482 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			482 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| #include "test_chessboardgenerator.hpp"
 | |
| 
 | |
| #include <functional>
 | |
| #include <limits>
 | |
| #include <numeric>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| 
 | |
| #define _L2_ERR
 | |
| 
 | |
| void show_points( const Mat& gray, const Mat& u, const vector<Point2f>& v, Size pattern_size, bool was_found )
 | |
| {
 | |
|     Mat rgb( gray.size(), CV_8U);
 | |
|     merge(vector<Mat>(3, gray), rgb);
 | |
| 
 | |
|     for(size_t i = 0; i < v.size(); i++ )
 | |
|         circle( rgb, v[i], 3, Scalar(255, 0, 0), FILLED);
 | |
| 
 | |
|     if( !u.empty() )
 | |
|     {
 | |
|         const Point2f* u_data = u.ptr<Point2f>();
 | |
|         size_t count = u.cols * u.rows;
 | |
|         for(size_t i = 0; i < count; i++ )
 | |
|             circle( rgb, u_data[i], 3, Scalar(0, 255, 0), FILLED);
 | |
|     }
 | |
|     if (!v.empty())
 | |
|     {
 | |
|         Mat corners((int)v.size(), 1, CV_32FC2, (void*)&v[0]);
 | |
|         drawChessboardCorners( rgb, pattern_size, corners, was_found );
 | |
|     }
 | |
|     //namedWindow( "test", 0 ); imshow( "test", rgb ); waitKey(0);
 | |
| }
 | |
| 
 | |
| 
 | |
| enum Pattern { CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };
 | |
| 
 | |
| class CV_ChessboardDetectorTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     CV_ChessboardDetectorTest( Pattern pattern, int algorithmFlags = 0 );
 | |
| protected:
 | |
|     void run(int);
 | |
|     void run_batch(const string& filename);
 | |
|     bool checkByGenerator();
 | |
| 
 | |
|     Pattern pattern;
 | |
|     int algorithmFlags;
 | |
| };
 | |
| 
 | |
| CV_ChessboardDetectorTest::CV_ChessboardDetectorTest( Pattern _pattern, int _algorithmFlags )
 | |
| {
 | |
|     pattern = _pattern;
 | |
|     algorithmFlags = _algorithmFlags;
 | |
| }
 | |
| 
 | |
| double calcError(const vector<Point2f>& v, const Mat& u)
 | |
| {
 | |
|     int count_exp = u.cols * u.rows;
 | |
|     const Point2f* u_data = u.ptr<Point2f>();
 | |
| 
 | |
|     double err = numeric_limits<double>::max();
 | |
|     for( int k = 0; k < 2; ++k )
 | |
|     {
 | |
|         double err1 = 0;
 | |
|         for( int j = 0; j < count_exp; ++j )
 | |
|         {
 | |
|             int j1 = k == 0 ? j : count_exp - j - 1;
 | |
|             double dx = fabs( v[j].x - u_data[j1].x );
 | |
|             double dy = fabs( v[j].y - u_data[j1].y );
 | |
| 
 | |
| #if defined(_L2_ERR)
 | |
|             err1 += dx*dx + dy*dy;
 | |
| #else
 | |
|             dx = MAX( dx, dy );
 | |
|             if( dx > err1 )
 | |
|                 err1 = dx;
 | |
| #endif //_L2_ERR
 | |
|             //printf("dx = %f\n", dx);
 | |
|         }
 | |
|         //printf("\n");
 | |
|         err = min(err, err1);
 | |
|     }
 | |
| 
 | |
| #if defined(_L2_ERR)
 | |
|     err = sqrt(err/count_exp);
 | |
| #endif //_L2_ERR
 | |
| 
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| const double rough_success_error_level = 2.5;
 | |
| const double precise_success_error_level = 2;
 | |
| 
 | |
| 
 | |
| /* ///////////////////// chess_corner_test ///////////////////////// */
 | |
| void CV_ChessboardDetectorTest::run( int /*start_from */)
 | |
| {
 | |
|     ts->set_failed_test_info( cvtest::TS::OK );
 | |
| 
 | |
|     /*if (!checkByGenerator())
 | |
|         return;*/
 | |
