refactored gpu::Stream (minor fixes)
This commit is contained in:
parent
a52af84dcf
commit
76f4b02b06
@ -51,8 +51,7 @@
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/core/gpu_types.hpp"
|
||||
|
||||
namespace cv { namespace gpu
|
||||
{
|
||||
namespace cv { namespace gpu {
|
||||
|
||||
//////////////////////////////// GpuMat ///////////////////////////////
|
||||
|
||||
@ -337,59 +336,56 @@ CV_EXPORTS void registerPageLocked(Mat& m);
|
||||
//! unmaps the memory of matrix m, and makes it pageable again
|
||||
CV_EXPORTS void unregisterPageLocked(Mat& m);
|
||||
|
||||
//////////////////////////////// CudaStream ////////////////////////////////
|
||||
///////////////////////////////// Stream //////////////////////////////////
|
||||
|
||||
// Encapculates Cuda Stream. Provides interface for async coping.
|
||||
// Passed to each function that supports async kernel execution.
|
||||
// Reference counting is enabled
|
||||
// Reference counting is enabled.
|
||||
|
||||
class CV_EXPORTS Stream
|
||||
{
|
||||
typedef void (Stream::*bool_type)() const;
|
||||
void this_type_does_not_support_comparisons() const {}
|
||||
|
||||
public:
|
||||
typedef void (*StreamCallback)(int status, void* userData);
|
||||
|
||||
//! creates a new asynchronous stream
|
||||
Stream();
|
||||
~Stream();
|
||||
|
||||
Stream(const Stream&);
|
||||
Stream& operator =(const Stream&);
|
||||
//! queries an asynchronous stream for completion status
|
||||
bool queryIfComplete() const;
|
||||
|
||||
bool queryIfComplete();
|
||||
//! waits for stream tasks to complete
|
||||
void waitForCompletion();
|
||||
|
||||
//! downloads asynchronously
|
||||
// Warning! cv::Mat must point to page locked memory (i.e. to CudaMem data or to its subMat)
|
||||
void enqueueDownload(const GpuMat& src, CudaMem& dst);
|
||||
void enqueueDownload(const GpuMat& src, Mat& dst);
|
||||
|
||||
//! uploads asynchronously
|
||||
// Warning! cv::Mat must point to page locked memory (i.e. to CudaMem data or to its ROI)
|
||||
void enqueueUpload(const CudaMem& src, GpuMat& dst);
|
||||
void enqueueUpload(const Mat& src, GpuMat& dst);
|
||||
|
||||
//! copy asynchronously
|
||||
void enqueueCopy(const GpuMat& src, GpuMat& dst);
|
||||
|
||||
//! memory set asynchronously
|
||||
void enqueueMemSet(GpuMat& src, Scalar val);
|
||||
void enqueueMemSet(GpuMat& src, Scalar val, const GpuMat& mask);
|
||||
|
||||
//! converts matrix type, ex from float to uchar depending on type
|
||||
void enqueueConvert(const GpuMat& src, GpuMat& dst, int dtype, double a = 1, double b = 0);
|
||||
|
||||
//! adds a callback to be called on the host after all currently enqueued items in the stream have completed
|
||||
typedef void (*StreamCallback)(Stream& stream, int status, void* userData);
|
||||
void enqueueHostCallback(StreamCallback callback, void* userData);
|
||||
|
||||
//! return Stream object for default CUDA stream
|
||||
static Stream& Null();
|
||||
|
||||
operator bool() const;
|
||||
//! returns true if stream object is not default (!= 0)
|
||||
operator bool_type() const;
|
||||
|
||||
// obsolete methods
|
||||
|
||||
void enqueueDownload(const GpuMat& src, OutputArray dst);
|
||||
|
||||
void enqueueUpload(InputArray src, GpuMat& dst);
|
||||
|
||||
void enqueueCopy(const GpuMat& src, OutputArray dst);
|
||||
|
||||
void enqueueMemSet(GpuMat& src, Scalar val);
|
||||
void enqueueMemSet(GpuMat& src, Scalar val, InputArray mask);
|
||||
|
||||
void enqueueConvert(const GpuMat& src, OutputArray dst, int dtype, double alpha = 1.0, double beta = 0.0);
|
||||
|
||||
class Impl;
|
||||
|
||||
private:
|
||||
struct Impl;
|
||||
|
||||
explicit Stream(Impl* impl);
|
||||
void create();
|
||||
void release();
|
||||
|
||||
Impl *impl;
|
||||
Ptr<Impl> impl_;
|
||||
Stream(const Ptr<Impl>& impl);
|
||||
|
||||
friend struct StreamAccessor;
|
||||
};
|
||||
@ -498,7 +494,13 @@ CV_EXPORTS void printCudaDeviceInfo(int device);
|
||||
|
||||
CV_EXPORTS void printShortCudaDeviceInfo(int device);
|
||||
|
||||
}} // cv::gpu
|
||||
}} // namespace cv { namespace gpu {
|
||||
|
||||
namespace cv {
|
||||
|
||||
template <> CV_EXPORTS void Ptr<cv::gpu::Stream::Impl>::delete_obj();
|
||||
|
||||
}
|
||||
|
||||
#include "opencv2/core/gpu.inl.hpp"
|
||||
|
||||
|
@ -46,8 +46,7 @@
|
||||
|
||||
#include "opencv2/core/gpu.hpp"
