fixed defects from Xcode
This commit is contained in:
parent
32eb38ec98
commit
ce0557ebb8
@ -218,6 +218,7 @@ void CirclesGridClusterFinder::findCorners(const std::vector<cv::Point2f> &hull2
|
||||
|
||||
void CirclesGridClusterFinder::findOutsideCorners(const std::vector<cv::Point2f> &corners, std::vector<cv::Point2f> &outsideCorners)
|
||||
{
|
||||
CV_Assert(!corners.empty());
|
||||
outsideCorners.clear();
|
||||
//find two pairs of the most nearest corners
|
||||
int i, j, n = (int)corners.size();
|
||||
|
@ -311,7 +311,7 @@ void CV_ChessboardDetectorTest::run_batch( const string& filename )
|
||||
|
||||
if (count != 0)
|
||||
sum_error /= count;
|
||||
ts->printf(cvtest::TS::LOG, "Average error is %f\n", sum_error);
|
||||
ts->printf(cvtest::TS::LOG, "Average error is %f (%d patterns have been found)\n", sum_error, count);
|
||||
}
|
||||
|
||||
double calcErrorMinError(const Size& cornSz, const vector<Point2f>& corners_found, const vector<Point2f>& corners_generated)
|
||||
|
@ -353,7 +353,7 @@ Mat& Mat::operator = (const Scalar& s)
|
||||
|
||||
Mat& Mat::setTo(InputArray _value, InputArray _mask)
|
||||
{
|
||||
if( !data )
|
||||
if( empty() )
|
||||
return *this;
|
||||
|
||||
Mat value = _value.getMat(), mask = _mask.getMat();
|
||||
@ -632,6 +632,7 @@ int cv::borderInterpolate( int p, int len, int borderType )
|
||||
}
|
||||
else if( borderType == BORDER_WRAP )
|
||||
{
|
||||
CV_Assert(len > 0);
|
||||
if( p < 0 )
|
||||
p -= ((p-len+1)/len)*len;
|
||||
if( p >= len )
|
||||
|
@ -426,6 +426,7 @@ String format( const char* fmt, ... )
|
||||
String s(len, '\0');
|
||||
va_start(va, fmt);
|
||||
len = vsnprintf((char*)s.c_str(), len + 1, fmt, va);
|
||||
(void)len;
|
||||
va_end(va);
|
||||
return s;
|
||||
}
|
||||
|
@ -408,7 +408,7 @@ static bool ocl_accumulate( InputArray _src, InputArray _src2, InputOutputArray
|
||||
argidx = k.set(argidx, alpha);
|
||||
}
|
||||
if (haveMask)
|
||||
argidx = k.set(argidx, maskarg);
|
||||
k.set(argidx, maskarg);
|
||||
|
||||
size_t globalsize[2] = { src.cols, src.rows };
|
||||
return k.run(2, globalsize, NULL, false);
|
||||
|
@ -83,11 +83,9 @@ namespace clahe
|
||||
idx = k.set(idx, tile_size);
|
||||
idx = k.set(idx, tilesX);
|
||||
idx = k.set(idx, clipLimit);
|
||||
idx = k.set(idx, lutScale);
|
||||
k.set(idx, lutScale);
|
||||
|
||||
if (!k.run(2, globalThreads, localThreads, false))
|
||||
return false;
|
||||
return true;
|
||||
return k.run(2, globalThreads, localThreads, false);
|
||||
}
|
||||
|
||||
static bool transform(cv::InputArray _src, cv::OutputArray _dst, cv::InputArray _lut,
|
||||
@ -118,11 +116,9 @@ namespace clahe
|
||||
idx = k.set(idx, src.rows);
|
||||
idx = k.set(idx, tile_size);
|
||||
idx = k.set(idx, tilesX);
|
||||
idx = k.set(idx, tilesY);
|
||||
k.set(idx, tilesY);
|
||||
|
||||
if (!k.run(2, globalThreads, localThreads, false))
|
||||
return false;
|
||||
return true;
|
||||
return k.run(2, globalThreads, localThreads, false);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -294,7 +294,7 @@ void ERFilterNM::er_tree_extract( InputArray image )
|
||||
push_new_component = false;
|
||||
|
||||
// explore the (remaining) edges to the neighbors to the current pixel
|
||||
for (current_edge = current_edge; current_edge < 4; current_edge++)
|
||||
for ( ; current_edge < 4; current_edge++)
|
||||
{
|
||||
|
||||
int neighbour_pixel = current_pixel;
|
||||
@ -1949,7 +1949,6 @@ private:
|
||||
double (dissimilarity::*distfn) (const int_fast32_t, const int_fast32_t) const;
|
||||
|
||||
auto_array_ptr<double> precomputed;
|
||||
double * precomputed2;
|
||||
|
||||
double * V;
|
||||
const double * V_data;
|
||||
|
@ -574,7 +574,7 @@ public:
|
||||
Size winStride = Size(), Size padding = Size(),
|
||||
const vector<Point>& locations = vector<Point>()) const;
|
||||
|
||||
virtual void compute(const Mat& img, vector<float>& descriptors,
|
||||
virtual void compute(InputArray img, vector<float>& descriptors,
|
||||
Size winStride = Size(), Size padding = Size(),
|
||||
const vector<Point>& locations = vector<Point>()) const;
|
||||
|
||||
@ -1107,9 +1107,11 @@ void HOGDescriptorTester::detect(const Mat& img, vector<Point>& hits, double hit
|
||||
detect(img, hits, weightsV, hitThreshold, winStride, padding, locations);
|
||||
}
|
||||
|
||||
void HOGDescriptorTester::compute(const Mat& img, vector<float>& descriptors,
|
||||
void HOGDescriptorTester::compute(InputArray _img, vector<float>& descriptors,
