is ready for use, put it in the histogram
|
||||
@ -251,7 +227,7 @@ void BackgroundSubtractorGMG::operator()(InputArray _image, OutputArray _fgmask,
|
||||
*/
|
||||
int row,col;
|
||||
col = i%imWidth;
|
||||
row = (i-col)/imWidth;
|
||||
row = int(i-col)/imWidth;
|
||||
posteriorImage.at<float>(row,col) = (1.0f-posterior);
|
||||
}
|
||||
pixel->setLastObservedFeature(newFeature);
|
||||
@ -284,10 +260,10 @@ void BackgroundSubtractorGMG::updateBackgroundModel(InputArray _mask)
|
||||
|
||||
Mat maskImg = _mask.getMat();
|
||||
//#pragma omp parallel
|
||||
for (size_t i = 0; i < imHeight; ++i)
|
||||
for (int i = 0; i < imHeight; ++i)
|
||||
{
|
||||
//#pragma omp parallel
|
||||
for (size_t j = 0; j < imWidth; ++j)
|
||||
for (int j = 0; j < imWidth; ++j)
|
||||
{
|
||||
if (frameNum <= numInitializationFrames + 1)
|
||||
{
|
||||
|
@ -12,9 +12,9 @@ using namespace cv;
|
||||
class CV_BackgroundSubtractorTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_BackgroundSubtractorTest();
|
||||
CV_BackgroundSubtractorTest();
|
||||
protected:
|
||||
void run(int);
|
||||
void run(int);
|
||||
};
|
||||
|
||||
CV_BackgroundSubtractorTest::CV_BackgroundSubtractorTest()
|
||||
@ -29,172 +29,167 @@ CV_BackgroundSubtractorTest::CV_BackgroundSubtractorTest()
|
||||
*/
|
||||
void CV_BackgroundSubtractorTest::run(int)
|
||||
{
|
||||
int code = cvtest::TS::OK;
|
||||
RNG& rng = ts->get_rng();
|
||||
int type = ((unsigned int)rng)%7; //!< pick a random type, 0 - 6, defined in types_c.h
|
||||
int channels = 1 + ((unsigned int)rng)%4; //!< random number of channels from 1 to 4.
|
||||
int channelsAndType = CV_MAKETYPE(type,channels);
|
||||
int width = 2 + ((unsigned int)rng)%98; //!< Mat will be 2 to 100 in width and height
|
||||
int height = 2 + ((unsigned int)rng)%98;
|
||||
int code = cvtest::TS::OK;
|
||||
RNG& rng = ts->get_rng();
|
||||
int type = ((unsigned int)rng)%7; //!< pick a random type, 0 - 6, defined in types_c.h
|
||||
int channels = 1 + ((unsigned int)rng)%4; //!< random number of channels from 1 to 4.
|
||||
int channelsAndType = CV_MAKETYPE(type,channels);
|
||||
int width = 2 + ((unsigned int)rng)%98; //!< Mat will be 2 to 100 in width and height
|
||||
int height = 2 + ((unsigned int)rng)%98;
|
||||
|
||||
Ptr<BackgroundSubtractorGMG> fgbg =
|
||||
Algorithm::create<BackgroundSubtractorGMG>("BackgroundSubtractor.GMG");
|
||||
Mat fgmask;
|
||||
Ptr<BackgroundSubtractorGMG> fgbg =
|
||||
Algorithm::create<BackgroundSubtractorGMG>("BackgroundSubtractor.GMG");
|
||||
Mat fgmask;
|
||||
|
||||
if (fgbg == NULL)
|
||||
CV_Error(CV_StsError,"Failed to create Algorithm\n");
|
||||
if (fgbg == NULL)
|
||||
CV_Error(CV_StsError,"Failed to create Algorithm\n");
|
||||
|
||||
/**
|
||||
* Set a few parameters
|
||||
*/
|
||||
fgbg->set("smoothingRadius",7);
|
||||
fgbg->set("decisionThreshold",0.7);
|
||||