|
||||
|
||||
namespace cv { namespace gpu
|
||||
{
|
||||
namespace cv { namespace gpu {
|
||||
|
||||
//////////////////////////////// GpuMat ///////////////////////////////
|
||||
|
||||
@ -524,7 +523,51 @@ void swap(CudaMem& a, CudaMem& b)
|
||||
a.swap(b);
|
||||
}
|
||||
|
||||
}} // namespace cv { namespace gpu
|
||||
//////////////////////////////// Stream ///////////////////////////////
|
||||
|
||||
inline
|
||||
void Stream::enqueueDownload(const GpuMat& src, OutputArray dst)
|
||||
{
|
||||
src.download(dst, *this);
|
||||
}
|
||||
|
||||
inline
|
||||
void Stream::enqueueUpload(InputArray src, GpuMat& dst)
|
||||
{
|
||||
dst.upload(src, *this);
|
||||
}
|
||||
|
||||
inline
|
||||
void Stream::enqueueCopy(const GpuMat& src, OutputArray dst)
|
||||
{
|
||||
src.copyTo(dst, *this);
|
||||
}
|
||||
|
||||
inline
|
||||
void Stream::enqueueMemSet(GpuMat& src, Scalar val)
|
||||
{
|
||||
src.setTo(val, *this);
|
||||
}
|
||||
|
||||
inline
|
||||
void Stream::enqueueMemSet(GpuMat& src, Scalar val, InputArray mask)
|
||||
{
|
||||
src.setTo(val, mask, *this);
|
||||
}
|
||||
|
||||
inline
|
||||
void Stream::enqueueConvert(const GpuMat& src, OutputArray dst, int dtype, double alpha, double beta)
|
||||
{
|
||||
src.convertTo(dst, dtype, alpha, beta, *this);
|
||||
}
|
||||
|
||||
inline
|
||||
Stream::Stream(const Ptr<Impl>& impl)
|
||||
: impl_(impl)
|
||||
{
|
||||
}
|
||||
|
||||
}} // namespace cv { namespace gpu {
|
||||
|
||||
//////////////////////////////// Mat ////////////////////////////////
|
||||
|
||||
|
@ -45,170 +45,103 @@
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
#ifndef HAVE_CUDA
|
||||
|
||||
cv::gpu::Stream::Stream() { throw_no_cuda(); }
|
||||
cv::gpu::Stream::~Stream() {}
|
||||
cv::gpu::Stream::Stream(const Stream&) { throw_no_cuda(); }
|
||||
Stream& cv::gpu::Stream::operator=(const Stream&) { throw_no_cuda(); return *this; }
|
||||
bool cv::gpu::Stream::queryIfComplete() { throw_no_cuda(); return false; }
|
||||
void cv::gpu::Stream::waitForCompletion() { throw_no_cuda(); }
|
||||
void cv::gpu::Stream::enqueueDownload(const GpuMat&, Mat&) { throw_no_cuda(); }
|
||||
void cv::gpu::Stream::enqueueDownload(const GpuMat&, CudaMem&) { throw_no_cuda(); }
|
||||
void cv::gpu::Stream::enqueueUpload(const CudaMem&, GpuMat&) { throw_no_cuda(); }
|
||||
void cv::gpu::Stream::enqueueUpload(const Mat&, GpuMat&) { throw_no_cuda(); }
|
||||
void cv::gpu::Stream::enqueueCopy(const GpuMat&, GpuMat&) { throw_no_cuda(); }
|
||||
void cv::gpu::Stream::enqueueMemSet(GpuMat&, Scalar) { throw_no_cuda(); }
|
||||
void cv::gpu::Stream::enqueueMemSet(GpuMat&, Scalar, const GpuMat&) { throw_no_cuda(); }
|
||||
void cv::gpu::Stream::enqueueConvert(const GpuMat&, GpuMat&, int, double, double) { throw_no_cuda(); }
|
||||
void cv::gpu::Stream::enqueueHostCallback(StreamCallback, void*) { throw_no_cuda(); }
|
||||
Stream& cv::gpu::Stream::Null() { throw_no_cuda(); static Stream s; return s; }
|
||||
cv::gpu::Stream::operator bool() const { throw_no_cuda(); return false; }
|
||||
cv::gpu::Stream::Stream(Impl*) { throw_no_cuda(); }
|
||||
void cv::gpu::Stream::create() { throw_no_cuda(); }
|
||||
void cv::gpu::Stream::release() { throw_no_cuda(); }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
struct Stream::Impl
|
||||
class cv::gpu::Stream::Impl
|
||||
{
|
||||
static cudaStream_t getStream(const Impl* impl)
|
||||
public:
|
||||
Impl(void* ptr = 0)
|
||||
{
|
||||
return impl ? impl->stream : 0;
|
||||
(void) ptr;
|
||||
throw_no_cuda();
|
||||
}
|
||||
|
||||
cudaStream_t stream;
|
||||
int ref_counter;
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
class cv::gpu::Stream::Impl
|
||||
{
|
||||
public:
|
||||
cudaStream_t stream;
|
||||
|
||||
Impl();
|
||||
Impl(cudaStream_t stream);
|
||||
|
||||
~Impl();
|
||||
};
|
||||
|
||||
cv::gpu::Stream::Impl::Impl() : stream(0)
|
||||
{
|
||||
cudaSafeCall( cudaStreamCreate(&stream) );
|
||||
}
|
||||
|
||||
cv::gpu::Stream::Impl::Impl(cudaStream_t stream_) : stream(stream_)
|
||||
{
|
||||
}
|
||||
|
||||
cv::gpu::Stream::Impl::~Impl()
|
||||
{
|
||||
if (stream)
|
||||
cudaStreamDestroy(stream);
|
||||
}
|
||||
|
||||
cudaStream_t cv::gpu::StreamAccessor::getStream(const Stream& stream)
|
||||
{
|
||||
return Stream::Impl::getStream(stream.impl);
|
||||
