604 lines
23 KiB
C++
604 lines
23 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef __OPENCV_OBJDETECT_HPP__
|
|
#define __OPENCV_OBJDETECT_HPP__
|
|
|
|
#include "opencv2/core/core.hpp"
|
|
#include "opencv2/features2d/features2d.hpp"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/****************************************************************************************\
|
|
* Haar-like Object Detection functions *
|
|
\****************************************************************************************/
|
|
|
|
#define CV_HAAR_MAGIC_VAL 0x42500000
|
|
#define CV_TYPE_NAME_HAAR "opencv-haar-classifier"
|
|
|
|
#define CV_IS_HAAR_CLASSIFIER( haar ) \
|
|
((haar) != NULL && \
|
|
(((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL)
|
|
|
|
#define CV_HAAR_FEATURE_MAX 3
|
|
|
|
typedef struct CvHaarFeature
|
|
{
|
|
int tilted;
|
|
struct
|
|
{
|
|
CvRect r;
|
|
float weight;
|
|
} rect[CV_HAAR_FEATURE_MAX];
|
|
} CvHaarFeature;
|
|
|
|
typedef struct CvHaarClassifier
|
|
{
|
|
int count;
|
|
CvHaarFeature* haar_feature;
|
|
float* threshold;
|
|
int* left;
|
|
int* right;
|
|
float* alpha;
|
|
} CvHaarClassifier;
|
|
|
|
typedef struct CvHaarStageClassifier
|
|
{
|
|
int count;
|
|
float threshold;
|
|
CvHaarClassifier* classifier;
|
|
|
|
int next;
|
|
int child;
|
|
int parent;
|
|
} CvHaarStageClassifier;
|
|
|
|
typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;
|
|
|
|
typedef struct CvHaarClassifierCascade
|
|
{
|
|
int flags;
|
|
int count;
|
|
CvSize orig_window_size;
|
|
CvSize real_window_size;
|
|
double scale;
|
|
CvHaarStageClassifier* stage_classifier;
|
|
CvHidHaarClassifierCascade* hid_cascade;
|
|
} CvHaarClassifierCascade;
|
|
|
|
typedef struct CvAvgComp
|
|
{
|
|
CvRect rect;
|
|
int neighbors;
|
|
} CvAvgComp;
|
|
|
|
/* Loads haar classifier cascade from a directory.
|
|
It is obsolete: convert your cascade to xml and use cvLoad instead */
|
|
CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade(
|
|
const char* directory, CvSize orig_window_size);
|
|
|
|
CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade );
|
|
|
|
#define CV_HAAR_DO_CANNY_PRUNING 1
|
|
#define CV_HAAR_SCALE_IMAGE 2
|
|
#define CV_HAAR_FIND_BIGGEST_OBJECT 4
|
|
#define CV_HAAR_DO_ROUGH_SEARCH 8
|
|
|
|
//CVAPI(CvSeq*) cvHaarDetectObjectsForROC( const CvArr* image,
|
|
// CvHaarClassifierCascade* cascade, CvMemStorage* storage,
|
|
// CvSeq** rejectLevels, CvSeq** levelWeightds,
|
|
// double scale_factor CV_DEFAULT(1.1),
|
|
// int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
|
|
// CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)),
|
|
// bool outputRejectLevels = false );
|
|
|
|
|
|
CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image,
|
|
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
|
|
double scale_factor CV_DEFAULT(1.1),
|
|
int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
|
|
CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)));
|
|
|
|
/* sets images for haar classifier cascade */
|
|
CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade,
|
|
const CvArr* sum, const CvArr* sqsum,
|
|
const CvArr* tilted_sum, double scale );
|
|
|
|
/* runs the cascade on the specified window */
|
|
CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade,
|
|
CvPoint pt, int start_stage CV_DEFAULT(0));
|
|
|
|
|
|
/****************************************************************************************\
|
|
* Latent SVM Object Detection functions *
|
|
\****************************************************************************************/
|
|
|
|
// DataType: STRUCT position
|
|
// Structure describes the position of the filter in the feature pyramid
|
|
// l - level in the feature pyramid
|
|
// (x, y) - coordinate in level l
|
|
typedef struct
|
|
{
|
|
unsigned int x;
|
|
unsigned int y;