fgbg->set("initializationFrames",120);
|
||||
/**
|
||||
* Set a few parameters
|
||||
*/
|
||||
fgbg->set("smoothingRadius",7);
|
||||
fgbg->set("decisionThreshold",0.7);
|
||||
fgbg->set("initializationFrames",120);
|
||||
|
||||
/**
|
||||
* Generate bounds for the values in the matrix for each type
|
||||
*/
|
||||
uchar maxuc = 0, minuc = 0;
|
||||
char maxc = 0, minc = 0;
|
||||
uint maxui = 0, minui = 0;
|
||||
int maxi=0, mini = 0;
|
||||
long int maxli = 0, minli = 0;
|
||||
float maxf = 0, minf = 0;
|
||||
double maxd = 0, mind = 0;
|
||||
/**
|
||||
* Generate bounds for the values in the matrix for each type
|
||||
*/
|
||||
uchar maxuc = 0, minuc = 0;
|
||||
char maxc = 0, minc = 0;
|
||||
unsigned int maxui = 0, minui = 0;
|
||||
int maxi=0, mini = 0;
|
||||
long int maxli = 0, minli = 0;
|
||||
float maxf = 0, minf = 0;
|
||||
double maxd = 0, mind = 0;
|
||||
|
||||
/**
|
||||
* Max value for simulated images picked randomly in upper half of type range
|
||||
* Min value for simulated images picked randomly in lower half of type range
|
||||
*/
|
||||
if (type == CV_8U)
|
||||
{
|
||||
unsigned char half = UCHAR_MAX/2;
|
||||
maxuc = (unsigned char)rng.uniform(half+32,UCHAR_MAX);
|
||||
minuc = (unsigned char)rng.uniform(0,half-32);
|
||||
}
|
||||
else if (type == CV_8S)
|
||||
{
|
||||
char half = CHAR_MAX/2 + CHAR_MIN/2;
|
||||
maxc = (char)rng.uniform(half+32,CHAR_MAX);
|
||||
minc = (char)rng.uniform(CHAR_MIN,half-32);
|
||||
}
|
||||
else if (type == CV_16U)
|
||||
{
|
||||
uint half = UINT_MAX/2;
|
||||
maxui = (unsigned int)rng.uniform((int)half+32,UINT_MAX);
|
||||
minui = (unsigned int)rng.uniform(0,(int)half-32);
|
||||
}
|
||||
else if (type == CV_16S)
|
||||
{
|
||||
int half = INT_MAX/2 + INT_MIN/2;
|
||||
maxi = rng.uniform(half+32,INT_MAX);
|
||||
mini = rng.uniform(INT_MIN,half-32);
|
||||
}
|
||||
else if (type == CV_32S)
|
||||
{
|
||||
long int half = LONG_MAX/2 + LONG_MIN/2;
|
||||
maxli = rng.uniform((int)half+32,(int)LONG_MAX);
|
||||
minli = rng.uniform((int)LONG_MIN,(int)half-32);
|
||||
}
|
||||
else if (type == CV_32F)
|
||||
{
|
||||
float half = FLT_MAX/2.0 + FLT_MIN/2.0;
|
||||
maxf = rng.uniform(half+(float)32.0*FLT_EPSILON,FLT_MAX);
|
||||
minf = rng.uniform(FLT_MIN,half-(float)32.0*FLT_EPSILON);
|
||||
}
|
||||
else if (type == CV_64F)
|
||||
{
|
||||
double half = DBL_MAX/2.0 + DBL_MIN/2.0;
|
||||
maxd = rng.uniform(half+(double)32.0*DBL_EPSILON,DBL_MAX);
|
||||
mind = rng.uniform(DBL_MIN,half-(double)32.0*DBL_EPSILON);
|
||||
}
|
||||
/**
|
||||
* Max value for simulated images picked randomly in upper half of type range
|
||||
* Min value for simulated images picked randomly in lower half of type range
|
||||
*/
|
||||
if (type == CV_8U)
|
||||
{
|
||||
uchar half = UCHAR_MAX/2;
|
||||
maxuc = (unsigned char)rng.uniform(half+32, UCHAR_MAX);
|
||||