return stream.impl_->stream;
|
||||
}
|
||||
|
||||
cv::gpu::Stream::Stream() : impl(0)
|
||||
#endif
|
||||
|
||||
cv::gpu::Stream::Stream()
|
||||
{
|
||||
create();
|
||||
#ifndef HAVE_CUDA
|
||||
throw_no_cuda();
|
||||
#else
|
||||
impl_ = new Impl;
|
||||
#endif
|
||||
}
|
||||
|
||||
cv::gpu::Stream::~Stream()
|
||||
bool cv::gpu::Stream::queryIfComplete() const
|
||||
{
|
||||
release();
|
||||
}
|
||||
|
||||
cv::gpu::Stream::Stream(const Stream& stream) : impl(stream.impl)
|
||||
{
|
||||
if (impl)
|
||||
CV_XADD(&impl->ref_counter, 1);
|
||||
}
|
||||
|
||||
Stream& cv::gpu::Stream::operator =(const Stream& stream)
|
||||
{
|
||||
if (this != &stream)
|
||||
{
|
||||
release();
|
||||
impl = stream.impl;
|
||||
if (impl)
|
||||
CV_XADD(&impl->ref_counter, 1);
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool cv::gpu::Stream::queryIfComplete()
|
||||
{
|
||||
cudaStream_t stream = Impl::getStream(impl);
|
||||
cudaError_t err = cudaStreamQuery(stream);
|
||||
#ifndef HAVE_CUDA
|
||||
throw_no_cuda();
|
||||
return false;
|
||||
#else
|
||||
cudaError_t err = cudaStreamQuery(impl_->stream);
|
||||
|
||||
if (err == cudaErrorNotReady || err == cudaSuccess)
|
||||
return err == cudaSuccess;
|
||||
|
||||
cudaSafeCall(err);
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
void cv::gpu::Stream::waitForCompletion()
|
||||
{
|
||||
cudaStream_t stream = Impl::getStream(impl);
|
||||
cudaSafeCall( cudaStreamSynchronize(stream) );
|
||||
#ifndef HAVE_CUDA
|
||||
throw_no_cuda();
|
||||
#else
|
||||
cudaSafeCall( cudaStreamSynchronize(impl_->stream) );
|
||||
#endif
|
||||
}
|
||||
|
||||
void cv::gpu::Stream::enqueueDownload(const GpuMat& src, Mat& dst)
|
||||
{
|
||||
// if not -> allocation will be done, but after that dst will not point to page locked memory
|
||||
CV_Assert( src.size() == dst.size() && src.type() == dst.type() );
|
||||
|
||||
cudaStream_t stream = Impl::getStream(impl);
|
||||
size_t bwidth = src.cols * src.elemSize();
|
||||
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, src.data, src.step, bwidth, src.rows, cudaMemcpyDeviceToHost, stream) );
|
||||
}
|
||||
|
||||
void cv::gpu::Stream::enqueueDownload(const GpuMat& src, CudaMem& dst)
|
||||
{
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
cudaStream_t stream = Impl::getStream(impl);
|
||||
size_t bwidth = src.cols * src.elemSize();
|
||||
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, src.data, src.step, bwidth, src.rows, cudaMemcpyDeviceToHost, stream) );
|
||||
}
|
||||
|
||||
void cv::gpu::Stream::enqueueUpload(const CudaMem& src, GpuMat& dst)
|
||||
{
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
cudaStream_t stream = Impl::getStream(impl);
|
||||
size_t bwidth = src.cols * src.elemSize();
|
||||
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, src.data, src.step, bwidth, src.rows, cudaMemcpyHostToDevice, stream) );
|
||||
}
|
||||
|
||||
void cv::gpu::Stream::enqueueUpload(const Mat& src, GpuMat& dst)
|
||||
{
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
cudaStream_t stream = Impl::getStream(impl);
|
||||
size_t bwidth = src.cols * src.elemSize();
|
||||
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, src.data, src.step, bwidth, src.rows, cudaMemcpyHostToDevice, stream) );
|
||||
}
|
||||
|
||||
void cv::gpu::Stream::enqueueCopy(const GpuMat& src, GpuMat& dst)
|
||||
{
|
||||
dst.create(src.size(), src.type());
|
||||
|
||||
cudaStream_t stream = Impl::getStream(impl);
|
||||
size_t bwidth = src.cols * src.elemSize();
|
||||
cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, src.data, src.step, bwidth, src.rows, cudaMemcpyDeviceToDevice, stream) );
|
||||
}
|
||||
|
||||
void cv::gpu::Stream::enqueueMemSet(GpuMat& src, Scalar val)
|
||||
{
|
||||
src.setTo(val, *this);
|
||||
}
|
||||
|
||||
void cv::gpu::Stream::enqueueMemSet(GpuMat& src, Scalar val, const GpuMat& mask)
|
||||
{
|
||||
src.setTo(val, mask, *this);
|
||||
}
|
||||
|
||||
void cv::gpu::Stream::enqueueConvert(const GpuMat& src, GpuMat& dst, int dtype, double alpha, double beta)
|
||||
{
|
||||
src.convertTo(dst, dtype, alpha, beta, *this);
|
||||
}
|
||||
|
||||
#if CUDART_VERSION >= 5000
|
||||
#if defined(HAVE_CUDA) && (CUDART_VERSION >= 5000)
|
||||
|
||||
namespace
|
||||
{
|
||||
struct CallbackData
|
||||
{
|
||||