|
|
unsigned int l;
|
|
} CvLSVMFilterPosition;
|
|
|
|
// DataType: STRUCT filterObject
|
|
// Description of the filter, which corresponds to the part of the object
|
|
// V - ideal (penalty = 0) position of the partial filter
|
|
// from the root filter position (V_i in the paper)
|
|
// penaltyFunction - vector describes penalty function (d_i in the paper)
|
|
// pf[0] * x + pf[1] * y + pf[2] * x^2 + pf[3] * y^2
|
|
// FILTER DESCRIPTION
|
|
// Rectangular map (sizeX x sizeY),
|
|
// every cell stores feature vector (dimension = p)
|
|
// H - matrix of feature vectors
|
|
// to set and get feature vectors (i,j)
|
|
// used formula H[(j * sizeX + i) * p + k], where
|
|
// k - component of feature vector in cell (i, j)
|
|
// END OF FILTER DESCRIPTION
|
|
// xp - auxillary parameter for internal use
|
|
// size of row in feature vectors
|
|
// (yp = (int) (p / xp); p = xp * yp)
|
|
typedef struct{
|
|
CvLSVMFilterPosition V;
|
|
float fineFunction[4];
|
|
unsigned int sizeX;
|
|
unsigned int sizeY;
|
|
unsigned int p;
|
|
unsigned int xp;
|
|
float *H;
|
|
} CvLSVMFilterObject;
|
|
|
|
// data type: STRUCT CvLatentSvmDetector
|
|
// structure contains internal representation of trained Latent SVM detector
|
|
// num_filters - total number of filters (root plus part) in model
|
|
// num_components - number of components in model
|
|
// num_part_filters - array containing number of part filters for each component
|
|
// filters - root and part filters for all model components
|
|
// b - biases for all model components
|
|
// score_threshold - confidence level threshold
|
|
typedef struct CvLatentSvmDetector
|
|
{
|
|
int num_filters;
|
|
int num_components;
|
|
int* num_part_filters;
|
|
CvLSVMFilterObject** filters;
|
|
float* b;
|
|
float score_threshold;
|
|
}
|
|
CvLatentSvmDetector;
|
|
|
|
// data type: STRUCT CvObjectDetection
|
|
// structure contains the bounding box and confidence level for detected object
|
|
// rect - bounding box for a detected object
|
|
// score - confidence level
|
|
typedef struct CvObjectDetection
|
|
{
|
|
CvRect rect;
|
|
float score;
|
|
} CvObjectDetection;
|
|
|
|
//////////////// Object Detection using Latent SVM //////////////
|
|
|
|
|
|
/*
|
|
// load trained detector from a file
|
|
//
|
|
// API
|
|
// CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename);
|
|
// INPUT
|
|
// filename - path to the file containing the parameters of
|
|
- trained Latent SVM detector
|
|
// OUTPUT
|
|
// trained Latent SVM detector in internal representation
|
|
*/
|
|
CVAPI(CvLatentSvmDetector*) cvLoadLatentSvmDetector(const char* filename);
|
|
|
|
/*
|
|
// release memory allocated for CvLatentSvmDetector structure
|
|
//
|
|
// API
|
|
// void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
|
|
// INPUT
|
|
// detector - CvLatentSvmDetector structure to be released
|
|
// OUTPUT
|
|
*/
|
|
CVAPI(void) cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
|
|
|
|
/*
|
|
// find rectangular regions in the given image that are likely
|
|
// to contain objects and corresponding confidence levels
|
|
//
|
|
// API
|
|
// CvSeq* cvLatentSvmDetectObjects(const IplImage* image,
|
|
// CvLatentSvmDetector* detector,
|
|
// CvMemStorage* storage,
|
|
// float overlap_threshold = 0.5f,
|
|
// int numThreads = -1);
|
|
// INPUT
|
|
// image - image to detect objects in
|
|
// detector - Latent SVM detector in internal representation
|
|
// storage - memory storage to store the resultant sequence
|
|
// of the object candidate rectangles
|
|
// overlap_threshold - threshold for the non-maximum suppression algorithm
|
|
= 0.5f [here will be the reference to original paper]
|
|
// OUTPUT
|
|
// sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures)
|
|
*/
|
|
CVAPI(CvSeq*) cvLatentSvmDetectObjects(IplImage* image,
|
|