|     switch( pattern )
 | |
|     {
 | |
|         case CHESSBOARD:
 | |
|             checkByGenerator();
 | |
|             if (ts->get_err_code() != cvtest::TS::OK)
 | |
|             {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             run_batch("negative_list.dat");
 | |
|             if (ts->get_err_code() != cvtest::TS::OK)
 | |
|             {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             run_batch("chessboard_list.dat");
 | |
|             if (ts->get_err_code() != cvtest::TS::OK)
 | |
|             {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             run_batch("chessboard_list_subpixel.dat");
 | |
|             break;
 | |
|         case CIRCLES_GRID:
 | |
|             run_batch("circles_list.dat");
 | |
|             break;
 | |
|         case ASYMMETRIC_CIRCLES_GRID:
 | |
|             run_batch("acircles_list.dat");
 | |
|             break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CV_ChessboardDetectorTest::run_batch( const string& filename )
 | |
| {
 | |
|     ts->printf(cvtest::TS::LOG, "\nRunning batch %s\n", filename.c_str());
 | |
| //#define WRITE_POINTS 1
 | |
| #ifndef WRITE_POINTS
 | |
|     double max_rough_error = 0, max_precise_error = 0;
 | |
| #endif
 | |
|     string folder;
 | |
|     switch( pattern )
 | |
|     {
 | |
|         case CHESSBOARD:
 | |
|             folder = string(ts->get_data_path()) + "cv/cameracalibration/";
 | |
|             break;
 | |
|         case CIRCLES_GRID:
 | |
|             folder = string(ts->get_data_path()) + "cv/cameracalibration/circles/";
 | |
|             break;
 | |
|         case ASYMMETRIC_CIRCLES_GRID:
 | |
|             folder = string(ts->get_data_path()) + "cv/cameracalibration/asymmetric_circles/";
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     FileStorage fs( folder + filename, FileStorage::READ );
 | |
|     FileNode board_list = fs["boards"];
 | |
| 
 | |
|     if( !fs.isOpened() || board_list.empty() || !board_list.isSeq() || board_list.size() % 2 != 0 )
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "%s can not be readed or is not valid\n", (folder + filename).c_str() );
 | |
|         ts->printf( cvtest::TS::LOG, "fs.isOpened=%d, board_list.empty=%d, board_list.isSeq=%d,board_list.size()%2=%d\n",
 | |
|             fs.isOpened(), (int)board_list.empty(), board_list.isSeq(), board_list.size()%2);
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA );
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     int progress = 0;
 | |
|     int max_idx = (int)board_list.size()/2;
 | |
|     double sum_error = 0.0;
 | |
|     int count = 0;
 | |
| 
 | |
|     for(int idx = 0; idx < max_idx; ++idx )
 | |
|     {
 | |
|         ts->update_context( this, idx, true );
 | |
| 
 | |
|         /* read the image */
 | |
|         String img_file = board_list[idx * 2];
 | |
|         Mat gray = imread( folder + img_file, 0);
 | |
| 
 | |
|         if( gray.empty() )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "one of chessboard images can't be read: %s\n", img_file.c_str() );
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         String _filename = folder + (String)board_list[idx * 2 + 1];
 | |
|         bool doesContatinChessboard;
 | |
|         Mat expected;
 | |
|         {
 | |
|             FileStorage fs1(_filename, FileStorage::READ);
 | |
|             fs1["corners"] >> expected;
 | |
