341 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			341 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "precomp.hpp"
 | 
						|
 | 
						|
using namespace cv;
 | 
						|
using namespace cv::gpu;
 | 
						|
 | 
						|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
 | 
						|
 | 
						|
void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int, int, int&, int&, int&) { throw_no_cuda(); }
 | 
						|
 | 
						|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, int) { throw_no_cuda(); }
 | 
						|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, float, float, float, float, int) { throw_no_cuda(); }
 | 
						|
 | 
						|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
 | 
						|
 | 
						|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, GpuMat&, Stream&) { throw_no_cuda(); }
 | 
						|
 | 
						|
#else /* !defined (HAVE_CUDA) */
 | 
						|
 | 
						|
namespace cv { namespace gpu { namespace cudev
 | 
						|
{
 | 
						|
    namespace stereobp
 | 
						|
    {
 | 
						|
        void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump);
 | 
						|
        template<typename T, typename D>
 | 
						|
        void comp_data_gpu(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
 | 
						|
        template<typename T>
 | 
						|
        void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
 | 
						|
        template <typename T>
 | 
						|
        void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
 | 
						|
        template <typename T>
 | 
						|
        void calc_all_iterations_gpu(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d,
 | 
						|
            const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
 | 
						|
        template <typename T>
 | 
						|
        void output_gpu(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data,
 | 
						|
            const PtrStepSz<short>& disp, cudaStream_t stream);
 | 
						|
    }
 | 
						|
}}}
 | 
						|
 | 
						|
using namespace ::cv::gpu::cudev::stereobp;
 | 
						|
 | 
						|
namespace
 | 
						|
{
 | 
						|
    const float DEFAULT_MAX_DATA_TERM = 10.0f;
 | 
						|
    const float DEFAULT_DATA_WEIGHT = 0.07f;
 | 
						|
    const float DEFAULT_MAX_DISC_TERM = 1.7f;
 | 
						|
    const float DEFAULT_DISC_SINGLE_JUMP = 1.0f;
 | 
						|
}
 | 
						|
 | 
						|
void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels)
 | 
						|
{
 | 
						|
    ndisp = width / 4;
 | 
						|
    if ((ndisp & 1) != 0)
 | 
						|
        ndisp++;
 | 
						|
 | 
						|
    int mm = std::max(width, height);
 | 
						|
    iters = mm / 100 + 2;
 | 
						|
 | 
						|
    levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5;
 | 
						|
    if (levels == 0) levels++;
 | 
						|
}
 | 
						|
 | 
						|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, int msg_type_)
 | 
						|
    : ndisp(ndisp_), iters(iters_), levels(levels_),
 | 
						|
      max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT),
 | 
						|
      max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP),
 | 
						|
      msg_type(msg_type_), datas(levels_)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_)
 | 
						|
    : ndisp(ndisp_), iters(iters_), levels(levels_),
 | 
						|
      max_data_term(max_data_term_), data_weight(data_weight_),
 | 
						|
      max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_),
 | 
						|
      msg_type(msg_type_), datas(levels_)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
namespace
 | 
						|
{
 | 
						|
    class StereoBeliefPropagationImpl
 | 
						|
    {
 | 
						|
    public:
 | 
						|
        StereoBeliefPropagationImpl(StereoBeliefPropagation& rthis_,
 | 
						|
                                    GpuMat& u_, GpuMat& d_, GpuMat& l_, GpuMat& r_,
 | 
						|
                                    GpuMat& u2_, GpuMat& d2_, GpuMat& l2_, GpuMat& r2_,
 | 
						|
                                    std::vector<GpuMat>& datas_, GpuMat& out_)
 | 
						|
            : rthis(rthis_), u(u_), d(d_), l(l_), r(r_), u2(u2_), d2(d2_), l2(l2_), r2(r2_), datas(datas_), out(out_),
 | 
						|
              zero(Scalar::all(0)), scale(rthis_.msg_type == CV_32F ? 1.0f : 10.0f)
 | 
						|
        {
 | 
						|
            CV_Assert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels);
 | 
						|
            CV_Assert(rthis.msg_type == CV_32F || rthis.msg_type == CV_16S);
 | 
						|
            CV_Assert(rthis.msg_type == CV_32F || (1 << (rthis.levels - 1)) * scale * rthis.max_data_term < std::numeric_limits<short>::max());
 | 
						|
        }
 | 
						|
 | 
						|
        void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
 | 