minuc = (unsigned char)rng.uniform(0, half-32);
|
||||
}
|
||||
else if (type == CV_8S)
|
||||
{
|
||||
maxc = (char)rng.uniform(32, CHAR_MAX);
|
||||
minc = (char)rng.uniform(CHAR_MIN, -32);
|
||||
}
|
||||
else if (type == CV_16U)
|
||||
{
|
||||
ushort half = USHRT_MAX/2;
|
||||
maxui = (unsigned int)rng.uniform(half+32, USHRT_MAX);
|
||||
minui = (unsigned int)rng.uniform(0, half-32);
|
||||
}
|
||||
else if (type == CV_16S)
|
||||
{
|
||||
maxi = rng.uniform(32, SHRT_MAX);
|
||||
mini = rng.uniform(SHRT_MIN, -32);
|
||||
}
|
||||
else if (type == CV_32S)
|
||||
{
|
||||
maxli = rng.uniform(32, INT_MAX);
|
||||
minli = rng.uniform(INT_MIN, -32);
|
||||
}
|
||||
else if (type == CV_32F)
|
||||
{
|
||||
maxf = rng.uniform(32.0f, FLT_MAX);
|
||||
minf = rng.uniform(-FLT_MAX, -32.0f);
|
||||
}
|
||||
else if (type == CV_64F)
|
||||
{
|
||||
maxd = rng.uniform(32.0, DBL_MAX);
|
||||
mind = rng.uniform(-DBL_MAX, -32.0);
|
||||
}
|
||||
|
||||
Mat simImage = Mat::zeros(height,width,channelsAndType);
|
||||
const uint numLearningFrames = 120;
|
||||
for (uint i = 0; i < numLearningFrames; ++i)
|
||||
{
|
||||
/**
|
||||
* Genrate simulated "image" for any type. Values always confined to upper half of range.
|
||||
*/
|
||||
if (type == CV_8U)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(unsigned char)(minuc/2+maxuc/2),maxuc);
|
||||
if (i == 0)
|
||||
fgbg->initializeType(simImage,minuc,maxuc);
|
||||
}
|
||||
else if (type == CV_8S)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(char)(minc/2+maxc/2),maxc);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minc,maxc);
|
||||
}
|
||||
else if (type == CV_16U)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(unsigned int)(minui/2+maxui/2),maxui);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minui,maxui);
|
||||
}
|
||||
else if (type == CV_16S)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(int)(mini/2+maxi/2),maxi);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,mini,maxi);
|
||||
}
|
||||
else if (type == CV_32F)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(float)(minf/2.0+maxf/2.0),maxf);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minf,maxf);
|
||||
}
|
||||
else if (type == CV_32S)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(long int)(minli/2+maxli/2),maxli);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minli,maxli);
|
||||
}
|
||||
else if (type == CV_64F)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(double)(mind/2.0+maxd/2.0),maxd);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,mind,maxd);
|
||||
}
|
||||
Mat simImage = Mat::zeros(height, width, channelsAndType);
|
||||
const unsigned int numLearningFrames = 120;
|
||||
for (unsigned int i = 0; i < numLearningFrames; ++i)
|
||||
{
|
||||
/**
|
||||
* Genrate simulated "image" for any type. Values always confined to upper half of range.