cv::gpu::Stream::StreamCallback callback;
|
||||
Stream::StreamCallback callback;
|
||||
void* userData;
|
||||
Stream stream;
|
||||
|
||||
CallbackData(Stream::StreamCallback callback_, void* userData_) : callback(callback_), userData(userData_) {}
|
||||
};
|
||||
|
||||
void CUDART_CB cudaStreamCallback(cudaStream_t, cudaError_t status, void* userData)
|
||||
{
|
||||
CallbackData* data = reinterpret_cast<CallbackData*>(userData);
|
||||
data->callback(data->stream, static_cast<int>(status), data->userData);
|
||||
data->callback(static_cast<int>(status), data->userData);
|
||||
delete data;
|
||||
}
|
||||
}
|
||||
@ -217,58 +150,39 @@ namespace
|
||||
|
||||
void cv::gpu::Stream::enqueueHostCallback(StreamCallback callback, void* userData)
|
||||
{
|
||||
#if CUDART_VERSION >= 5000
|
||||
CallbackData* data = new CallbackData;
|
||||
data->callback = callback;
|
||||
data->userData = userData;
|
||||
data->stream = *this;
|
||||
|
||||
cudaStream_t stream = Impl::getStream(impl);
|
||||
|
||||
cudaSafeCall( cudaStreamAddCallback(stream, cudaStreamCallback, data, 0) );
|
||||
#else
|
||||
#ifndef HAVE_CUDA
|
||||
(void) callback;
|
||||
(void) userData;
|
||||
CV_Error(CV_StsNotImplemented, "This function requires CUDA 5.0");
|
||||
throw_no_cuda();
|
||||
#else
|
||||
#if CUDART_VERSION < 5000
|
||||
(void) callback;
|
||||
(void) userData;
|
||||
CV_Error(cv::Error::StsNotImplemented, "This function requires CUDA 5.0");
|
||||
#else
|
||||
CallbackData* data = new CallbackData(callback, userData);
|
||||
|
||||
cudaSafeCall( cudaStreamAddCallback(impl_->stream, cudaStreamCallback, data, 0) );
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
cv::gpu::Stream& cv::gpu::Stream::Null()
|
||||
Stream& cv::gpu::Stream::Null()
|
||||
{
|
||||
static Stream s((Impl*) 0);
|
||||
static Stream s(new Impl(0));
|
||||
return s;
|
||||
}
|
||||
|
||||
cv::gpu::Stream::operator bool() const
|
||||
cv::gpu::Stream::operator bool_type() const
|
||||
{
|
||||
return impl && impl->stream;
|
||||
#ifndef HAVE_CUDA
|
||||
return 0;
|
||||
#else
|
||||
return (impl_->stream != 0) ? &Stream::this_type_does_not_support_comparisons : 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
cv::gpu::Stream::Stream(Impl* impl_) : impl(impl_)
|
||||
template <> void cv::Ptr<Stream::Impl>::delete_obj()
|
||||
{
|
||||
if (obj) delete obj;
|
||||
}
|
||||
|
||||
void cv::gpu::Stream::create()
|
||||
{
|
||||
if (impl)
|
||||
release();
|
||||
|
||||
cudaStream_t stream;
|
||||
cudaSafeCall( cudaStreamCreate( &stream ) );
|
||||
|
||||
impl = (Stream::Impl*) fastMalloc(sizeof(Stream::Impl));
|
||||
|
||||
impl->stream = stream;
|
||||
impl->ref_counter = 1;
|
||||
}
|
||||
|
||||
void cv::gpu::Stream::release()
|
||||
{
|
||||
if (impl && CV_XADD(&impl->ref_counter, -1) == 1)
|
||||
{
|
||||
cudaSafeCall( cudaStreamDestroy(impl->stream) );
|
||||
cv::fastFree(impl);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
||||
|
@ -217,10 +217,7 @@ void cv::gpu::gemm(const GpuMat& src1, const GpuMat& src2, double alpha, const G
|
||||
{
|
||||
if (src3.empty())
|
||||
{
|
||||
if (stream)
|
||||
stream.enqueueMemSet(dst, Scalar::all(0));
|
||||
else
|
||||
dst.setTo(Scalar::all(0));
|
||||
dst.setTo(Scalar::all(0), stream);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -230,10 +227,7 @@ void cv::gpu::gemm(const GpuMat& src1, const GpuMat& src2, double alpha, const G
|
||||
}
|
||||
else
|
||||
{
|
||||
if (stream)
|
||||
stream.enqueueCopy(src3, dst);
|
||||
else
|
||||
src3.copyTo(dst);
|
||||
src3.copyTo(dst, stream);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -336,18 +330,13 @@ void cv::gpu::integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, S
|
||||
cv::gpu::cudev::imgproc::shfl_integral_gpu(src, buffer, stream);
|
||||
|
||||
sum.create(src.rows + 1, src.cols + 1, CV_32SC1);
|
||||
if (s)
|
||||
s.enqueueMemSet(sum, Scalar::all(0));
|
||||
else
|
||||
sum.setTo(Scalar::all(0));
|
||||
|
||||
sum.setTo(Scalar::all(0), s);
|
||||
|
||||
GpuMat inner = sum(Rect(1, 1, src.cols, src.rows));
|
||||
GpuMat res = buffer(Rect(0, 0, src.cols, src.rows));
|
||||
|
||||
if (s)
|
||||
s.enqueueCopy(res, inner);
|
||||
else
|
||||
res.copyTo(inner);
|
||||
res.copyTo(inner, s);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -720,10 +709,7 @@ void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result,