						|
        {
 | 
						|
            typedef void (*comp_data_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
 | 
						|
            static const comp_data_t comp_data_callers[2][5] =
 | 
						|
            {
 | 
						|
                {0, comp_data_gpu<unsigned char, short>, 0, comp_data_gpu<uchar3, short>, comp_data_gpu<uchar4, short>},
 | 
						|
                {0, comp_data_gpu<unsigned char, float>, 0, comp_data_gpu<uchar3, float>, comp_data_gpu<uchar4, float>}
 | 
						|
            };
 | 
						|
 | 
						|
            CV_Assert(left.size() == right.size() && left.type() == right.type());
 | 
						|
            CV_Assert(left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4);
 | 
						|
 | 
						|
            rows = left.rows;
 | 
						|
            cols = left.cols;
 | 
						|
 | 
						|
            int divisor = (int)pow(2.f, rthis.levels - 1.0f);
 | 
						|
            int lowest_cols = cols / divisor;
 | 
						|
            int lowest_rows = rows / divisor;
 | 
						|
            const int min_image_dim_size = 2;
 | 
						|
            CV_Assert(std::min(lowest_cols, lowest_rows) > min_image_dim_size);
 | 
						|
 | 
						|
            init(stream);
 | 
						|
 | 
						|
            datas[0].create(rows * rthis.ndisp, cols, rthis.msg_type);
 | 
						|
 | 
						|
            comp_data_callers[rthis.msg_type == CV_32F][left.channels()](left, right, datas[0], StreamAccessor::getStream(stream));
 | 
						|
 | 
						|
            calcBP(disp, stream);
 | 
						|
        }
 | 
						|
 | 
						|
        void operator()(const GpuMat& data, GpuMat& disp, Stream& stream)
 | 
						|
        {
 | 
						|
            CV_Assert((data.type() == rthis.msg_type) && (data.rows % rthis.ndisp == 0));
 | 
						|
 | 
						|
            rows = data.rows / rthis.ndisp;
 | 
						|
            cols = data.cols;
 | 
						|
 | 
						|
            int divisor = (int)pow(2.f, rthis.levels - 1.0f);
 | 
						|
            int lowest_cols = cols / divisor;
 | 
						|
            int lowest_rows = rows / divisor;
 | 
						|
            const int min_image_dim_size = 2;
 | 
						|
            CV_Assert(std::min(lowest_cols, lowest_rows) > min_image_dim_size);
 | 
						|
 | 
						|
            init(stream);
 | 
						|
 | 
						|
            datas[0] = data;
 | 
						|
 | 
						|
            calcBP(disp, stream);
 | 
						|
        }
 | 
						|
    private:
 | 
						|
        void init(Stream& stream)
 | 
						|
        {
 | 
						|
            u.create(rows * rthis.ndisp, cols, rthis.msg_type);
 | 
						|
            d.create(rows * rthis.ndisp, cols, rthis.msg_type);
 | 
						|
            l.create(rows * rthis.ndisp, cols, rthis.msg_type);
 | 
						|
            r.create(rows * rthis.ndisp, cols, rthis.msg_type);
 | 
						|
 | 
						|
            if (rthis.levels & 1)
 | 
						|
            {
 | 
						|
                //can clear less area
 | 
						|
                u.setTo(zero, stream);
 | 
						|
                d.setTo(zero, stream);
 | 
						|
                l.setTo(zero, stream);
 | 
						|
                r.setTo(zero, stream);
 | 
						|
            }
 | 
						|
 | 
						|
            if (rthis.levels > 1)
 | 
						|
            {
 | 
						|
                int less_rows = (rows + 1) / 2;
 | 
						|
                int less_cols = (cols + 1) / 2;
 | 
						|
 | 
						|
                u2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
 | 
						|
                d2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
 | 
						|
                l2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
 | 
						|
                r2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
 | 
						|
 | 
						|
                if ((rthis.levels & 1) == 0)
 | 
						|
                {
 | 
						|
                    u2.setTo(zero, stream);
 | 
						|
                    d2.setTo(zero, stream);
 | 
						|
                    l2.setTo(zero, stream);
 | 
						|
                    r2.setTo(zero, stream);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            load_constants(rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight, scale * rthis.max_disc_term, scale * rthis.disc_single_jump);
 | 
						|
 | 
						|
            datas.resize(rthis.levels);
 | 
						|
 | 
						|
            cols_all.resize(rthis.levels);
 | 
						|
            rows_all.resize(rthis.levels);
 | 
						|
 | 
						|
            cols_all[0] = cols;
 | 
						|
            rows_all[0] = rows;
 | 
						|
        }
 | 
						|
 | 
						|
        void calcBP(GpuMat& disp, Stream& stream)
 | 
						|
        {
 | 
						|
            typedef void (*data_step_down_t)(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
