353 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			353 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_CUDA
 | |
| 
 | |
| using namespace cvtest;
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////
 | |
| // StereoBM
 | |
| 
 | |
| struct StereoBM : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(StereoBM, Regression)
 | |
| {
 | |
|     cv::Mat left_image  = readImage("stereobm/aloe-L.png", cv::IMREAD_GRAYSCALE);
 | |
|     cv::Mat right_image = readImage("stereobm/aloe-R.png", cv::IMREAD_GRAYSCALE);
 | |
|     cv::Mat disp_gold   = readImage("stereobm/aloe-disp.png", cv::IMREAD_GRAYSCALE);
 | |
| 
 | |
|     ASSERT_FALSE(left_image.empty());
 | |
|     ASSERT_FALSE(right_image.empty());
 | |
|     ASSERT_FALSE(disp_gold.empty());
 | |
| 
 | |
|     cv::gpu::StereoBM_GPU bm(0, 128, 19);
 | |
|     cv::gpu::GpuMat disp;
 | |
| 
 | |
|     bm(loadMat(left_image), loadMat(right_image), disp);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(disp_gold, disp, 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Calib3D, StereoBM, ALL_DEVICES);
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////
 | |
| // StereoBeliefPropagation
 | |
| 
 | |
| struct StereoBeliefPropagation : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(StereoBeliefPropagation, Regression)
 | |
| {
 | |
|     cv::Mat left_image  = readImage("stereobp/aloe-L.png");
 | |
|     cv::Mat right_image = readImage("stereobp/aloe-R.png");
 | |
|     cv::Mat disp_gold   = readImage("stereobp/aloe-disp.png", cv::IMREAD_GRAYSCALE);
 | |
| 
 | |
|     ASSERT_FALSE(left_image.empty());
 | |
|     ASSERT_FALSE(right_image.empty());
 | |
|     ASSERT_FALSE(disp_gold.empty());
 | |
| 
 | |
|     cv::gpu::StereoBeliefPropagation bp(64, 8, 2, 25, 0.1f, 15, 1, CV_16S);
 | |
|     cv::gpu::GpuMat disp;
 | |
| 
 | |
|     bp(loadMat(left_image), loadMat(right_image), disp);
 | |
| 
 | |
|     cv::Mat h_disp(disp);
 | |
|     h_disp.convertTo(h_disp, disp_gold.depth());
 | |
| 
 | |
|     cv::Rect roi(0, 0, disp_gold.cols - 20, disp_gold.rows - 20);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(disp_gold(roi), h_disp(roi), 0.0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Calib3D, StereoBeliefPropagation, ALL_DEVICES);
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////
 | |
| // StereoConstantSpaceBP
 | |
| 
 | |
| struct StereoConstantSpaceBP : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(StereoConstantSpaceBP, Regression)
 | |
| {
 | |
|     cv::Mat left_image  = readImage("csstereobp/aloe-L.png");
 | |
|     cv::Mat right_image = readImage("csstereobp/aloe-R.png");
 | |
| 
 | |
|     cv::Mat disp_gold;
 | |
| 
 | |
|     if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20))
 | |
|         disp_gold = readImage("csstereobp/aloe-disp.png", cv::IMREAD_GRAYSCALE);
 | |
|     else
 | |
|         disp_gold = readImage("csstereobp/aloe-disp_CC1X.png", cv::IMREAD_GRAYSCALE);
 | |
| 
 | |
|     ASSERT_FALSE(left_image.empty());
 | |
|     ASSERT_FALSE(right_image.empty());
 | |
|     ASSERT_FALSE(disp_gold.empty());
 | |
| 
 | |
|     cv::gpu::StereoConstantSpaceBP csbp(128, 16, 4, 4);
 | |
|     cv::gpu::GpuMat disp;
 | |
| 
 | |
|     csbp(loadMat(left_image), loadMat(right_image), disp);
 | |
| 
 | |
|     cv::Mat h_disp(disp);
 | |
|     h_disp.convertTo(h_disp, disp_gold.depth());
 | |
| 
 | |
|     EXPECT_MAT_SIMILAR(disp_gold, h_disp, 1e-4);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Calib3D, StereoConstantSpaceBP, ALL_DEVICES);
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // transformPoints
 | |
| 
 | |
| struct TransformPoints : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(TransformPoints, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(cv::Size(1000, 1), CV_32FC3, 0, 10);
 | |
|     cv::Mat rvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
 | |
|     cv::Mat tvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
 | |
| 
 | |
|     cv::gpu::GpuMat dst;
 | |
|     cv::gpu::transformPoints(loadMat(src), rvec, tvec, dst);
 | |
| 
 | |
|     ASSERT_EQ(src.size(), dst.size());
 | |
|     ASSERT_EQ(src.type(), dst.type());
 | |
| 
 | |
|     cv::Mat h_dst(dst);
 | |
| 
 | |
|     cv::Mat rot;
 | |
|     cv::Rodrigues(rvec, rot);
 | |
| 
 | |
|     for (int i = 0; i < h_dst.cols; ++i)
 | |
|     {
 | |
|         cv::Point3f res = h_dst.at<cv::Point3f>(0, i);
 | |
| 
 | |
|         cv::Point3f p = src.at<cv::Point3f>(0, i);
 | |
|         cv::Point3f res_gold(
 | |
|                 rot.at<float>(0, 0) * p.x + rot.at<float>(0, 1) * p.y + rot.at<float>(0, 2) * p.z + tvec.at<float>(0, 0),
 | |
|                 rot.at<float>(1, 0) * p.x + rot.at<float>(1, 1) * p.y + rot.at<float>(1, 2) * p.z + tvec.at<float>(0, 1),
 | |