|             fs1["isFound"] >> doesContatinChessboard;
 | |
|             fs1.release();
 | |
|         }
 | |
|         size_t count_exp = static_cast<size_t>(expected.cols * expected.rows);
 | |
|         Size pattern_size = expected.size();
 | |
| 
 | |
|         vector<Point2f> v;
 | |
|         bool result = false;
 | |
|         switch( pattern )
 | |
|         {
 | |
|             case CHESSBOARD:
 | |
|                 result = findChessboardCorners(gray, pattern_size, v, CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE);
 | |
|                 break;
 | |
|             case CIRCLES_GRID:
 | |
|                 result = findCirclesGrid(gray, pattern_size, v);
 | |
|                 break;
 | |
|             case ASYMMETRIC_CIRCLES_GRID:
 | |
|                 result = findCirclesGrid(gray, pattern_size, v, CALIB_CB_ASYMMETRIC_GRID | algorithmFlags);
 | |
|                 break;
 | |
|         }
 | |
|         show_points( gray, Mat(), v, pattern_size, result );
 | |
| 
 | |
|         if( result ^ doesContatinChessboard || v.size() != count_exp )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "chessboard is detected incorrectly in %s\n", img_file.c_str() );
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if( result )
 | |
|         {
 | |
| 
 | |
| #ifndef WRITE_POINTS
 | |
|             double err = calcError(v, expected);
 | |
| #if 0
 | |
|             if( err > rough_success_error_level )
 | |
|             {
 | |
|                 ts.printf( cvtest::TS::LOG, "bad accuracy of corner guesses\n" );
 | |
|                 ts.set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|                 continue;
 | |
|             }
 | |
| #endif
 | |
|             max_rough_error = MAX( max_rough_error, err );
 | |
| #endif
 | |
|             if( pattern == CHESSBOARD )
 | |
|                 cornerSubPix( gray, v, Size(5, 5), Size(-1,-1), TermCriteria(TermCriteria::EPS|TermCriteria::MAX_ITER, 30, 0.1));
 | |
|             //find4QuadCornerSubpix(gray, v, Size(5, 5));
 | |
|             show_points( gray, expected, v, pattern_size, result  );
 | |
| #ifndef WRITE_POINTS
 | |
|     //        printf("called find4QuadCornerSubpix\n");
 | |
|             err = calcError(v, expected);
 | |
|             sum_error += err;
 | |
|             count++;
 | |
| #if 1
 | |
|             if( err > precise_success_error_level )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "Image %s: bad accuracy of adjusted corners %f\n", img_file.c_str(), err );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|                 return;
 | |
|             }
 | |
| #endif
 | |
|             ts->printf(cvtest::TS::LOG, "Error on %s is %f\n", img_file.c_str(), err);
 | |
|             max_precise_error = MAX( max_precise_error, err );
 | |
| #endif
 | |
|         }
 | |
| 
 | |
| #ifdef WRITE_POINTS
 | |
|         Mat mat_v(pattern_size, CV_32FC2, (void*)&v[0]);
 | |
|         FileStorage fs(_filename, FileStorage::WRITE);
 | |
|         fs << "isFound" << result;
 | |
|         fs << "corners" << mat_v;
 | |
|         fs.release();
 | |
| #endif
 | |
|         progress = update_progress( progress, idx, max_idx, 0 );
 | |
|     }
 | |
| 
 | |
|     if (count != 0)
 | |
|         sum_error /= count;
 | |
|     ts->printf(cvtest::TS::LOG, "Average error is %f (%d patterns have been found)\n", sum_error, count);
 | |
| }
 | |
| 
 | |