|
||||
Size winStride, Size padding, const vector<Point>& locations) const
|
||||
{
|
||||
Mat img = _img.getMat();
|
||||
|
||||
if( winStride == Size() )
|
||||
winStride = cellSize;
|
||||
Size cacheStride(gcd(winStride.width, blockStride.width),
|
||||
|
@ -120,7 +120,6 @@ public:
|
||||
|
||||
private:
|
||||
float minMatchCost;
|
||||
float betaAdditional;
|
||||
protected:
|
||||
void buildCostMatrix(const cv::Mat& descriptors1, const cv::Mat& descriptors2,
|
||||
cv::Mat& costMatrix, cv::Ptr<cv::HistogramCostExtractor>& comparer) const;
|
||||
|
@ -779,7 +779,7 @@ bool BackgroundSubtractorMOG2Impl::ocl_apply(InputArray _image, OutputArray _fgm
|
||||
idxArg = kernel_apply.set(idxArg, varMax);
|
||||
idxArg = kernel_apply.set(idxArg, fVarInit);
|
||||
idxArg = kernel_apply.set(idxArg, fTau);
|
||||
idxArg = kernel_apply.set(idxArg, nShadowDetection);
|
||||
kernel_apply.set(idxArg, nShadowDetection);
|
||||
|
||||
size_t globalsize[] = {frame.cols, frame.rows, 1};
|
||||
|
||||
@ -805,7 +805,7 @@ bool BackgroundSubtractorMOG2Impl::ocl_getBackgroundImage(OutputArray _backgroun
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::ReadOnlyNoSize(u_weight));
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::ReadOnlyNoSize(u_mean));
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::WriteOnlyNoSize(dst));
|
||||
idxArg = kernel_getBg.set(idxArg, backgroundRatio);
|
||||
kernel_getBg.set(idxArg, backgroundRatio);
|
||||
|
||||
size_t globalsize[2] = {u_bgmodelUsedModes.cols, u_bgmodelUsedModes.rows};
|
||||
|
||||
|
@ -857,7 +857,7 @@ private:
|
||||
idxArg = kernel.set(idxArg, dst.cols);
|
||||
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(m_gKer));
|
||||
idxArg = kernel.set(idxArg, (int)ksizeHalf);
|
||||
idxArg = kernel.set(idxArg, (void *)NULL, smem_size);
|
||||
kernel.set(idxArg, (void *)NULL, smem_size);
|
||||
return kernel.run(2, globalsize, localsize, false);
|
||||
}
|
||||
bool gaussianBlur5Ocl(const UMat &src, int ksizeHalf, UMat &dst)
|
||||
@ -883,7 +883,7 @@ private:
|
||||
idxArg = kernel.set(idxArg, src.cols);
|
||||
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(m_gKer));
|
||||
idxArg = kernel.set(idxArg, (int)ksizeHalf);
|
||||
idxArg = kernel.set(idxArg, (void *)NULL, smem_size);
|
||||
kernel.set(idxArg, (void *)NULL, smem_size);
|
||||
return kernel.run(2, globalsize, localsize, false);
|
||||
}
|
||||
bool polynomialExpansionOcl(const UMat &src, UMat &dst)
|
||||
@ -919,12 +919,7 @@ private:
|
||||
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(m_xg));
|
||||
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(m_xxg));
|
||||
idxArg = kernel.set(idxArg, (void *)NULL, smem_size);
|
||||
#if 0
|
||||
if (useDouble)
|
||||
idxArg = kernel.set(idxArg, (void *)m_igd, 4 * sizeof(double));
|
||||
else
|
||||
#endif
|
||||
idxArg = kernel.set(idxArg, (void *)m_ig, 4 * sizeof(float));
|
||||
kernel.set(idxArg, (void *)m_ig, 4 * sizeof(float));
|
||||
return kernel.run(2, globalsize, localsize, false);
|
||||
}
|
||||
bool boxFilter5Ocl(const UMat &src, int ksizeHalf, UMat &dst)
|
||||
@ -951,7 +946,7 @@ private:
|
||||
idxArg = kernel.set(idxArg, height);
|
||||
idxArg = kernel.set(idxArg, src.cols);
|
||||
idxArg = kernel.set(idxArg, (int)ksizeHalf);
|
||||
idxArg = kernel.set(idxArg, (void *)NULL, smem_size);
|
||||
kernel.set(idxArg, (void *)NULL, smem_size);
|
||||
return kernel.run(2, globalsize, localsize, false);
|
||||
}
|
||||
|
||||
@ -976,7 +971,7 @@ private:
|
||||
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(flowy));
|
||||
idxArg = kernel.set(idxArg, (int)(flowy.step / flowy.elemSize()));
|
||||
idxArg = kernel.set(idxArg, (int)flowy.rows);
|
||||
idxArg = kernel.set(idxArg, (int)flowy.cols);
|
||||
kernel.set(idxArg, (int)flowy.cols);
|
||||
return kernel.run(2, globalsize, localsize, false);
|
||||
}
|
||||
bool updateMatricesOcl(const UMat &flowx, const UMat &flowy, const UMat &R0, const UMat &R1, UMat &M)
|
||||
@ -1004,7 +999,7 @@ private:
|
||||
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrReadOnly(R1));
|
||||
idxArg = kernel.set(idxArg, (int)(R1.step / R1.elemSize()));
|
||||
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(M));
|
||||
idxArg = kernel.set(idxArg, (int)(M.step / M.elemSize()));
|
||||
kernel.set(idxArg, (int)(M.step / M.elemSize()));
|
||||
return kernel.run(2, globalsize, localsize, false);
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user