CvLatentSvmDetector* detector,
|
|
CvMemStorage* storage,
|
|
float overlap_threshold CV_DEFAULT(0.5f),
|
|
int numThreads CV_DEFAULT(-1));
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
|
|
CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image,
|
|
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
|
|
std::vector<int>& rejectLevels, std::vector<double>& levelWeightds,
|
|
double scale_factor CV_DEFAULT(1.1),
|
|
int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
|
|
CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)),
|
|
bool outputRejectLevels = false );
|
|
|
|
namespace cv
|
|
{
|
|
|
|
///////////////////////////// Object Detection ////////////////////////////
|
|
|
|
CV_EXPORTS_W void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps=0.2);
|
|
CV_EXPORTS_W void groupRectangles(vector<Rect>& rectList, CV_OUT vector<int>& weights, int groupThreshold, double eps=0.2);
|
|
CV_EXPORTS void groupRectangles(vector<Rect>& rectList, vector<int>& rejectLevels,
|
|
vector<double>& levelWeights, int groupThreshold, double eps=0.2);
|
|
CV_EXPORTS void groupRectangles_meanshift(vector<Rect>& rectList, vector<double>& foundWeights, vector<double>& foundScales,
|
|
double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
|
|
|
|
|
|
class CV_EXPORTS FeatureEvaluator
|
|
{
|
|
public:
|
|
enum { HAAR = 0, LBP = 1 };
|
|
virtual ~FeatureEvaluator();
|
|
|
|
virtual bool read(const FileNode& node);
|
|
virtual Ptr<FeatureEvaluator> clone() const;
|
|
virtual int getFeatureType() const;
|
|
|
|
virtual bool setImage(const Mat&, Size origWinSize);
|
|
virtual bool setWindow(Point p);
|
|
|
|
virtual double calcOrd(int featureIdx) const;
|
|
virtual int calcCat(int featureIdx) const;
|
|
|
|
static Ptr<FeatureEvaluator> create(int type);
|
|
};
|
|
|
|
template<> CV_EXPORTS void Ptr<CvHaarClassifierCascade>::delete_obj();
|
|
|
|
class CV_EXPORTS_W CascadeClassifier
|
|
{
|
|
public:
|
|
CV_WRAP CascadeClassifier();
|
|
CV_WRAP CascadeClassifier( const string& filename );
|
|
virtual ~CascadeClassifier();
|
|
|
|
CV_WRAP virtual bool empty() const;
|
|
CV_WRAP bool load( const string& filename );
|
|
virtual bool read( const FileNode& node );
|
|
CV_WRAP virtual void detectMultiScale( const Mat& image,
|
|
CV_OUT vector<Rect>& objects,
|
|
double scaleFactor=1.1,
|
|
int minNeighbors=3, int flags=0,
|
|
Size minSize=Size(),
|
|
Size maxSize=Size() );
|
|
|
|
CV_WRAP virtual void detectMultiScale( const Mat& image,
|
|
CV_OUT vector<Rect>& objects,
|
|
vector<int>& rejectLevels,
|
|
vector<double>& levelWeights,
|
|
double scaleFactor=1.1,
|
|
int minNeighbors=3, int flags=0,
|
|
Size minSize=Size(),
|
|
Size maxSize=Size(),
|
|
bool outputRejectLevels=false );
|
|
|
|
|
|
bool isOldFormatCascade() const;
|
|
virtual Size getOriginalWindowSize() const;
|
|
int getFeatureType() const;
|
|
bool setImage( const Mat& );
|
|
|
|
protected:
|
|
//virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
|
|
// int stripSize, int yStep, double factor, vector<Rect>& candidates );
|
|
|
|
virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
|
|
int stripSize, int yStep, double factor, vector<Rect>& candidates,
|
|
vector<int>& rejectLevels, vector<double>& levelWeights, bool outputRejectLevels=false);
|
|
|
|
protected:
|
|
enum { BOOST = 0 };
|
|
enum { DO_CANNY_PRUNING = 1, SCALE_IMAGE = 2,
|
|
FIND_BIGGEST_OBJECT = 4, DO_ROUGH_SEARCH = 8 };
|
|
|
|
friend struct CascadeClassifierInvoker;
|
|
|
|
template<class FEval>
|
|
friend int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
|
|
|
|
template<class FEval>
|
|
friend int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
|
|
|
|
template<class FEval>
|
|
friend int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
|
|
|
|
template<class FEval>
|
|
friend int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