 | 
						|
            static const data_step_down_t data_step_down_callers[2] =
 | 
						|
            {
 | 
						|
                data_step_down_gpu<short>, data_step_down_gpu<float>
 | 
						|
            };
 | 
						|
 | 
						|
            typedef void (*level_up_messages_t)(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
 | 
						|
            static const level_up_messages_t level_up_messages_callers[2] =
 | 
						|
            {
 | 
						|
                level_up_messages_gpu<short>, level_up_messages_gpu<float>
 | 
						|
            };
 | 
						|
 | 
						|
            typedef void (*calc_all_iterations_t)(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
 | 
						|
            static const calc_all_iterations_t calc_all_iterations_callers[2] =
 | 
						|
            {
 | 
						|
                calc_all_iterations_gpu<short>, calc_all_iterations_gpu<float>
 | 
						|
            };
 | 
						|
 | 
						|
            typedef void (*output_t)(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream);
 | 
						|
            static const output_t output_callers[2] =
 | 
						|
            {
 | 
						|
                output_gpu<short>, output_gpu<float>
 | 
						|
            };
 | 
						|
 | 
						|
            const int funcIdx = rthis.msg_type == CV_32F;
 | 
						|
 | 
						|
            cudaStream_t cudaStream = StreamAccessor::getStream(stream);
 | 
						|
 | 
						|
            for (int i = 1; i < rthis.levels; ++i)
 | 
						|
            {
 | 
						|
                cols_all[i] = (cols_all[i-1] + 1) / 2;
 | 
						|
                rows_all[i] = (rows_all[i-1] + 1) / 2;
 | 
						|
 | 
						|
                datas[i].create(rows_all[i] * rthis.ndisp, cols_all[i], rthis.msg_type);
 | 
						|
 | 
						|
                data_step_down_callers[funcIdx](cols_all[i], rows_all[i], rows_all[i-1], datas[i-1], datas[i], cudaStream);
 | 
						|
            }
 | 
						|
 | 
						|
            PtrStepSzb mus[] = {u, u2};
 | 
						|
            PtrStepSzb mds[] = {d, d2};
 | 
						|
            PtrStepSzb mrs[] = {r, r2};
 | 
						|
            PtrStepSzb mls[] = {l, l2};
 | 
						|
 | 
						|
            int mem_idx = (rthis.levels & 1) ? 0 : 1;
 | 
						|
 | 
						|
            for (int i = rthis.levels - 1; i >= 0; --i)
 | 
						|
            {
 | 
						|
                // for lower level we have already computed messages by setting to zero
 | 
						|
                if (i != rthis.levels - 1)
 | 
						|
                    level_up_messages_callers[funcIdx](mem_idx, cols_all[i], rows_all[i], rows_all[i+1], mus, mds, mls, mrs, cudaStream);
 | 
						|
 | 
						|
                calc_all_iterations_callers[funcIdx](cols_all[i], rows_all[i], rthis.iters, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], cudaStream);
 | 
						|
 | 
						|
                mem_idx = (mem_idx + 1) & 1;
 | 
						|
            }
 | 
						|
 | 
						|
            if (disp.empty())
 | 
						|
                disp.create(rows, cols, CV_16S);
 | 
						|
 | 
						|
            out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out));
 | 
						|
 | 
						|
            out.setTo(zero, stream);
 | 
						|
 | 
						|
            output_callers[funcIdx](u, d, l, r, datas.front(), out, cudaStream);
 | 
						|
 | 
						|
            if (disp.type() != CV_16S)
 | 
						|
                out.convertTo(disp, disp.type(), stream);
 | 
						|
        }
 | 
						|
 | 
						|
        StereoBeliefPropagation& rthis;
 | 
						|
 | 
						|
        GpuMat& u;
 | 
						|
        GpuMat& d;
 | 
						|
        GpuMat& l;
 | 
						|
        GpuMat& r;
 | 
						|
 | 
						|
        GpuMat& u2;
 | 
						|
        GpuMat& d2;
 | 
						|
        GpuMat& l2;
 | 
						|
        GpuMat& r2;
 | 
						|
 | 
						|
        std::vector<GpuMat>& datas;
 | 
						|
        GpuMat& out;
 | 
						|
 | 
						|
        const Scalar zero;
 | 
						|
        const float scale;
 | 
						|
 | 
						|
        int rows, cols;
 | 
						|
 | 
						|
        std::vector<int> cols_all, rows_all;
 | 
						|
    };
 | 
						|
}
 | 
						|
 | 
						|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
 | 
						|
{
 | 
						|
    StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out);
 | 
						|
    impl(left, right, disp, stream);
 | 
						|
}
 | 
						|
 | 
						|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& data, GpuMat& disp, Stream& stream)
 | 
						|
{
 | 
						|
    StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out);
 | 
						|
    impl(data, disp, stream);
 | 
						|
}
 | 
						|
 | 
						|
#endif /* !defined (HAVE_CUDA) */
 |