|
||||
GpuMat result_block(result_roi_size, result_data.type(),
|
||||
result_data.ptr(), result_data.step);
|
||||
|
||||
if (stream)
|
||||
stream.enqueueCopy(result_block, result_roi);
|
||||
else
|
||||
result_block.copyTo(result_roi);
|
||||
result_block.copyTo(result_roi, stream);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -134,10 +134,7 @@ void cv::gpu::GMG_GPU::operator ()(const cv::gpu::GpuMat& frame, cv::gpu::GpuMat
|
||||
initialize(frame.size(), 0.0f, frame.depth() == CV_8U ? 255.0f : frame.depth() == CV_16U ? std::numeric_limits<ushort>::max() : 1.0f);
|
||||
|
||||
fgmask.create(frameSize_, CV_8UC1);
|
||||
if (stream)
|
||||
stream.enqueueMemSet(fgmask, cv::Scalar::all(0));
|
||||
else
|
||||
fgmask.setTo(cv::Scalar::all(0));
|
||||
fgmask.setTo(cv::Scalar::all(0), stream);
|
||||
|
||||
funcs[frame.depth()][frame.channels() - 1](frame, fgmask, colors_, weights_, nfeatures_, frameNum_, learningRate, updateBackgroundModel, cv::gpu::StreamAccessor::getStream(stream));
|
||||
|
||||
|
@ -497,10 +497,7 @@ void cv::gpu::BFMatcher_GPU::knnMatchSingle(const GpuMat& query, const GpuMat& t
|
||||
ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist);
|
||||
}
|
||||
|
||||
if (stream)
|
||||
stream.enqueueMemSet(trainIdx, Scalar::all(-1));
|
||||
else
|
||||
trainIdx.setTo(Scalar::all(-1));
|
||||
trainIdx.setTo(Scalar::all(-1), stream);
|
||||
|
||||
caller_t func = callers[query.depth()];
|
||||
CV_Assert(func != 0);
|
||||
@ -616,10 +613,7 @@ void cv::gpu::BFMatcher_GPU::knnMatch2Collection(const GpuMat& query, const GpuM
|
||||
ensureSizeIsEnough(1, nQuery, CV_32SC2, imgIdx);
|
||||
ensureSizeIsEnough(1, nQuery, CV_32FC2, distance);
|
||||
|
||||
if (stream)
|
||||
stream.enqueueMemSet(trainIdx, Scalar::all(-1));
|
||||
else
|
||||
trainIdx.setTo(Scalar::all(-1));
|
||||
trainIdx.setTo(Scalar::all(-1), stream);
|
||||
|
||||
caller_t func = callers[query.depth()];
|
||||
CV_Assert(func != 0);
|
||||
@ -803,10 +797,7 @@ void cv::gpu::BFMatcher_GPU::radiusMatchSingle(const GpuMat& query, const GpuMat
|
||||
ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32FC1, distance);
|
||||
}
|
||||
|
||||
if (stream)
|
||||
stream.enqueueMemSet(nMatches, Scalar::all(0));
|
||||
else
|
||||
nMatches.setTo(Scalar::all(0));
|
||||
nMatches.setTo(Scalar::all(0), stream);
|
||||
|
||||
caller_t func = callers[query.depth()];
|
||||
CV_Assert(func != 0);
|
||||
@ -931,10 +922,7 @@ void cv::gpu::BFMatcher_GPU::radiusMatchCollection(const GpuMat& query, GpuMat&
|
||||
ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32FC1, distance);
|
||||
}
|
||||
|
||||
if (stream)
|
||||
stream.enqueueMemSet(nMatches, Scalar::all(0));
|
||||
else
|
||||
nMatches.setTo(Scalar::all(0));
|
||||
nMatches.setTo(Scalar::all(0), stream);
|
||||
|
||||
caller_t func = callers[query.depth()];
|
||||
CV_Assert(func != 0);
|
||||
|
@ -157,10 +157,7 @@ namespace
|
||||
|
||||
if (roi.size() != src_size)
|
||||
{
|
||||
if (stream)
|
||||
stream.enqueueMemSet(dst, Scalar::all(0));
|
||||
else
|
||||
dst.setTo(Scalar::all(0));
|
||||
dst.setTo(Scalar::all(0), stream);
|
||||
}
|
||||
|
||||
normalizeROI(roi, filter2D->ksize, filter2D->anchor, src_size);
|
||||
@ -221,10 +218,7 @@ namespace
|
||||
|
||||
if (roi.size() != src_size)
|
||||
{
|
||||
if (stream)
|
||||
stream.enqueueMemSet(dst, Scalar::all(0));
|
||||
else
|
||||
dst.setTo(Scalar::all(0));
|
||||
dst.setTo(Scalar::all(0), stream);
|
||||
}
|
||||
|
||||
ensureSizeIsEnough(src_size, bufType, *pbuf);
|
||||
@ -487,10 +481,7 @@ namespace
|
||||
|
||||
if (roi.size() != src_size)
|
||||
{
|
||||
if (stream)
|
||||
stream.enqueueMemSet(dst, Scalar::all(0));
|
||||
else
|
||||
dst.setTo(Scalar::all(0));
|
||||
dst.setTo(Scalar::all(0), stream);
|
||||
}
|
||||
|
||||
normalizeROI(roi, filter2D->ksize, filter2D->anchor, src_size);
|
||||
@ -557,10 +548,7 @@ namespace
|
||||
|
||||
if (iterations == 0 || _kernel.rows * _kernel.cols == 1)
|
||||
{
|
||||
if (stream)
|
||||
stream.enqueueCopy(src, dst);
|
||||
else
|
||||
src.copyTo(dst);
|
||||
src.copyTo(dst, stream);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -196,16 +196,9 @@ namespace
|
||||
return;
|
||||
}
|
||||
|
||||
if (stream)
|
||||
{
|
||||
stream.enqueueConvert(image, buf.imagef, CV_32F);
|
||||