|
|
|
|
bool setImage( Ptr<FeatureEvaluator>&, const Mat& );
|
|
virtual int runAt( Ptr<FeatureEvaluator>&, Point, double& weight );
|
|
|
|
class Data
|
|
{
|
|
public:
|
|
struct CV_EXPORTS DTreeNode
|
|
{
|
|
int featureIdx;
|
|
float threshold; // for ordered features only
|
|
int left;
|
|
int right;
|
|
};
|
|
|
|
struct CV_EXPORTS DTree
|
|
{
|
|
int nodeCount;
|
|
};
|
|
|
|
struct CV_EXPORTS Stage
|
|
{
|
|
int first;
|
|
int ntrees;
|
|
float threshold;
|
|
};
|
|
|
|
bool read(const FileNode &node);
|
|
|
|
bool isStumpBased;
|
|
|
|
int stageType;
|
|
int featureType;
|
|
int ncategories;
|
|
Size origWinSize;
|
|
|
|
vector<Stage> stages;
|
|
vector<DTree> classifiers;
|
|
vector<DTreeNode> nodes;
|
|
vector<float> leaves;
|
|
vector<int> subsets;
|
|
};
|
|
|
|
Data data;
|
|
Ptr<FeatureEvaluator> featureEvaluator;
|
|
Ptr<CvHaarClassifierCascade> oldCascade;
|
|
};
|
|
|
|
void CV_EXPORTS_W groupRectangles( vector<Rect>& rectList, int groupThreshold, double eps, vector<int>* weights, vector<double>* levelWeights );
|
|
|
|
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
|
|
|
|
struct CV_EXPORTS_W HOGDescriptor
|
|
{
|
|
public:
|
|
enum { L2Hys=0 };
|
|
enum { DEFAULT_NLEVELS=64 };
|
|
|
|
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
|
|
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
|
|
histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
|
|
nlevels(HOGDescriptor::DEFAULT_NLEVELS)
|
|
{}
|
|
|
|
CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
|
|
Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
|
|
int _histogramNormType=HOGDescriptor::L2Hys,
|
|
double _L2HysThreshold=0.2, bool _gammaCorrection=false,
|
|
int _nlevels=HOGDescriptor::DEFAULT_NLEVELS)
|
|
: winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
|
|
nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
|
|
histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
|
|
gammaCorrection(_gammaCorrection), nlevels(_nlevels)
|
|
{}
|
|
|
|
CV_WRAP HOGDescriptor(const String& filename)
|
|
{
|
|
load(filename);
|
|
}
|
|
|
|
HOGDescriptor(const HOGDescriptor& d)
|
|
{
|
|
d.copyTo(*this);
|
|
}
|
|
|
|
virtual ~HOGDescriptor() {}
|
|
|
|
CV_WRAP size_t getDescriptorSize() const;
|
|
CV_WRAP bool checkDetectorSize() const;
|
|
CV_WRAP double getWinSigma() const;
|
|
|
|
CV_WRAP virtual void setSVMDetector(const vector<float>& _svmdetector);
|
|
|
|
virtual bool read(FileNode& fn);
|
|
virtual void write(FileStorage& fs, const String& objname) const;
|
|
|
|
CV_WRAP virtual bool load(const String& filename, const String& objname=String());
|
|
CV_WRAP virtual void save(const String& filename, const String& objname=String()) const;
|
|
virtual void copyTo(HOGDescriptor& c) const;
|
|
|
|
CV_WRAP virtual void compute(const Mat& img,
|
|
CV_OUT vector<float>& descriptors,
|
|
Size winStride=Size(), Size padding=Size(),
|
|
const vector<Point>& locations=vector<Point>()) const;
|
|
//with found weights output
|
|
CV_WRAP virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations,
|
|
vector<double>& weights,
|
|
double hitThreshold=0, Size winStride=Size(),
|
|
Size padding=Size(),
|
|
const vector<Point>& searchLocations=vector<Point>()) const;
|
|
//without found weights output
|
|
CV_WRAP virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations,
|
|
double hitThreshold=0, Size winStride=Size(),
|
|
Size padding=Size(),
|
|
const vector<Point>& searchLocations=vector<Point>()) const;
|
|
//with result weights output
|
|
CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations,
|
|
vector<double>& foundWeights, double hitThreshold=0,
|
|
Size winStride=Size(), Size padding=Size(), double scale=1.05,
|
|
double finalThreshold=2.0,bool useMeanshiftGrouping = false) const;
|
|
//without found weights output
