Object Detection ================ .. highlight:: python .. index:: MatchTemplate .. _MatchTemplate: MatchTemplate ------------- `id=0.180820664163 Comments from the Wiki `__ .. function:: MatchTemplate(image,templ,result,method)-> None Compares a template against overlapped image regions. :param image: Image where the search is running; should be 8-bit or 32-bit floating-point :type image: :class:`CvArr` :param templ: Searched template; must be not greater than the source image and the same data type as the image :type templ: :class:`CvArr` :param result: A map of comparison results; single-channel 32-bit floating-point. If ``image`` is :math:`W \times H` and ``templ`` is :math:`w \times h` then ``result`` must be :math:`(W-w+1) \times (H-h+1)` :type result: :class:`CvArr` :param method: Specifies the way the template must be compared with the image regions (see below) :type method: int The function is similar to :ref:`CalcBackProjectPatch` . It slides through ``image`` , compares the overlapped patches of size :math:`w \times h` against ``templ`` using the specified method and stores the comparison results to ``result`` . Here are the formulas for the different comparison methods one may use ( :math:`I` denotes ``image`` , :math:`T` ``template`` , :math:`R` ``result`` ). The summation is done over template and/or the image patch: :math:`x' = 0...w-1, y' = 0...h-1` * method=CV\_TM\_SQDIFF .. math:: R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2 * method=CV\_TM\_SQDIFF\_NORMED .. math:: R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}} * method=CV\_TM\_CCORR .. math:: R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y')) * method=CV\_TM\_CCORR\_NORMED .. math:: R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I'(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}} * method=CV\_TM\_CCOEFF .. math:: R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I(x+x',y+y')) where .. math:: \begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h) \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array} * method=CV\_TM\_CCOEFF\_NORMED .. math:: R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{ \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2} } After the function finishes the comparison, the best matches can be found as global minimums ( ``CV_TM_SQDIFF`` ) or maximums ( ``CV_TM_CCORR`` and ``CV_TM_CCOEFF`` ) using the :ref:`MinMaxLoc` function. In the case of a color image, template summation in the numerator and each sum in the denominator is done over all of the channels (and separate mean values are used for each channel).