stream.enqueueConvert(templ, buf.templf, CV_32F);
|
||||
}
|
||||
else
|
||||
{
|
||||
image.convertTo(buf.imagef, CV_32F);
|
||||
templ.convertTo(buf.templf, CV_32F);
|
||||
}
|
||||
image.convertTo(buf.imagef, CV_32F, stream);
|
||||
templ.convertTo(buf.templf, CV_32F, stream);
|
||||
|
||||
matchTemplate_CCORR_32F(buf.imagef, buf.templf, result, buf, stream);
|
||||
}
|
||||
|
||||
@ -317,16 +310,8 @@ namespace
|
||||
void matchTemplate_CCOFF_NORMED_8U(
|
||||
const GpuMat& image, const GpuMat& templ, GpuMat& result, MatchTemplateBuf &buf, Stream& stream)
|
||||
{
|
||||
if (stream)
|
||||
{
|
||||
stream.enqueueConvert(image, buf.imagef, CV_32F);
|
||||
stream.enqueueConvert(templ, buf.templf, CV_32F);
|
||||
}
|
||||
else
|
||||
{
|
||||
image.convertTo(buf.imagef, CV_32F);
|
||||
templ.convertTo(buf.templf, CV_32F);
|
||||
}
|
||||
image.convertTo(buf.imagef, CV_32F, stream);
|
||||
templ.convertTo(buf.templf, CV_32F, stream);
|
||||
|
||||
matchTemplate_CCORR_32F(buf.imagef, buf.templf, result, buf, stream);
|
||||
|
||||
|
@ -235,8 +235,8 @@ void cv::gpu::FarnebackOpticalFlow::operator ()(
|
||||
break;
|
||||
}
|
||||
|
||||
streams[0].enqueueConvert(frame0, frames_[0], CV_32F);
|
||||
streams[1].enqueueConvert(frame1, frames_[1], CV_32F);
|
||||
frame0.convertTo(frames_[0], CV_32F, streams[0]);
|
||||
frame1.convertTo(frames_[1], CV_32F, streams[1]);
|
||||
|
||||
if (fastPyramids)
|
||||
{
|
||||
@ -293,21 +293,21 @@ void cv::gpu::FarnebackOpticalFlow::operator ()(
|
||||
{
|
||||
gpu::resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
|
||||
gpu::resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
|
||||
streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), scale);
|
||||
streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), scale);
|
||||
curFlowX.convertTo(curFlowX, curFlowX.depth(), scale, streams[0]);
|
||||
curFlowY.convertTo(curFlowY, curFlowY.depth(), scale, streams[1]);
|
||||
}
|
||||
else
|
||||
{
|
||||
streams[0].enqueueMemSet(curFlowX, 0);
|
||||
streams[1].enqueueMemSet(curFlowY, 0);
|
||||
curFlowX.setTo(0, streams[0]);
|
||||
curFlowY.setTo(0, streams[1]);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
gpu::resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
|
||||
gpu::resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
|
||||
streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), 1./pyrScale);
|
||||
streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), 1./pyrScale);
|
||||
curFlowX.convertTo(curFlowX, curFlowX.depth(), 1./pyrScale, streams[0]);
|
||||
curFlowY.convertTo(curFlowY, curFlowY.depth(), 1./pyrScale, streams[1]);
|
||||
}
|
||||
|
||||
GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_);
|
||||
@ -343,7 +343,7 @@ void cv::gpu::FarnebackOpticalFlow::operator ()(
|
||||
{
|
||||
cudev::optflow_farneback::gaussianBlurGpu(
|
||||
frames_[i], smoothSize/2, blurredFrame[i], BORDER_REFLECT101, S(streams[i]));
|
||||
gpu::resize(blurredFrame[i], pyrLevel[i], Size(width, height), INTER_LINEAR, streams[i]);
|
||||
gpu::resize(blurredFrame[i], pyrLevel[i], Size(width, height), 0.0, 0.0, INTER_LINEAR, streams[i]);
|
||||
cudev::optflow_farneback::polynomialExpansionGpu(pyrLevel[i], polyN, R[i], S(streams[i]));
|
||||
}
|
||||
}
|
||||
|
@ -113,10 +113,7 @@ namespace
|
||||
|
||||
if (&dst != &disp)
|
||||
{
|
||||
if (stream)
|
||||
stream.enqueueCopy(disp, dst);
|
||||
else
|
||||
disp.copyTo(dst);
|
||||
disp.copyTo(dst, stream);
|
||||
}
|
||||
|
||||
disp_bilateral_filter<T>(dst, img, img.channels(), iters, StreamAccessor::getStream(stream));
|
||||
|
@ -194,20 +194,10 @@ namespace
|
||||
if (rthis.levels & 1)
|
||||
{
|
||||
//can clear less area
|
||||
if (stream)
|
||||
{
|
||||
stream.enqueueMemSet(u, zero);
|
||||
stream.enqueueMemSet(d, zero);
|
||||
stream.enqueueMemSet(l, zero);
|
||||
stream.enqueueMemSet(r, zero);
|
||||
}
|
||||
else
|
||||
{
|
||||
u.setTo(zero);
|
||||
d.setTo(zero);
|
||||
l.setTo(zero);
|
||||
r.setTo(zero);
|
||||
}
|
||||
u.setTo(zero, stream);
|
||||
d.setTo(zero, stream);
|
||||
l.setTo(zero, stream);
|
||||
r.setTo(zero, stream);
|
||||
}
|
||||
|
||||
if (rthis.levels > 1)
|
||||
@ -222,20 +212,10 @@ namespace
|
||||
|
||||
if ((rthis.levels & 1) == 0)
|
||||
{
|
||||
if (stream)
|
||||
{
|
||||
stream.enqueueMemSet(u2, zero);
