opencv/docroot/opencv1/py/imgproc_object_detection.rst
2011-03-05 21:23:47 +00:00

156 lines
3.2 KiB
ReStructuredText

Object Detection
================
.. highlight:: python
.. index:: MatchTemplate
.. _MatchTemplate:
MatchTemplate
-------------
`id=0.180820664163 Comments from the Wiki <http://opencv.willowgarage.com/wiki/documentation/py/imgproc/MatchTemplate>`__
.. function:: MatchTemplate(image,templ,result,method)-> None
Compares a template against overlapped image regions.
:param image: Image where the search is running; should be 8-bit or 32-bit floating-point
:type image: :class:`CvArr`
:param templ: Searched template; must be not greater than the source image and the same data type as the image
:type templ: :class:`CvArr`
:param result: A map of comparison results; single-channel 32-bit floating-point.
If ``image`` is :math:`W \times H` and ``templ`` is :math:`w \times h` then ``result`` must be :math:`(W-w+1) \times (H-h+1)`
:type result: :class:`CvArr`
:param method: Specifies the way the template must be compared with the image regions (see below)
:type method: int
The function is similar to
:ref:`CalcBackProjectPatch`
. It slides through
``image``
, compares the
overlapped patches of size
:math:`w \times h`
against
``templ``
using the specified method and stores the comparison results to
``result``
. Here are the formulas for the different comparison
methods one may use (
:math:`I`
denotes
``image``
,
:math:`T`
``template``
,
:math:`R`
``result``
). The summation is done over template and/or the
image patch:
:math:`x' = 0...w-1, y' = 0...h-1`
* method=CV\_TM\_SQDIFF
.. math::
R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2
* method=CV\_TM\_SQDIFF\_NORMED
.. math::
R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}
* method=CV\_TM\_CCORR
.. math::
R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y'))
* method=CV\_TM\_CCORR\_NORMED
.. math::
R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I'(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}
* method=CV\_TM\_CCOEFF
.. math::
R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I(x+x',y+y'))
where
.. math::
\begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h) \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array}
* method=CV\_TM\_CCOEFF\_NORMED
.. math::
R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{ \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2} }
After the function finishes the comparison, the best matches can be found as global minimums (
``CV_TM_SQDIFF``
) or maximums (
``CV_TM_CCORR``
and
``CV_TM_CCOEFF``
) using the
:ref:`MinMaxLoc`
function. In the case of a color image, template summation in the numerator and each sum in the denominator is done over all of the channels (and separate mean values are used for each channel).