|
||||
*/
|
||||
if (type == CV_8U)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(unsigned char)(minuc/2+maxuc/2),maxuc);
|
||||
if (i == 0)
|
||||
fgbg->initializeType(simImage,minuc,maxuc);
|
||||
}
|
||||
else if (type == CV_8S)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(char)(minc/2+maxc/2),maxc);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minc,maxc);
|
||||
}
|
||||
else if (type == CV_16U)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(unsigned int)(minui/2+maxui/2),maxui);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minui,maxui);
|
||||
}
|
||||
else if (type == CV_16S)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(int)(mini/2+maxi/2),maxi);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,mini,maxi);
|
||||
}
|
||||
else if (type == CV_32F)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(float)(minf/2.0+maxf/2.0),maxf);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minf,maxf);
|
||||
}
|
||||
else if (type == CV_32S)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(long int)(minli/2+maxli/2),maxli);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,minli,maxli);
|
||||
}
|
||||
else if (type == CV_64F)
|
||||
{
|
||||
rng.fill(simImage,RNG::UNIFORM,(double)(mind/2.0+maxd/2.0),maxd);
|
||||
if (i==0)
|
||||
fgbg->initializeType(simImage,mind,maxd);
|
||||
}
|
||||
|
||||
/**
|
||||
* Feed simulated images into background subtractor
|
||||
*/
|
||||
(*fgbg)(simImage,fgmask);
|
||||
Mat fullbg = Mat::zeros(Size(simImage.cols,simImage.rows),CV_8U);
|
||||
fgbg->updateBackgroundModel(fullbg);
|
||||
/**
|
||||
* Feed simulated images into background subtractor
|
||||
*/
|
||||
(*fgbg)(simImage,fgmask);
|
||||
Mat fullbg = Mat::zeros(simImage.rows, simImage.cols, CV_8U);
|
||||
fgbg->updateBackgroundModel(fullbg);
|
||||
|
||||
//! fgmask should be entirely background during training
|
||||
code = cvtest::cmpEps2( ts, fgmask, fullbg, 0, false, "The training foreground mask" );
|
||||
if (code < 0)
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
//! generate last image, distinct from training images
|
||||
if (type == CV_8U)
|
||||
rng.fill(simImage,RNG::UNIFORM,minuc,minuc);
|
||||
else if (type == CV_8S)
|
||||
rng.fill(simImage,RNG::UNIFORM,minc,minc);
|
||||
else if (type == CV_16U)
|
||||
rng.fill(simImage,RNG::UNIFORM,minui,minui);
|
||||
else if (type == CV_16S)
|
||||
rng.fill(simImage,RNG::UNIFORM,mini,mini);
|
||||
else if (type == CV_32F)
|
||||
rng.fill(simImage,RNG::UNIFORM,minf,minf);
|
||||
else if (type == CV_32S)
|
||||
rng.fill(simImage,RNG::UNIFORM,minli,minli);
|
||||
else if (type == CV_64F)
|
||||
rng.fill(simImage,RNG::UNIFORM,mind,mind);
|
||||
//! fgmask should be entirely background during training
|
||||
code = cvtest::cmpEps2( ts, fgmask, fullbg, 0, false, "The training foreground mask" );
|
||||
if (code < 0)
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
//! generate last image, distinct from training images
|
||||
if (type == CV_8U)
|
||||
rng.fill(simImage,RNG::UNIFORM,minuc,minuc);
|
||||
else if (type == CV_8S)
|
||||
rng.fill(simImage,RNG::UNIFORM,minc,minc);
|
||||
else if (type == CV_16U)
|
||||
rng.fill(simImage,RNG::UNIFORM,minui,minui);
|
||||
else if (type == CV_16S)
|
||||
rng.fill(simImage,RNG::UNIFORM,mini,mini);
|
||||
else if (type == CV_32F)
|
||||
rng.fill(simImage,RNG::UNIFORM,minf,minf);
|
||||
else if (type == CV_32S)
|
||||
rng.fill(simImage,RNG::UNIFORM,minli,minli);
|
||||
else if (type == CV_64F)
|
||||
rng.fill(simImage,RNG::UNIFORM,mind,mind);
|
||||
|
||||
(*fgbg)(simImage,fgmask);
|
||||
//! now fgmask should be entirely foreground
|
||||
Mat fullfg = 255*Mat::ones(Size(simImage.cols,simImage.rows),CV_8U);
|
||||
code = cvtest::cmpEps2( ts, fgmask, fullfg, 255, false, "The final foreground mask" );
|
||||
if (code < 0)
|
||||
{
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
(*fgbg)(simImage,fgmask);
|
||||
//! now fgmask should be entirely foreground
|
||||
Mat fullfg = 255*Mat::ones(simImage.rows, simImage.cols, CV_8U);
|
||||
code = cvtest::cmpEps2( ts, fgmask, fullfg, 255, false, "The final foreground mask" );
|
||||
if (code < 0)
|
||||
{
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user