|
||||
stream.enqueueMemSet(d2, zero);
|
||||
stream.enqueueMemSet(l2, zero);
|
||||
stream.enqueueMemSet(r2, zero);
|
||||
}
|
||||
else
|
||||
{
|
||||
u2.setTo(zero);
|
||||
d2.setTo(zero);
|
||||
l2.setTo(zero);
|
||||
r2.setTo(zero);
|
||||
}
|
||||
u2.setTo(zero, stream);
|
||||
d2.setTo(zero, stream);
|
||||
l2.setTo(zero, stream);
|
||||
r2.setTo(zero, stream);
|
||||
}
|
||||
}
|
||||
|
||||
@ -313,20 +293,12 @@ namespace
|
||||
|
||||
out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out));
|
||||
|
||||
if (stream)
|
||||
stream.enqueueMemSet(out, zero);
|
||||
else
|
||||
out.setTo(zero);
|
||||
out.setTo(zero, stream);
|
||||
|
||||
output_callers[funcIdx](u, d, l, r, datas.front(), out, cudaStream);
|
||||
|
||||
if (disp.type() != CV_16S)
|
||||
{
|
||||
if (stream)
|
||||
stream.enqueueConvert(out, disp, disp.type());
|
||||
else
|
||||
out.convertTo(disp, disp.type());
|
||||
}
|
||||
out.convertTo(disp, disp.type(), stream);
|
||||
}
|
||||
|
||||
StereoBeliefPropagation& rthis;
|
||||
|
@ -213,36 +213,18 @@ static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat& mbuf, GpuMat& te
|
||||
|
||||
load_constants(rthis.ndisp, rthis.max_data_term, rthis.data_weight, rthis.max_disc_term, rthis.disc_single_jump, rthis.min_disp_th, left, right, temp);
|
||||
|
||||
if (stream)
|
||||
{
|
||||
stream.enqueueMemSet(l[0], zero);
|
||||
stream.enqueueMemSet(d[0], zero);
|
||||
stream.enqueueMemSet(r[0], zero);
|
||||
stream.enqueueMemSet(u[0], zero);
|
||||
l[0].setTo(zero, stream);
|
||||
d[0].setTo(zero, stream);
|
||||
r[0].setTo(zero, stream);
|
||||
u[0].setTo(zero, stream);
|
||||
|
||||
stream.enqueueMemSet(l[1], zero);
|
||||
stream.enqueueMemSet(d[1], zero);
|
||||
stream.enqueueMemSet(r[1], zero);
|
||||
stream.enqueueMemSet(u[1], zero);
|
||||
l[1].setTo(zero, stream);
|
||||
d[1].setTo(zero, stream);
|
||||
r[1].setTo(zero, stream);
|
||||
u[1].setTo(zero, stream);
|
||||
|
||||
stream.enqueueMemSet(data_cost, zero);
|
||||
stream.enqueueMemSet(data_cost_selected, zero);
|
||||
}
|
||||
else
|
||||
{
|
||||
l[0].setTo(zero);
|
||||
d[0].setTo(zero);
|
||||
r[0].setTo(zero);
|
||||
u[0].setTo(zero);
|
||||
|
||||
l[1].setTo(zero);
|
||||
d[1].setTo(zero);
|
||||
r[1].setTo(zero);
|
||||
u[1].setTo(zero);
|
||||
|
||||
data_cost.setTo(zero);
|
||||
data_cost_selected.setTo(zero);
|
||||
}
|
||||
data_cost.setTo(zero, stream);
|
||||
data_cost_selected.setTo(zero, stream);
|
||||
|
||||
int cur_idx = 0;
|
||||
|
||||
@ -279,20 +261,14 @@ static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat& mbuf, GpuMat& te
|
||||
|
||||
out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out));
|
||||
|
||||
if (stream)
|
||||
stream.enqueueMemSet(out, zero);
|
||||
else
|
||||
out.setTo(zero);
|
||||
out.setTo(zero, stream);
|
||||
|
||||
compute_disp(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
|
||||
data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), elem_step, out, nr_plane_pyr[0], cudaStream);
|
||||
|
||||
if (disp.type() != CV_16S)
|
||||
{
|
||||
if (stream)
|
||||
stream.enqueueConvert(out, disp, disp.type());
|
||||
else
|
||||
out.convertTo(disp, disp.type());
|
||||
out.convertTo(disp, disp.type(), stream);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -184,10 +184,7 @@ void cv::gpu::ImagePyramid::getLayer(GpuMat& outImg, Size outRoi, Stream& stream
|
||||
|
||||
if (outRoi.width == layer0_.cols && outRoi.height == layer0_.rows)
|
||||
{
|
||||
if (stream)
|
||||
stream.enqueueCopy(layer0_, outImg);
|
||||
else
|
||||
layer0_.copyTo(outImg);
|
||||
layer0_.copyTo(outImg, stream);
|
||||
}
|
||||
|
||||
float lastScale = 1.0f;
|
||||
@ -202,10 +199,7 @@ void cv::gpu::ImagePyramid::getLayer(GpuMat& outImg, Size outRoi, Stream& stream
|
||||
|
||||
if (outRoi.width == curLayer.cols && outRoi.height == curLayer.rows)
|
||||
{
|
||||
if (stream)
|
||||
stream.enqueueCopy(curLayer, outImg);
|
||||
else
|
||||
curLayer.copyTo(outImg);
|
||||
curLayer.copyTo(outImg, stream);
|
||||
}
|
||||
|
||||
if (outRoi.width >= curLayer.cols && outRoi.height >= curLayer.rows)
|
||||
|
@ -77,10 +77,7 @@ void cv::gpu::resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx, doub
|
||||
|
||||
if (dsize == src.size())
|
||||
{
|
||||
if (s)
|
||||
s.enqueueCopy(src, dst);
|
||||
else
|
||||