|                 rot.at<float>(2, 0) * p.x + rot.at<float>(2, 1) * p.y + rot.at<float>(2, 2) * p.z + tvec.at<float>(0, 2));
 | |
| 
 | |
|         ASSERT_POINT3_NEAR(res_gold, res, 1e-5);
 | |
|     }
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Calib3D, TransformPoints, ALL_DEVICES);
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // ProjectPoints
 | |
| 
 | |
| struct ProjectPoints : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(ProjectPoints, Accuracy)
 | |
| {
 | |
|     cv::Mat src = randomMat(cv::Size(1000, 1), CV_32FC3, 0, 10);
 | |
|     cv::Mat rvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
 | |
|     cv::Mat tvec = randomMat(cv::Size(3, 1), CV_32F, 0, 1);
 | |
|     cv::Mat camera_mat = randomMat(cv::Size(3, 3), CV_32F, 0.5, 1);
 | |
|     camera_mat.at<float>(0, 1) = 0.f;
 | |
|     camera_mat.at<float>(1, 0) = 0.f;
 | |
|     camera_mat.at<float>(2, 0) = 0.f;
 | |
|     camera_mat.at<float>(2, 1) = 0.f;
 | |
| 
 | |
|     cv::gpu::GpuMat dst;
 | |
|     cv::gpu::projectPoints(loadMat(src), rvec, tvec, camera_mat, cv::Mat(), dst);
 | |
| 
 | |
|     ASSERT_EQ(1, dst.rows);
 | |
|     ASSERT_EQ(MatType(CV_32FC2), MatType(dst.type()));
 | |
| 
 | |
|     std::vector<cv::Point2f> dst_gold;
 | |
|     cv::projectPoints(src, rvec, tvec, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), dst_gold);
 | |
| 
 | |
|     ASSERT_EQ(dst_gold.size(), static_cast<size_t>(dst.cols));
 | |
| 
 | |
|     cv::Mat h_dst(dst);
 | |
| 
 | |
|     for (size_t i = 0; i < dst_gold.size(); ++i)
 | |
|     {
 | |
|         cv::Point2f res = h_dst.at<cv::Point2f>(0, (int)i);
 | |
|         cv::Point2f res_gold = dst_gold[i];
 | |
| 
 | |
|         ASSERT_LE(cv::norm(res_gold - res) / cv::norm(res_gold), 1e-3f);
 | |
|     }
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Calib3D, ProjectPoints, ALL_DEVICES);
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////////////////////////////////
 | |
| // SolvePnPRansac
 | |
| 
 | |
| struct SolvePnPRansac : testing::TestWithParam<cv::gpu::DeviceInfo>
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GetParam();
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(SolvePnPRansac, Accuracy)
 | |
| {
 | |
|     // Use RNG with fixed seed to be reproducable
 | |
|     cv::RNG rng(123456789);
 | |
|     cv::theRNG() = rng;
 | |
| 
 | |
|     cv::Mat object = cvtest::randomMat(rng, cv::Size(5000, 1), CV_32FC3, 0, 100, false);
 | |
|     cv::Mat camera_mat = cvtest::randomMat(rng, cv::Size(3, 3), CV_32FC1, 0.5, 1, false);
 | |
|     camera_mat.at<float>(0, 1) = 0.f;
 | |
|     camera_mat.at<float>(1, 0) = 0.f;
 | |
|     camera_mat.at<float>(2, 0) = 0.f;
 | |
|     camera_mat.at<float>(2, 1) = 0.f;
 | |
| 
 | |
|     std::vector<cv::Point2f> image_vec;
 | |
|     cv::Mat rvec_gold = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false);
 | |
|     cv::Mat tvec_gold = cvtest::randomMat(rng, cv::Size(3, 1), CV_32F, 0, 1, false);
 | |
|     cv::projectPoints(object, rvec_gold, tvec_gold, camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)), image_vec);
 | |
| 
 | |
|     cv::Mat rvec, tvec;
 | |
|     std::vector<int> inliers;
 | |
|     cv::gpu::solvePnPRansac(object, cv::Mat(1, (int)image_vec.size(), CV_32FC2, &image_vec[0]),
 | |
|                             camera_mat, cv::Mat(1, 8, CV_32F, cv::Scalar::all(0)),
 | |
|                             rvec, tvec, false, 200, 2.f, 100, &inliers);
 | |
| 
 | |
|     ASSERT_LE(cv::norm(rvec - rvec_gold), 2e-3);
 | |
|     ASSERT_LE(cv::norm(tvec - tvec_gold), 2e-3);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Calib3D, SolvePnPRansac, ALL_DEVICES);
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // reprojectImageTo3D
 | |
| 
 | |
| PARAM_TEST_CASE(ReprojectImageTo3D, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     cv::Size size;
 | |
|     int depth;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         size = GET_PARAM(1);
 | |
|         depth = GET_PARAM(2);
 | |
|         useRoi = GET_PARAM(3);
 | |
| 
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(ReprojectImageTo3D, Accuracy)
 | |
| {
 | |
|     cv::Mat disp = randomMat(size, depth, 5.0, 30.0);
 | |
|     cv::Mat Q = randomMat(cv::Size(4, 4), CV_32FC1, 0.1, 1.0);
 | |
| 
 | |
|     cv::gpu::GpuMat dst;
 | |
|     cv::gpu::reprojectImageTo3D(loadMat(disp, useRoi), dst, Q, 3);
 | |
| 
 | |
|     cv::Mat dst_gold;
 | |
|     cv::reprojectImageTo3D(disp, dst_gold, Q, false);
 | |
| 
 | |
|     EXPECT_MAT_NEAR(dst_gold, dst, 1e-5);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Calib3D, ReprojectImageTo3D, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(MatDepth(CV_8U), MatDepth(CV_16S)),
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| #endif // HAVE_CUDA
 | 