| double calcErrorMinError(const Size& cornSz, const vector<Point2f>& corners_found, const vector<Point2f>& corners_generated)
 | |
| {
 | |
|     Mat m1(cornSz, CV_32FC2, (Point2f*)&corners_generated[0]);
 | |
|     Mat m2; flip(m1, m2, 0);
 | |
| 
 | |
|     Mat m3; flip(m1, m3, 1); m3 = m3.t(); flip(m3, m3, 1);
 | |
| 
 | |
|     Mat m4 = m1.t(); flip(m4, m4, 1);
 | |
| 
 | |
|     double min1 =  min(calcError(corners_found, m1), calcError(corners_found, m2));
 | |
|     double min2 =  min(calcError(corners_found, m3), calcError(corners_found, m4));
 | |
|     return min(min1, min2);
 | |
| }
 | |
| 
 | |
| bool validateData(const ChessBoardGenerator& cbg, const Size& imgSz,
 | |
|                   const vector<Point2f>& corners_generated)
 | |
| {
 | |
|     Size cornersSize = cbg.cornersSize();
 | |
|     Mat_<Point2f> mat(cornersSize.height, cornersSize.width, (Point2f*)&corners_generated[0]);
 | |
| 
 | |
|     double minNeibDist = std::numeric_limits<double>::max();
 | |
|     double tmp = 0;
 | |
|     for(int i = 1; i < mat.rows - 2; ++i)
 | |
|         for(int j = 1; j < mat.cols - 2; ++j)
 | |
|         {
 | |
|             const Point2f& cur = mat(i, j);
 | |
| 
 | |
|             tmp = norm( cur - mat(i + 1, j + 1) );
 | |
|             if (tmp < minNeibDist)
 | |
|                 tmp = minNeibDist;
 | |
| 
 | |
|             tmp = norm( cur - mat(i - 1, j + 1 ) );
 | |
|             if (tmp < minNeibDist)
 | |
|                 tmp = minNeibDist;
 | |
| 
 | |
|             tmp = norm( cur - mat(i + 1, j - 1) );
 | |
|             if (tmp < minNeibDist)
 | |
|                 tmp = minNeibDist;
 | |
| 
 | |
|             tmp = norm( cur - mat(i - 1, j - 1) );
 | |
|             if (tmp < minNeibDist)
 | |
|                 tmp = minNeibDist;
 | |
|         }
 | |
| 
 | |
|     const double threshold = 0.25;
 | |
|     double cbsize = (max(cornersSize.width, cornersSize.height) + 1) * minNeibDist;
 | |
|     int imgsize =  min(imgSz.height, imgSz.width);
 | |
|     return imgsize * threshold < cbsize;
 | |
| }
 | |
| 
 | |
| bool CV_ChessboardDetectorTest::checkByGenerator()
 | |
| {
 | |
|     bool res = true;
 | |
| 
 | |
| // for some reason, this test sometimes fails on Ubuntu
 | |
| #if (defined __APPLE__ && defined __x86_64__) || defined _MSC_VER
 | |
|     //theRNG() = 0x58e6e895b9913160;
 | |
|     //cv::DefaultRngAuto dra;
 | |
|     //theRNG() = *ts->get_rng();
 | |
| 
 | |
|     Mat bg(Size(800, 600), CV_8UC3, Scalar::all(255));
 | |
|     randu(bg, Scalar::all(0), Scalar::all(255));
 | |
|     GaussianBlur(bg, bg, Size(7,7), 3.0);
 | |
| 
 | |
|     Mat_<float> camMat(3, 3);
 | |
|     camMat << 300.f, 0.f, bg.cols/2.f, 0, 300.f, bg.rows/2.f, 0.f, 0.f, 1.f;
 | |
| 
 | |
|     Mat_<float> distCoeffs(1, 5);
 | |
|     distCoeffs << 1.2f, 0.2f, 0.f, 0.f, 0.f;
 | |
| 
 | |
|     const Size sizes[] = { Size(6, 6), Size(8, 6), Size(11, 12),  Size(5, 4) };
 | |
|     const size_t sizes_num = sizeof(sizes)/sizeof(sizes[0]);
 | |
|     const int test_num = 16;
 | |
|     int progress = 0;
 | |
|     for(int i = 0; i < test_num; ++i)
 | |
|     {
 | |
|         progress = update_progress( progress, i, test_num, 0 );
 | |
|         ChessBoardGenerator cbg(sizes[i % sizes_num]);
 | |
| 
 | |
|         vector<Point2f> corners_generated;
 | |
| 
 | |
|         Mat cb = cbg(bg, camMat, distCoeffs, corners_generated);
 | |
| 
 | |
|         if(!validateData(cbg, cb.size(), corners_generated))