|
|
CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations,
|
|
double hitThreshold=0, Size winStride=Size(),
|
|
Size padding=Size(), double scale=1.05,
|
|
double finalThreshold=2.0, bool useMeanshiftGrouping = false) const;
|
|
|
|
CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
|
|
Size paddingTL=Size(), Size paddingBR=Size()) const;
|
|
|
|
static vector<float> getDefaultPeopleDetector();
|
|
static vector<float> getDaimlerPeopleDetector();
|
|
|
|
CV_PROP Size winSize;
|
|
CV_PROP Size blockSize;
|
|
CV_PROP Size blockStride;
|
|
CV_PROP Size cellSize;
|
|
CV_PROP int nbins;
|
|
CV_PROP int derivAperture;
|
|
CV_PROP double winSigma;
|
|
CV_PROP int histogramNormType;
|
|
CV_PROP double L2HysThreshold;
|
|
CV_PROP bool gammaCorrection;
|
|
CV_PROP vector<float> svmDetector;
|
|
CV_PROP int nlevels;
|
|
};
|
|
|
|
/****************************************************************************************\
|
|
* Planar Object Detection *
|
|
\****************************************************************************************/
|
|
|
|
class CV_EXPORTS PlanarObjectDetector
|
|
{
|
|
public:
|
|
PlanarObjectDetector();
|
|
PlanarObjectDetector(const FileNode& node);
|
|
PlanarObjectDetector(const vector<Mat>& pyr, int _npoints=300,
|
|
int _patchSize=FernClassifier::PATCH_SIZE,
|
|
int _nstructs=FernClassifier::DEFAULT_STRUCTS,
|
|
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
|
|
int _nviews=FernClassifier::DEFAULT_VIEWS,
|
|
const LDetector& detector=LDetector(),
|
|
const PatchGenerator& patchGenerator=PatchGenerator());
|
|
virtual ~PlanarObjectDetector();
|
|
virtual void train(const vector<Mat>& pyr, int _npoints=300,
|
|
int _patchSize=FernClassifier::PATCH_SIZE,
|
|
int _nstructs=FernClassifier::DEFAULT_STRUCTS,
|
|
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
|
|
int _nviews=FernClassifier::DEFAULT_VIEWS,
|
|
const LDetector& detector=LDetector(),
|
|
const PatchGenerator& patchGenerator=PatchGenerator());
|
|
virtual void train(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
|
|
int _patchSize=FernClassifier::PATCH_SIZE,
|
|
int _nstructs=FernClassifier::DEFAULT_STRUCTS,
|
|
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
|
|
int _nviews=FernClassifier::DEFAULT_VIEWS,
|
|
const LDetector& detector=LDetector(),
|
|
const PatchGenerator& patchGenerator=PatchGenerator());
|
|
Rect getModelROI() const;
|
|
vector<KeyPoint> getModelPoints() const;
|
|
const LDetector& getDetector() const;
|
|
const FernClassifier& getClassifier() const;
|
|
void setVerbose(bool verbose);
|
|
|
|
void read(const FileNode& node);
|
|
void write(FileStorage& fs, const String& name=String()) const;
|
|
bool operator()(const Mat& image, CV_OUT Mat& H, CV_OUT vector<Point2f>& corners) const;
|
|
bool operator()(const vector<Mat>& pyr, const vector<KeyPoint>& keypoints,
|
|
CV_OUT Mat& H, CV_OUT vector<Point2f>& corners,
|
|
CV_OUT vector<int>* pairs=0) const;
|
|
|
|
protected:
|
|
bool verbose;
|
|
Rect modelROI;
|
|
vector<KeyPoint> modelPoints;
|
|
LDetector ldetector;
|
|
FernClassifier fernClassifier;
|
|
};
|
|
|
|
struct CV_EXPORTS DataMatrixCode {
|
|
char msg[4]; //TODO std::string
|
|
Mat original;
|
|
Point corners[4]; //TODO vector
|
|
};
|
|
|
|
CV_EXPORTS void findDataMatrix(const Mat& image, std::vector<DataMatrixCode>& codes);
|
|
CV_EXPORTS void drawDataMatrixCodes(const std::vector<DataMatrixCode>& codes, Mat& drawImage);
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* Datamatrix *
|
|
\****************************************************************************************/
|
|
|
|
struct CV_EXPORTS CvDataMatrixCode {
|
|
char msg[4];
|
|
CvMat *original;
|
|
CvMat *corners;
|
|
};
|
|
|
|
#include <deque>
|
|
CV_EXPORTS std::deque<CvDataMatrixCode> cvFindDataMatrix(CvMat *im);
|
|
#endif
|
|
|
|
#endif
|