src.copyTo(dst);
|
||||
src.copyTo(dst, s);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -335,10 +335,7 @@ struct cv::softcascade::SCascade::Fields
|
||||
|
||||
void detect(cv::gpu::GpuMat& objects, cv::gpu::Stream& s) const
|
||||
{
|
||||
if (s)
|
||||
s.enqueueMemSet(objects, 0);
|
||||
else
|
||||
cudaMemset(objects.data, 0, sizeof(Detection));
|
||||
objects.setTo(Scalar::all(0), s);
|
||||
|
||||
cudaSafeCall( cudaGetLastError());
|
||||
|
||||
@ -354,16 +351,8 @@ struct cv::softcascade::SCascade::Fields
|
||||
cv::gpu::GpuMat ndetections = cv::gpu::GpuMat(objects, cv::Rect(0, 0, sizeof(Detection), 1));
|
||||
ensureSizeIsEnough(objects.rows, objects.cols, CV_8UC1, overlaps);
|
||||
|
||||
if (s)
|
||||
{
|
||||
s.enqueueMemSet(overlaps, 0);
|
||||
s.enqueueMemSet(suppressed, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
overlaps.setTo(0);
|
||||
suppressed.setTo(0);
|
||||
}
|
||||
overlaps.setTo(0, s);
|
||||
suppressed.setTo(0, s);
|
||||
|
||||
cudaStream_t stream = cv::gpu::StreamAccessor::getStream(s);
|
||||
cudev::suppress(objects, overlaps, ndetections, suppressed, stream);
|
||||
@ -488,18 +477,12 @@ void integral(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& sum, cv::gpu::GpuMat&
|
||||
cv::softcascade::cudev::shfl_integral(src, buffer, stream);
|
||||
|
||||
sum.create(src.rows + 1, src.cols + 1, CV_32SC1);
|
||||
if (s)
|
||||
s.enqueueMemSet(sum, cv::Scalar::all(0));
|
||||
else
|
||||
sum.setTo(cv::Scalar::all(0));
|
||||
sum.setTo(cv::Scalar::all(0), s);
|
||||
|
||||
cv::gpu::GpuMat inner = sum(cv::Rect(1, 1, src.cols, src.rows));
|
||||
cv::gpu::GpuMat res = buffer(cv::Rect(0, 0, src.cols, src.rows));
|
||||
|
||||
if (s)
|
||||
s.enqueueCopy(res, inner);
|
||||
else
|
||||
res.copyTo(inner);
|
||||
res.copyTo(inner, s);
|
||||
}
|
||||
else {CV_Error(cv::Error::GpuNotSupported, ": CC 3.x required.");}
|
||||
}
|
||||
@ -541,10 +524,7 @@ void cv::softcascade::SCascade::detect(InputArray _image, InputArray _rois, Outp
|
||||
}
|
||||
else
|
||||
{
|
||||
if (s)
|
||||
s.enqueueCopy(image, flds.hogluv);
|
||||
else
|
||||
image.copyTo(flds.hogluv);
|
||||
image.copyTo(flds.hogluv, s);
|
||||
}
|
||||
|
||||
flds.detect(objects, s);
|
||||
@ -571,10 +551,7 @@ using cv::gpu::GpuMat;
|
||||
|
||||
inline void setZero(cv::gpu::GpuMat& m, cv::gpu::Stream& s)
|
||||
{
|
||||
if (s)
|
||||
s.enqueueMemSet(m, 0);
|
||||
else
|
||||
m.setTo(0);
|
||||
m.setTo(0, s);
|
||||
}
|
||||
|
||||
struct SeparablePreprocessor : public cv::softcascade::ChannelsProcessor
|
||||
|
@ -368,8 +368,8 @@ Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b)
|
||||
|
||||
gpu::Stream stream;
|
||||
|
||||
stream.enqueueConvert(b.gI1, b.t1, CV_32F);
|
||||
stream.enqueueConvert(b.gI2, b.t2, CV_32F);
|
||||
b.gI1.convertTo(b.t1, CV_32F, stream);
|
||||
b.gI2.convertTo(b.t2, CV_32F, stream);
|
||||
|
||||
gpu::split(b.t1, b.vI1, stream);
|
||||
gpu::split(b.t2, b.vI2, stream);
|
||||
@ -379,16 +379,16 @@ Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b)
|
||||
|
||||
for( int i = 0; i < b.gI1.channels(); ++i )
|
||||
{
|
||||
gpu::multiply(b.vI2[i], b.vI2[i], b.I2_2, stream); // I2^2
|
||||
gpu::multiply(b.vI1[i], b.vI1[i], b.I1_2, stream); // I1^2
|
||||
gpu::multiply(b.vI1[i], b.vI2[i], b.I1_I2, stream); // I1 * I2
|
||||
gpu::multiply(b.vI2[i], b.vI2[i], b.I2_2, 1, -1, stream); // I2^2
|
||||
gpu::multiply(b.vI1[i], b.vI1[i], b.I1_2, 1, -1, stream); // I1^2
|
||||
gpu::multiply(b.vI1[i], b.vI2[i], b.I1_I2, 1, -1, stream); // I1 * I2
|
||||
|
||||
gpu::GaussianBlur(b.vI1[i], b.mu1, Size(11, 11), buf, 1.5, 0, BORDER_DEFAULT, -1, stream);
|
||||
gpu::GaussianBlur(b.vI2[i], b.mu2, Size(11, 11), buf, 1.5, 0, BORDER_DEFAULT, -1, stream);
|
||||
|
||||
gpu::multiply(b.mu1, b.mu1, b.mu1_2, stream);
|
||||
gpu::multiply(b.mu2, b.mu2, b.mu2_2, stream);
|
||||
gpu::multiply(b.mu1, b.mu2, b.mu1_mu2, stream);
|
||||
gpu::multiply(b.mu1, b.mu1, b.mu1_2, 1, -1, stream);
|
||||
gpu::multiply(b.mu2, b.mu2, b.mu2_2, 1, -1, stream);
|
||||
gpu::multiply(b.mu1, b.mu2, b.mu1_mu2, 1, -1, stream);
|
||||
|
||||
gpu::GaussianBlur(b.I1_2, b.sigma1_2, Size(11, 11), buf, 1.5, 0, BORDER_DEFAULT, -1, stream);
|
||||
gpu::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, gpu::GpuMat(), -1, stream);
|
||||
|
Loading…
Reference in New Issue
Block a user