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "Chess board skipped - too small" );
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /*cb = cb * 0.8 + Scalar::all(30);
 | |
|         GaussianBlur(cb, cb, Size(3, 3), 0.8);     */
 | |
|         //cv::addWeighted(cb, 0.8, bg, 0.2, 20, cb);
 | |
|         //cv::namedWindow("CB"); cv::imshow("CB", cb); cv::waitKey();
 | |
| 
 | |
|         vector<Point2f> corners_found;
 | |
|         int flags = i % 8; // need to check branches for all flags
 | |
|         bool found = findChessboardCorners(cb, cbg.cornersSize(), corners_found, flags);
 | |
|         if (!found)
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "Chess board corners not found\n" );
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|             res = false;
 | |
|             return res;
 | |
|         }
 | |
| 
 | |
|         double err = calcErrorMinError(cbg.cornersSize(), corners_found, corners_generated);
 | |
|         if( err > rough_success_error_level )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "bad accuracy of corner guesses" );
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|             res = false;
 | |
|             return res;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* ***** negative ***** */
 | |
|     {
 | |
|         vector<Point2f> corners_found;
 | |
|         bool found = findChessboardCorners(bg, Size(8, 7), corners_found);
 | |
|         if (found)
 | |
|             res = false;
 | |
| 
 | |
|         ChessBoardGenerator cbg(Size(8, 7));
 | |
| 
 | |
|         vector<Point2f> cg;
 | |
|         Mat cb = cbg(bg, camMat, distCoeffs, cg);
 | |
| 
 | |
|         found = findChessboardCorners(cb, Size(3, 4), corners_found);
 | |
|         if (found)
 | |
|             res = false;
 | |
| 
 | |
|         Point2f c = std::accumulate(cg.begin(), cg.end(), Point2f(), plus<Point2f>()) * (1.f/cg.size());
 | |
| 
 | |
|         Mat_<double> aff(2, 3);
 | |
|         aff << 1.0, 0.0, -(double)c.x, 0.0, 1.0, 0.0;
 | |
|         Mat sh;
 | |
|         warpAffine(cb, sh, aff, cb.size());
 | |
| 
 | |
|         found = findChessboardCorners(sh, cbg.cornersSize(), corners_found);
 | |
|         if (found)
 | |
|             res = false;
 | |
| 
 | |
|         vector< vector<Point> > cnts(1);
 | |
|         vector<Point>& cnt = cnts[0];
 | |
|         cnt.push_back(cg[  0]); cnt.push_back(cg[0+2]);
 | |
|         cnt.push_back(cg[7+0]); cnt.push_back(cg[7+2]);
 | |
|         cv::drawContours(cb, cnts, -1, Scalar::all(128), FILLED);
 | |
| 
 | |
|         found = findChessboardCorners(cb, cbg.cornersSize(), corners_found);
 | |
|         if (found)
 | |
|             res = false;
 | |
| 
 | |
|         cv::drawChessboardCorners(cb, cbg.cornersSize(), Mat(corners_found), found);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| TEST(Calib3d_ChessboardDetector, accuracy) {  CV_ChessboardDetectorTest test( CHESSBOARD ); test.safe_run(); }
 | |
| TEST(Calib3d_CirclesPatternDetector, accuracy) { CV_ChessboardDetectorTest test( CIRCLES_GRID ); test.safe_run(); }
 | |
| TEST(Calib3d_AsymmetricCirclesPatternDetector, accuracy) { CV_ChessboardDetectorTest test( ASYMMETRIC_CIRCLES_GRID ); test.safe_run(); }
 | |
| TEST(Calib3d_AsymmetricCirclesPatternDetectorWithClustering, accuracy) { CV_ChessboardDetectorTest test( ASYMMETRIC_CIRCLES_GRID, CALIB_CB_CLUSTERING ); test.safe_run(); }
 | |
| 
 | |
| /* End of file. */
 | 
